General Tests, Processes and Apparatus

Total Page:16

File Type:pdf, Size:1020Kb

General Tests, Processes and Apparatus General Tests, Processes and Apparatus KP X 1571 General Tests, Processes and Apparatus 1. Alcohol Number Determination ....................... 1573 36. Nuclear Magnetic Resonance Spectroscopy ..... 1638 2. Ammonium Limit Test ..................................... 1574 37. Optical Rotation Determination ....................... 1640 3. Arsenic Limit Test ............................................ 1576 38. Osmolarity Determination ................................ 1641 4. Atomic Absorption Spectrophotometry ............ 1577 39. Oxygen Flask Combustion Method .................. 1642 5. Bacterial Endotoxins Test ................................. 1578 40. Particle Size Distribution Test for 6. Bioautography .................................................. 1583 Preparations ...................................................... 1644 7. Boiling Point and Distilling Range Test ........... 1583 41. pH Determination ............................................. 1644 8. Chloride Limit Test ........................................... 1584 42. Pyrogen Test ..................................................... 1646 9. Conductivity Measurement ............................... 1585 43. Qualitative Tests ............................................... 1646 10. Congealing Point Determination ...................... 1586 44. Readily Carbonizable Substances Test ............. 1653 11. Crystallinity Test ............................................... 1587 45. Refractive Index Determination ....................... 1653 12. Determination of Specific Gravity and 46. Residue on Ignition Test ................................... 1653 Density .............................................................. 1587 47. Sterility Test ..................................................... 1654 13. Determination of Volume of Injection in 48. Sulfate Limit Test ............................................. 1658 Containers ......................................................... 1589 49. Test for Acid-neutralizing Capacity .................. 1658 14. Digestion Test ................................................... 1590 50. Test for Glass Containers for Injections ........... 1659 15. Disintegration Test ............................................ 1593 51. Test for Herbal Drugs ....................................... 1660 16. Dissolution Test ................................................ 1596 52. Test for Histamine ............................................ 1676 17. End point detection methods in Titrimetry ....... 1601 53. Test for Metal Particles ..................................... 1677 18. Fats and Fatty Oils Test .................................... 1603 54. Test for Rubber Closure for Aqueous 19. Flame Coloration Test....................................... 1606 Infusions ........................................................... 1677 20. Fluorometry ...................................................... 1606 55. Test for Total Organic Carbon .......................... 1678 21. Foreign Insoluble Matter Test ........................... 1606 56. Test Methods for Plastic Containers ................. 1680 22. Gas Chromatography ........................................ 1607 57. Thermal Analysis .............................................. 1685 23. Heavy Metals Limit Test .................................. 1611 58. Thin-layer Chromatography ............................. 1687 24. Infrared Spectrophotometry .............................. 1612 59. Ultraviolet-visible Spectrophotometry ............. 1688 25. Insoluble Particulate Matter Test for 60. Uniformity of Dosage Units ............................. 1689 Injections .......................................................... 1613 61. Viscosity Determination ................................... 1693 26. Insoluble Particulate Matter Test for 62. Vitamin A Assay ............................................... 1697 Ophthalmic Solutions ....................................... 1616 63. Water Determination (Karl Fischer Method) .... 1698 27. Iron Limit Test .................................................. 1617 64. X-Ray Powder Diffraction Method .................. 1701 28. Liquid Chromatography ................................... 1618 65. Reference Standards; Reagents,Test Solutions; 29. Loss on Drying Test .......................................... 1619 Standard Solutions for Volumetric Analysis; 30. Loss on Ignition Test ........................................ 1620 Standard Solutions;Matching Fluids for Color; 31. Melting Point Determination ............................ 1620 Optical Filters for Wavelength and Transmission 32. Microbial Assay for Antibiotics ........................ 1622 Rate Calibration; Measuring Instruments, 33. Microbial Limit Test ......................................... 1627 Appliances; Sterilization and Aseptic 34. Mineral Oil Test ................................................ 1637 Manipulation .................................................... 1706 35. Nitrogen Determination (Semimicro-Kjeldahl Method) ............................................................ 1637 KP X 1573 distilling flask, A, add 5mL of water and boiling chips. 1. Alcohol Number Distil ethanol carefully into the glass-stoppered, volu- Determination metric cylinder, D. By reference to the following Table, a suitable The Alcohol Number represents the number of volume of distillate (mL) should be collected, accord- milliliters of ethanol at 15 °C obtained from 10mL of ing to the content of ethanol in the sample preparation. tincture or other preparations containing ethanol by the Prevent bumping during distillation by rendering the following procedures. sample strongly acidic with phosphoric acid or sulfuric acid, or by adding a small amount of paraffin, beeswax Method 1. Distilling method or silicone resin before starting the distillation. When This is a method to determine the Alcohol Num- the samples contain the following substances, carry out ber by reading the number of milliliters of ethanol dis- pretreatment as follows before distillation. tillate at 15 °C obtained from 10mL of a sample meas- (i) Glycerin: Add sufficient water to the sample so ured at 15 °C by the following procedures. that the residue in the distilling flask, after distillation, (1) Apparatus: Use hard glass apparatus as illus- contains at least 50 % of water. trated herein. Ground glass may be used for the joints. (ii) Iodine: Decolorize the sample with zinc pow- (2) Reagent: Alkaline phenolphthalein solution: der. To 1 g of phenolphthalein, add 7mL of sodium hydrox- (iii) Volatile substances: Preparations containing ide TS and water to make 100mL. appreciable proportions of essential oil, chloroform, ether or camphor require treatment as follows. Mix 10mL of the sample, accurately measured, with 10mL of saturated sodium chloride solution in a separator, add 10mL of petroleum benzin, and shake. Collect the separated aqueous layer. The petroleum benzin layer was extracted with two 5mL volumes of saturated so- dium chloride solution. Combine the aqueous layers, and distill. According to the ethanol content in the sample, collect a volume of distillate 2 to 3mL more than that shown in the below Table. (iv) Other substances: Render preparations con- taining free ammonia slightly acidic with dilute sulfu- ric acid. If volatile acids are present, render the prepa- ration slightly alkaline with sodium hydroxide TS, and if the preparations contain soap along with volatile substances, decompose the soap with an excess of di- lute sulfuric acid before the extraction with petroleum benzin in the treatment described in (iii). To the distil- late, add 4 to 6 g of potassium carbonate and 1 to 2 drops of alkaline phenolphthalein solution, and shake vigorously. If the aqueous layer shows no white turbid- ity, agitate the distillate with additional potassium car- bonate. After allowing to stand in water at 15 ± 2 °C for 30 minutes, read the volume of the upper reddish ethanol layer inmL, and regard it as the Alcohol Num- ber. If there is no clear boundary surface between these two layers, shake vigorously after addition of a few drops of water, then observe in the same manner. Table. Amount of Distillate A: Distilling flask (50mL) Ethanol content in Distillate B: Delivery tube the sample (vol %) to be collected (mL) C: Condenser Above 80 13 D: Glass-stoppered volumetric cylinder (25mL, 80 - 70 12 graduated in 0.1mL) 70 - 60 11 60 - 50 10 Figure. Apparatus used or the Alcohol Number 50 - 40 9 Determination. 40 - 30 8 Below 30 7 (3) Procedure: Transfer 10mL of the sample preparation, accurately measured at 15 ± 2 °C, to the Method 2. Gas chromatography 1574 General Tests, Processes and Apparatus This is a method to determine the Alcohol Num- Selection of column: Proceed with 1mL of the gas ber by determining ethanol (C2H5OH) content (vol %) obtained from the standard solution in the bottle under from a sample measured at l5 °C by the following pro- the above operating conditions, and calculate the reso- cedures. lution. Use a column giving elution of ethanol and the (1) Reagent Dehydrated ethanol for Alcohol internal standard in this order with a resolution be- Number: Dehydrated ethanol with determined ethanol tween their peaks being not less than 2.0. (C2H5OH) content. The relation between specific gravi- 15 ty, d15 , of dehydrated ethanol and ethanol (C2H5OH) content is 0.797: 99.46 vol %, 0.796: 99.66 vol %, and 2. Ammonium Limit Test 0.795:99.86 vol %. (2) Preparation of test solution and standard so- The Ammonium Limit Test is a limit
Recommended publications
  • In Presenting the Dissertation As a Partial Fulfillment of the Requirements for an Advanced Degree from the Georgia Institute Of
    In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction It was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this dis­ sertation which involves potential financial gain will not be allowed without written permission. THE PHOTOMETRIC TITRATION AND EXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF NICKEL IN THE PRESENCE OF COBALT A THESIS Presented to The Faculty of the Graduate Division by Joe Allen Mann In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology April, 1969 THE PHOTOMETRIC TITRATION AND EXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF TRACE AMOUNTS OF NICKEL IN THE PRESENCE OF COBALT APPROVED: 1 / CHAIRMAN DATE APPROVED BY CHAIRMAN: iNI . M ii ACKNOWLEDGMENTS It is a pleasure to acknowledge my indebtedness to Dr. H. A, Flaschka for his guidance, inspiration,and friendship. His willingness to share his wide experience, vast knowledge, and keen insight has made an invaluable contribution to the accomplishment of this work and to the development of the author, Dr, Peter E.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Topical and Systemic Antifungal Therapy for Chronic Rhinosinusitis (Protocol)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of East Anglia digital repository Cochrane Database of Systematic Reviews Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) Head K, Sacks PL, Chong LY, Hopkins C, Philpott C Head K, Sacks PL, Chong LY, Hopkins C, Philpott C. Topical and systemic antifungal therapy for chronic rhinosinusitis. Cochrane Database of Systematic Reviews 2016, Issue 11. Art. No.: CD012453. DOI: 10.1002/14651858.CD012453. www.cochranelibrary.com Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 BACKGROUND .................................... 1 OBJECTIVES ..................................... 3 METHODS ...................................... 3 ACKNOWLEDGEMENTS . 8 REFERENCES ..................................... 9 APPENDICES ..................................... 10 CONTRIBUTIONSOFAUTHORS . 25 DECLARATIONSOFINTEREST . 26 SOURCESOFSUPPORT . 26 NOTES........................................ 26 Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) i Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Protocol] Topical and systemic antifungal therapy for chronic rhinosinusitis Karen Head1, Peta-Lee Sacks2, Lee Yee Chong1, Claire Hopkins3, Carl Philpott4 1UK Cochrane Centre,
    [Show full text]
  • NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
    NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Empiric Treatment with Antibiotic Combination Therapy Compared with Monotherapy for Adult Patients with Septic Shock of Unknown
    REPORT 2020 SYSTEMATIC REVIEW: Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin Utgitt av Norwegian Institute of Public Health Division for Health Services Title Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic review Norwegian title Hva er effekten av empirisk kombinasjonsbehandling med antibiotika sammen- lignet med monoterapi for voksne pasienter med septisk sjokk forårsaket av ukjent patogen og ukjent opprinnelse: en systematisk oversikt Responsible Camilla Stoltenberg, Director General Authors Jan PW Himmels, project leader, seniorrådgiver, Norwegian Institute of Public Health Gunn Elisabeth Vist, seniorforsker, Norwegian Institute of Public Health Liv Giske, seniorforsker, Norwegian Institute of Public Health Eva Helene Arentz-Hansen, seniorforsker, Norwegian Institute of Public Health Gyri Hval, bibliotekar, Norwegian Institute of Public Health ISBN 978-82-8406-084-2 Project number RL035 Type of report Systematic Review No. of pages 26 (32 inklusiv vedlegg) Client Helsedirektoratet Subject Septic shock, antibiotic dual treatment, antibiotic monotherapy, antimicrobi- heading(MeSH) otic ressistance (AMR) Citation Himmels JPW, Vist GE, Giske L, Arentz-Hansen EH, Hval G. Empiric treatment with antibiotic combination therapy compared with monotherapy for adult patients with septic shock of unknown pathogen and origin: a systematic
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Isoconazole (nitrate) Item No. 30100 CAS Registry No.: 24168-96-5 Cl Formal Name: 1-[2-(2,4-dichlorophenyl)-2-[(2,6- dichlorophenyl)methoxy]ethyl]-1H- imidazole, mononitrate Synonyms: Adestan G 100, R 15454 Cl Cl MF: C18H14Cl4N2O • HNO3 FW: 479.1 N N Purity: ≥98% O Supplied as: A solid Storage: -20°C • HNO3 Cl Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Isoconazole (nitrate) is supplied as a solid. A stock solution may be made by dissolving the isoconazole (nitrate) in the solvent of choice, which should be purged with an inert gas. Isoconazole (nitrate) is soluble in organic solvents such as DMSO and dimethyl formamide (DMF). The solubility of isoconazole (nitrate) in these solvents is approximately 10 mg/ml. Isoconazole (nitrate) is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, isoconazole (nitrate) should first be dissolved in DMF and then diluted with the aqueous buffer of choice. Isoconazole (nitrate) has a solubility of approximately 0.2 mg/ml in a 1:4 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Isoconazole is an imidazole with antimicrobial activity.1 It is active against clinical isolates of Candida species, including C. albicans, C. parapsilosis, C. tropicalis, C. krusei, and C. guilliermondii with MIC values ranging from 0.12 to 2 μg/ml. It is also active against the fungi T. mentagrophytes and T. rubrum when used at a concentration of 0.1 µg/ml and the bacteria C.
    [Show full text]
  • Chemistry Inventory; Fall
    CHEMISTRY FALL 2005 MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Aluminum 9 1.5 kg Aluminum chloride, anhydrous, 98.5% 9 0.2 kg Aluminum chloride · 6H2O 9 0.5 kg Aluminum hydroxide 9 0.5 kg Aluminum nitrate 9 0.5 kg Aluminum sulfate 9 0.5 kg Ammonia, concentrated 9 4.0 L Ammonium acetate 9 0.2 kg Ammonium chloride 9 Ammonium dihydrogen phosphate (monobasic) 9 0.4 kg J.T. Baker Ammonium hydrogen phosphate (dibasic) No 0.5 kg Ammonium nitrate 9 2.5 kg Ammonium oxalate 9 0.7 kg Ammonium peroxydisulfate 9 0.5 kg Ammonium sulfate 9 0.2 kg Antimony 9 0.4 kg Barium chloride, anhydrous 9 2.5 kg Barium chloride · 2H2O 9 2.5 kg Barium nitrate 9 0.8 kg Bismuth 9 2.0 kg Boric Acid 9 0.4 kg Brass 9 Bromine 9 2.5 kg Cadmium 9 0.1 kg Cadmium nitrate 9 0.3 kg Calcium acetate · xH2O 9 0.5 kg Calcium carbide 9 1.0 kg Calcium carbonate 9 2.2 kg Calcium chloride 9 1.0 kg Calcium hydroxide 9 0.3 kg Calcium nitrate · 4H2O 9 1.0 kg Calcium oxide 9 0.3 kg Calcium sulfate · 2H2O 9 1.0 kg Carbon 9 0.1 kg Ceric ammonium nitrate 9 0.5 kg Cesium chloride 9 0.01 kg Chromium 9 0.01 kg Chromium chloride 9 0.5 kg Chromium nitrate 9 0.5 kg Cobalt 9 0.025 kg Cobalt chloride 9 0.7 kg Cobalt nitrate 9 0.6 kg Copper (assorted) 9 4.0 kg Copper acetate 9 0.05 kg Copper chloride 9 0.1 kg Copper nitrate 9 3.5 kg Copper oxide 9 0.4 kg Cupric sulfate, anhydrous 9 0.5 kg Cupric sulfate · 5H2O 9 2.75 kg EDTA 9 0.6 kg Iodine 9 2.0 kg Iron (assorted) 9 5.0 kg MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Ferric ammonium
    [Show full text]
  • Centre for Reviews and Dissemination
    Comparison of antibiotics with placebo for treatment of acute sinusitis: a meta-analysis of randomised controlled trials Falagas ME, Giannopoulou KP, Vardakas KZ, Dimopoulos G, Karageorgopoulos DE CRD summary The review concluded that use of antibiotics for acute sinusitis conferred a small therapeutic benefit over placebo and a corresponding rise in adverse events. The authors' conclusions were supported by the evidence presented, but limitations in the reporting of review process should be taken into consideration when interpreting these results. Authors' objectives To investigate the effectiveness and safety of antibiotics compared with placebo for acute sinusitis. Searching PubMed and Scopus databases were searched up to May 2008; search terms were reported. Bibliographic references of all relevant articles were handsearched. Papers published in languages other than English, Spanish, French, Italian and German or presented as conference abstracts were excluded. Study selection Double-blinded, randomised controlled trials (RCTs) that compared antibiotic treatment with placebo for patients of any age with acute sinusitis (of any location) were eligible for inclusion. Diagnosis of acute sinusitis was required to be determined by either clinical criteria or positive radiological, microbiological or laboratory tests. Trials that included patients with mixed types of sinusitis or mixed types of respiratory tract infections were included only if data on the subgroup of patients with acute sinusitis were reported separately or if a clinical diagnosis of acute sinusitis was supported for more than two thirds of the study population. The most commonly compared antibiotic was amoxicillin, other antibiotics included phenoxymethyl-penicillin, amoxicillin-clavulanic acid, doxycycline, azithromycin, cefuroxime and ciclacillin. All study medications were administered orally.
    [Show full text]
  • Listed Toxic Air Contaminants and Common Chemicals
    Listed Toxic Air Contaminants and Common Chemicals (sorted by Chemical name) CHEMICAL NAME CAS # Listed Air Toxic 1,1,1,2-Tetrachloroethane 630206 Y 1,1,1,2-Tetrafluoroethane 811972 Y 1,1,2,2-Tetrachloroethane 79345 Y 1,1,2-Trichloroethane 79005 Y 1,1-Difluoroethane (HCFC 152a) 75376 Y 1,1-Dimethyl hyrazine 57147 Y 1,2,4 Trimethylbenzene 95636 N 1,2,4-Trichlorobenzene 120821 Y 1,2-Dibromo-3-chloropropane 96128 Y 1,2-Dichlorobenzene 95501 Y 1,2-Dimethyl hyrazine 540738 Y 1,2-Diphenylhydrazine (Hydrazobenzene) 122667 Y 1,2-Epoxybutane 106887 Y 1,2-Propylenimine (2-Methyl aziridine) 75558 Y 1,3-Butadiene 106990 Y 1,3-Dichloropropene 542756 Y 1,3-Propane sultone 1120714 Y 1,4-Dichlorobenzene (p-Dichlorobenzene) 106467 Y 1,4-Dioxane (1,4-Diethyleneoxide) 123911 Y 1-Chloro-1,1-difluoroethane (CFC 142B) 75683 Y 2,2,4-Trimethylpentane 540841 Y 2,4,5-Trichlorophenol 95954 Y 2,4,6-Trichlorophenol 88062 Y 2,4-and 2,6-Toluene diisocyanateh 26471625 Y 2,4-Diaminoanisole 615054 Y 2,4-Diaminotoluene 95807 Y 2,4-Dichlorophenoxyacetic acid, salts & esters 94757 Y (2,4-D) 2,4-Dimethylphenol 105679 Y 2,4-Dinitrophenol 51285 Y 2,4-Dinitrotoluene 121142 Y 2,4-Toluene diamine (2,4-Diaminotoluene) 95807 Y 2-Acetylaminofluorene 53963 Y 2-Aminoanthraquinone 117793 Y CHEMICAL NAME CAS # Listed Air Toxic 2-Chloroacetophenone 532274 Y 2-Chlorophenol 95578 Y 2-Nitropropane 79469 Y 3,3'-Dichlorobenzidene 91941 Y 3,3'-Dimethoxybenzidine 119904 Y 3,3'-Dimethyl benzidine 119937 Y 4,4-Methylene bis (2-chloroaniline) 101144 Y 4,4-Methylenedianiline 101779 Y 4,6-Dinitro-o-cresol
    [Show full text]
  • Lab Chemicals.Cdr
    KIMYA Lab Chemicals Product Catalogue PRODUCTS Ammonium iron(ıı)sulfate hexa. Ammonium monovanadat 100 gr 1-Naphthylamine for synthesis Ammonium oxalate monoh.ext.pu 2-Butanol for analysis Ammonium peroxidısulfate ex.pu 2-Butanol gr for analysis Ammonium peroxidısulfate ex.pu 2-Mercaptoethanol Ammonium standart Acetaldehyde for synthesis Ammonium sulfate Acetic acid %100 gr for analysis Ammonium sulfate Acetic acid %100 gr for analysis pls. Ammonium thiocyanate gr for Acetic acid %100 extra pure Ammonium thıocyanate sol.for Acetic acid %100 extra pure Amonnium heptamolybdate Acetic acid (glacial) 100% extra pure Amyl alcohol Aceton gr for analysis acs,iso,reag,ph eur Amyl alcohol (1-pentanol)for.. Aceton gr for analysis acs,iso,reag,ph eur Aniline gr for analysis Aceton extra pure ph eur bp,nf Anthrone for synthesis Aceton extra pure ph eurbp,nf Antimony icp standart traceable to srm Acetone suprasolv 2,5 lt Antimony(ııı)chloride Acetone for liquid chromotography Aquamerck iron fresh-sea wa.te Acetonitrile for gas chromotography Aquamerck total hardness test Acetonitrile hplc Aqumerck total hardness test Acetonitrile hypergrade Arsenic icp standart traceable Acetonitrile lichrosolv Arsenic standard sol.1000mg/l Acetylacetone for synthesıs Azomethine h gr for analysis Acrylamide for electrophoresıs Barbituric acıd for synthesis Acrylamide for synthesis Barbituric acıd gr Acrylamıde for synthesis Barium chloride dıhydrate gr for analysis acs,iso Adipic acid for synthesis Barium chloride dihdrate ex.pu Albumin fraction v bovine seru Barium
    [Show full text]
  • Sulfuric Acid Aerosol Is Formed by the Oxidation of SO in Standard, NH /N ) Diluted to 2 RELATIVE HUMIDITY (RH) 3 2 Gas/Aqueous/Aerosol Phase
    INVESTIGATIONS OF THE HETEROGENEOUS REACTION BETWEEN AMMONIA AND SULFURIC/SULFUROUS ACID AEROSOLS Thomas Townsend, Colette Noonan and John R. Sodeau Centre for Research into Atmospheric Chemistry, Department of Chemistry, University College Cork, and Environmental Research Institute, Cork, Ireland. [email protected] INTRODUCTION EXPERIMENTAL SET-UP AMMONIA (100ppm Sulfuric acid aerosol is formed by the oxidation of SO in standard, NH /N ) diluted to 2 RELATIVE HUMIDITY (RH) 3 2 gas/aqueous/aerosol phase. The preferred form of sulfuric acid tuned between 1% and 70%. ppb range. Admitted to flow AEROSOL GENERATION tube via a 6mm diameter in the aerosol phase is ammonium sulfate (NH4)2SO4. If there H2SO4 /C2H2O4 aerosol Dilution Unit movable, glass injector. is not enough ammonia present, sulfuric acid exists either as generated by passing a flow (200-500 ccm) of air over a P H2SO4(aq) or NH4HSO4. heated solution or via a nebuliser. AEROSOL FLOW-REACTOR Aerosols AerosolAerosol Humidifier Generator Made of glass, ID: 10cm, maximal ….are tiny particles suspended in the air. Those larger than reactive length Z: 80cm. Aerosol Flow Carrier Flow Operated at room temperature and Soluble trace gases such as Ammonia, about 1μm in size are mainly produced by windblown dust Comp. Air atmospheric pressure. NH3, are produced from agricultural and sea-spray. Aerosols smaller than 1μm are mostly formed Unit by condensation processes e.g. conversion of SO gas released PARTICLE SIZER (SMPS) sources and represents a significant 2 from volcanic eruptions to sulfate-type particles. Monitors aerosol fraction, NH3/N2 atmospheric pollutant in Ireland. particle size, mass, surface SMPS CHEMILUMINESCENCE area, volume.
    [Show full text]