data acquisition systems

NUCLEAR DATA INC NUCLEARDATA, INC. Golf and Meacham Roads Schaumburg, Illinois 60196

March, 1978

IM 88-0604-01 OPERATOR’S INSTRUCTION MANUAL ND600 MULTICHANNEL ANALYZER SYSTEM

Copyright 1978, by Nuclear Data, Inc. Printed in U.S.A. CONTAINED THE OF MANNER, RESERVED “THIS INC. A PROPRIETARY AND PATENTABLE DOCUMENT TO EXCEPT MAY THEREIN NUCLEAR NOT RIGHTS AND IS BY THE WRITTEN BE OR DATA, UNPATENTABLE REPRODUCED, EXCLUSIVE TO DERIVABLE THE INC.” PERMISSION A AFORESAID PROPERTY THEREFROM NOR NATURE, OF MAY INFORMATION, OF NUCLEAR BE ARE THE NUCLEAR USED EXPRESSLY INFORMATION DATA, IN DATA, ANY BOTH INC.

C;

C

C

2.

of

The

1.

the

ND600

status

The

acquire pushbutton.

then from

operand

the

ation

acquisition

The

ND600

ACQ

characters

operation

the

a

of

Version

displays.

pause

by

Analyzer

pushbutton

acquisition

ACQ

pushbutton

VERSION

successive

pause

state

Previous

08

of

pushbutton.

“ND600”

the

Firmware

accomplished

System:

was

array

from

ACQ

alternately

08

versions

depressions

accomplished

FiRMWARE

now

a

and

pushbutton

changes

pause

appear

they

ADDENDUM

of

by

initiates

the

state

of

depressing depressing

the

OPERATIONAL

the

by

in

ND600

has

is

following

the

depressing

ACQ

accomplished

or

been

first

I

terminates

firmware

the

the

pushbutton.

altered

line

operating

ACQ

minus

the

CHANGES

of

allowed

minus

by

such

acquisition

pushbutton.

all

(—)

depressing

alphanumeric

pushbutton

Termination

characteristics

that

(—)

acquire,

pushbutton

depressing

with

Continu

the

at

of

an

pause,

ACQ

the

acquire and

CHAPTER Ill CONTROL, Ventilation ADC Optional System Systeminterconnection Power System General General ND600 INSTALLATION INTRODUCTION Unpacking Installation Source Description Specifications X—Y Operational PowerConnection Data Page Page Terminal ND600 ND600 ND600 ND600 ND600 System and Plotter INDICATOR 2 Input/Output 1 — — Inspection Terminal Terminal Electronics Electronics Terminal Component Display Alphanumeric Data Interconnection

Function CONTENTS Acquisition Installation Parameters AND TITLE Enclosure Enclosure Peripheral Board Firmware Status CONNECTOR Parameters installation . Display Interface . Option . DESCRIPTIONS. Packages Options . . . . 2—5 2—4 2—3 2—2 2—2 2—1 2—5 2—3 2—2 2—1 2—1 2—1 2—1 3—1 3—1 3—2 3-1 3—3 PAGE 1—5 1—2 1—6 1—2 1—2 1—1 1—1 CHAPTER

IV

ND600

OPERATINGPROCEDURES Definition ND600 ND600

Introduction

DataAcquisition Principles

Data

SpectrumComparison Display TotalizationandReadout Spectrum Region Automatic AutoAnalysis Scroll

PlotterReadout

StatusDisplaylnput/Output.

Subtraction

Display

DisplayPushbuttons

Page Page Operand Terminal FuncHonPushbuttons StatusPushbuttons Electronics

Terminal

Analog

of

A’phanumeric ND600 Pulse Initial SystemCalibration

Parameter MultichanneiScaling PHA Multichannel Multichannel Sequential

Calibration

ReadoutProcedure

Expansion

Stripping

of

Interest

of

Energy

4

3

Spectrum

Radiation

Terms

Height — —

System

to

Terminal

Data Auto

Pushbutton Pushbutton CRT

Digital

Entry

Selection,

Calibration

and

Enclosure

Listing

and

Procedure

Analysis

Controls

Scaling Scaling

Analysis

Manipulation Set—up

Status

Storage

Analysis

Positioning.

Description

Converter

TITLE

.

Array.

Keyboard

.

. Page

II

(Rear

and

Intensification,

(Single (Preset

for .

Parameters

. .

. ..

Spectrum

Selection

a

.

Panel)

of

Parameters

Preset

.

. ..

Recurrent

Pass)

Common

.

.

Clock

Storage

and

Passes) Spectral

Time

Features ,

. . ,

4—1 3—5 3—4 4—1 3—6 PAGE 4—4 4—] 3—8 3—6 4—6 3—12 3—13 3—14 4—7 4—8 3—13 4—8 4—8

4—10

4—16 4—12 4—14

4—18 4—17 4—20 4—20 4—21

4—24 4—22

4—28 4—30

4—35 4—32

4—39

4—40 440 4—41

C CHAPTER TITLE PAGE

V DATAMANIPULATION PACKAGE (47-0054) 5-1

VI INTENSIFIEDREGION PEAKEXTRACTIONPACKAGE (47-0055) 6—1

VII INTENSIFIEDREGION ISOTOPE IDENTIFICATION PACKAGE (47-0056) 7—1

VIII AUTOMATICPEAKSEARCHPACKAGE (47-0057) 8-1

IX AUTOMATICISOTOPE IDENTIFICATION PACKAGE (47—0058) 9—1

X DIGITAL RATIOSPACKAGE (47-0071) 10—1

XI SERIALINPUT/OUTPUT INTERFACE(70—2437) 11—1

XII PARALLELINPUT/OUTPUT INTERFACE(70—2461) 12—1

XIII 7/9 TRACKMAGNETIC TAPEINTERFACE(70—2438) 13—1

III

or variety other other voltage Optional front microcomputer, accommodating it four—wide The The converter power RAM into high The powerful, It Terminal, in The 8—inch, SYSTEM ND600 contains combines eight—half—size multichannel front second built—in ND600 either and end memory basic ND600 of of is supplies. display can a boards board modules DESCRIPTION (ADC) packaged yet half—size NIM is of the completely system unit, the is the NIM board be hardware the easy a LSI—1 enclosure operational up housing 2K, analyzer firmware which system’s CRT, mounted module the board such enclosure optional board to to for boards in 1 20—bits ND600 six use a 1/0 two firmware expanding and as can accepts housings. functionally (an contains display full—size design in controlled, preamplifiers, and multichannel for bus, compact be boards. firmware convenience a and of ND575 Electronics power 19—inch plugged interfacing data two two controlled power and and

the INTRODUCTION data plug—in convenient ADC storage full—size One printed supply.

operational is CHAPTER grouped operational basic microcomputer—based, rack storage supply contained into data amplifiers, Enclosure, of of is to boards, 1—1 LSI—1 system the or a the included memory circuit analysis input/output 44-pushbutton basic hardwired houses used memory front units, basic 1 simplicity. control on

firmware I microcomputer and system board as and is discriminators printed board system. and with system only a representing to the table—top analyzer 1K, center. powers up housings, peripherals each boards system five housing (preprogrammed circuit interactive multichannel boards to 16—bits One BK system) and the and to with power It pedestal unit, or data a include boards contains each one—quarter produce contains of analog modern detector up including the scratch and channels, the keyboard supplies. to capable analyzer computational which for four a optional to ROM ND600 the new an a full—size high the digital pad. large, high extremely full—size LSI—1l inches plug approach of memory). and terminal. a All system. The speed a 6—inch x paper

or printer

the

common to Interface, The housing interfaces controller

controller. lines

CRT SYSTEM

full

ND600

Dimensions Keyboard: in NIM Weight: lx4and4x4).

NIM Operating for

Power

between supplies. LSI—1

ND600 i/o lines,

peripheral

DMA

parallel.

Display

rear

230

screen).

Parameters:

of

with

tape

Enclosure

Enclosure

1

or

Requirements:

18

the Terminal is

bidirectional

i/o

peripheral

Vac,

board

Electronics

LSI—1 65 RS—232 SPECIFICATIONS

available

access and

the

control/synchronization

highest

punch/reader,

Bus

Temperature

44—pushbuttons,

LSI—1

Interface,

(overall):

Bus:

lbs.

drivers.

available

Acquisition

keyboard

housing

supports

1

Module

Power

microcomputer

the

channel, 1

Phosphor

Asynchronous,

priority

options

I/O

for Enclosure

LSI—1

data

All

Supply: 115

all

contains

l5.3—in.

both

insertion Bus.

Power

on

Range:

interface

line

on

boards

assigned Controller

Vac

and

1 such —

and

request.)

arranged

vectored I/O

Green,

full—size

The

printer

Receptacles:

control

+

a +12

the

as

and

10

h.

of

bidirectional second

Bus 10%, plugged

Acquisition, connect

industry

signal

to

to

Vdc X Direct

up

system

P—31.

using

and

in

and

device 40°C.

interrupts

18.5—in.

boards.

to lines

50/60

@

four

full—size

DMA

lines two

into

serial

to

Memory

a 2A.

standard

component

1—2

of

Display

Four

true

functionally the

electronically

additional

Hz,

the

bus the

and

Display

The Interface,

w.

—12

without

devices

common

DMA Amp

ROM

front

Single with

LSI—11

X power

Access

remaining

Vdc

7

Face

25—in.

or

type

boards

priority and

board

common

memory

polling

@

such

full—size

9

bidirectional

Phase,

distribution — grouped

I/O the

(DMA)

magnetic

1A. 202516—3

any

Flat,

closest

d.

for

as

housing space Acquisition

Bus.

scheme

optional

board

and ±24

interface

Teletype,

200

16

rectangular

Controller

boards

arrays

to

priority multiplexed

tape.

Vdc in

W,

connectors,

from

for

LS1—11. connect

the

through data

DMA

®

(2 max. for

firmware

connections

Interface

the Terminal

rear

The

x

250

and

DMA

interfacing

and

4,

(6—in.

peripheral system

to

(Strapping

the

board

DMA

mA.

data/address

4 control

Keyboard

the

wired

structured

x

options

DMA

and

x 4,

power

8—in. Mechanical: Front and back printed circuit board housings, each capable of accommodating six full—size (8.5—in. x lO.5—in.) system component boards.

System Power Supplies: +5 Vdc @ 25 A. +12 Vdc @ 2.5 A. +15 Vdc @200 mA. Dimensions: 5.25—in. h. x 19—in. w. x 23—in. d. Weight: 65 lbs.

Operating Temperature Range: 10 to 40°C.

Power Requirements: 115 Vac + 10%, 50/60 Hz, Single Phase, 350 W, max. (Strapping for 230 Vac, available on request.)

Data Storage Memory

Number of Channels: 2048, 4096 or 8192; field expandable from 2K to 4K to 8K.

Count Capacity per Channel: 220_i (1,048,575) plus 4 flag bits.

Type: Solid state, random access.

Cycle Time: 960 nsec.

Refresh Cycle: Every 25 psec. Complete memory refresh in 1.6 msec.

Arithmetic: Add or subtract.

Storage Group Size: Selectable in binary increments from 32 channels to full memory.

Data Acquisition

Acquisition Modes: PHA, MCS or List.

Acquisition Control: Automatic termination upon reaching preset live or clock time (preset number of passes in MCS), preset count level in any channel or preset count total between markers.

Preset Time (Pass) Selection: 1 to 6,553,500 sec (65,535 passes).

Preset Level Selection: ito 1,048,575 counts.

Preset Total Selection: 1 to 4,294,967,295 counts.

ADC Digital Offset: Selectable from 0 to 8191 channels.

1—3 Digital Ratemeter: Automatic computation and display of input count rate between markers during PHA acquisition.

MCS Count Rate: 100 KHz, max.

Dwell Time Selection: 10 lisec to 900 sec in decade increments.

MCS Count Input: Pulse Amplitude — +2.4 to +5 V. Duration — 30 nsec, mm. Input Impedance - 75 ohms.

Pass Initiation: Single or repetitive triggering.

External Sweep Trigger Input: Pulse Amplitude — + 3 to 0 V, with sweep start occurring

on negative transition of pulse. Duration — 0.5 psec, mm. Input Impedance — 1000 ohms.

External MCS Time Base Input: Pulse Amplitude — +2.4 to +5 V, with clock occurring on

positive transition of pulse. Duration — 0.5 psec, mm. Pulse repetition rate — 100 kHz, max.

List Word Size: Up to 12 bits.

List Data Rate: 100 kHz, max.

Auto Job Mode: Permits entry of a sequence of up to eight operations and automatically

repeating the sequence from 1 to 65,535 times.

Data Display

Display Rate: 100 kHz.

Display Presentation: Linear or logarithmic.

Display Group Size: Selectable in binary increments from 32 channels to full memory.

Counts Full Scale: Selectable from 32 to 1,048,575 in binary increments.

Display Resolution: One part in 1024 (10—bits)for both X and Y axes.

Display Linearity: ±2%.

Analog Display Output: X-Y Axes — 0 to 4V. Blanking — OVto +5V (blank to normal).

Display Expansion: Digital selection of any segment of channels for expanded display.

Alphanumeric Character Display: Internal circuitry permits generation of 64 ASCII characters for display.

1-4 Display Overlap: Spectral data in up to four selected memory groups can be overlapped and displayed at fixed vertical displacements (stacked) or with a common baseline (superimposed).

Region of Interest Identification: Dual (left and right) channel markers permit selection of any region of interest. Display intensification permits identification of multiple regions of interest.

X—YPlotter Control: Internal Circuitry with external connections permits analog readout of entire display (including alphanumeric characters) to an X—YPlotter.

Numeric Readout Mode: Permits statically displaying the contents of up to 56 channels, starting with the left marker channel or the channel contents or count totals in up to 12 consecutive intensified regions.

Spectrum Strip Mode: Permits multiplying a selected memory group by a specified strip factor and adding it to, or subtracting it from, the current display group.

Data Input/Output Peripheral Interface Options

Serial Devices (Teletype, Terminal Printer, RS—232Channel, etc.):

Communications: 20 mA current ioop or EIA RS—232. TransmissionCode: ASCII or ND Binary. Transmission Rate: Selectable from 110 to 9600 baud, depending on device.

High Speed Paper Tape Punch/Reader:

Input/Output Code: 8 level ASCII or ND Binary. Input Rate: 200 or 300 char/sec, depending on device. Output Rate: 75 char/sec.

Line Printer:

Printing Method: Impact, character—by—character, one line at a time. Printing Rate: 100 char/sec. Character Structure: 5 x 7 dot matrix, lO—pointtype equivalent. Code: ASCII, 64 printing characters. Format: 80 char/line. 6 lines/inch.

Industry Standard Magnetic Tape:

Number of Tracks: 9 or 7—track, IBMcompatible. Data Density: 9—trackat 800 bpi. 7—trackat 800/556 bpi. Tape Velocity: 25 or 45 ips. Reel Size: 7—in, on 25 ips units; 10.5 in. on 45 ips units.

Tape (Computer Grade): 0.5—in, wide, 1.5 mil thick. Tape Labelling: In accordance with ANSI STANDARDANSI X3.27—1969.

1-5 Operational Function Firmware Option Packages

Data Manipulation Package (47—0054)

Performs the following functions: integration, differentiation, addition of a constant to, or subtraction of a constant from the data spectrum, data transfer, data smooth (five—point), square root calculation, and relative error calculation.

Intensified Region Peak Extraction Package (47—0055)

Determines the peak channel, FWHMand intensity information for each region of interest identified by intensified display. Upon determining the peak in each region, the following information is provided: peak channel energy, FWHMin energy, net area, background, peak—to—backgroundratio, left and right region limits, and statistical error.

Intensified Region Isotope Identification Package (47—0056)

Provides a report identifying the isotope, half—life, energy and percent abundance for each peak determined during the intensified region peak extraction process. Each isotope is identified on the basis of finding an energy line which corresponds to an isotope in the isotope Iibrary.

Automatic Peak Search Package (47—0057)

Automatically determines the centroid, FWHMand intensity information for each peak in the marker defined portion of the data spectrum. Upon determining each peak, the following information is provided: peak centroid energy, FWHMin energy, net area, background, peak—to—backgroundratio, left and right peak limits, and statistical error.

Automatic Isotope Identification Package (47—0058)

Provides a report identifying the isotope, half—life, decay, energy, percent abundance, percent efficiency and activity for each peak determined during the automatic peak search process which corresponds to an energy line of an isotope in the isotope Iibrary.

Digital Ratio Package (47—0071)

Permits monitoring up to 12 digital ratios between net areas, gross areas or combinations of net and gross areas in overlapping or non—overlappingregions in any memory group. The net or gross area of any region bracketed by left and right markers can be specified as either the numerator or denominator for any of the 12 digital ratios. The ratios are dynamically computed for monitoring live during data acquisitions. The package also permits generating a summary report at an optional hardcopy peripheral device. 0

1—6 CHAPTER II INSTALLATION

GENERAL

The user should familiarize himself with the information contained in this section before attempting to install or operate the ND600 System.

UNPACKING AND INSPECTION

Carefully unpack the ND600 Electroncs Enclosure, ND600 Terminal and peripherals, saving the shipping cartons for possible re—shipment. Refer to the instruction manuals on the reSpective peripherals for specific informaHon relating to unpacking and inspecting these units. Carefully examine each unit for possible damage to controls, indicators and connectors. If damage incurred during transit is apparent, notify the delivering carrier and then notify the hearest Nuclear Data representative, or the Nuclear Data home office.

NOTE: The deliverng carrier must be notified within 24 hours after receipt of the equipment to insure reimbursement for any damage incurred during transit.

ND600 Electronics Enclosure

Remove the front panel, top and rear cover retaining screws, remove front panel, top and rear covers and examine each plug—insystem component board installed in the ND600 Electronic Enclosure for damage. If no damage is apparent, carefully push—inon each circuit board and interboard connector to ensure proper contact between the board/chassis connector and cable connector/board connector which may have shaken loose during transit. Leave front panel, top and rear covers off the unit until installation and interconnection procedures are completed.

ND600 Terminal

Removethe retaining screws (two at the bottom front and two at the rear) hoiding the top to the base of the ND600 Terminal, carefully pull forward on the top and lift it off the base. Be careful not to damage the cable which extends through the cable slot at the rear of the

2—1 ND600 Terminal and attaches to the Keyboard by allowing the cable sufficient slack to slide through the cable slot when lifting the top from the base. With the top of the ND600 Terminal removed, examine the internal circuitry for damage. If no damage is apparent, carefully push—ineach internal circuit board and interconnecting cable connector (including the one attached to the keyboard) to ensure they are properly seated, If any ADC’s are to be installed in the ND600 Terminal, leave the top off the base until the ADC installation is completed. If not, carefully replace the top of the base, pulling the slack in the keyboard cable through the cable slot, and replace the four retaining screws.

VENTI LLATION

Locate the ND600 Electronics Enclosure so that there is free air space at the sides and rear of the unit. The ND600 Electronic Enclosure is equipped with cooling fans; however, if it is totally enclosed in an unventilated area, there will be insufficient heat dissipation which will result in damage to the unit.

CAUTION: Do not operate the ND600 Electronics Enclosure without the front panel, top and rear covers installed as this will hamper operation of the cooling fans and result in damage to the unit.

If the ND600 Electronics Enclosure is mounted with other units in an enclosed rack type cabinet, forced air cooling may be required. When possible those units with high heat dissipation should be mounted at the top of the cabinet.

POWER SOURCE

The ND600 System requires a 115 Vac (strapping for 230 Vac is available on request), 60/50 Hz source which is free of excessive noise or fluctuations. A voltage stabilizing transformer can be inserted between the ac source and the ND600 System where available power is subject to large fluctuations. Noise produced by various types of electrical equipment can be eliminated or greatly reduced by connecting a suitable filter between the ac source and the interfering equipment.

ADC INSTALLATION

With the top removed from the base of the ND600 Terminal, install an ADC module into its 4—wideNIM enclosure as follows:

NOTE: One ADC module is normally supplied with, and installed in the ND600 Terminal at the factory prior to shipment of the system. However, if the ADC module is ordered separately, the following installation procedure must be performed.

1. Insert the ADC module into the 4—wideNIM enclosure of the ND600 Terminal in such a manner as to mate the 42—pin male power connector on the rear of the module with a 42—pin female power connector at the rear of the 4—wideNIM enclosure. C

2—2 2. Fasten the ADC module to the front of the 4—wideNIM enclosure with the two retaining screws on the module front panel.

3. Lead the 26—pinfemale connector on the ribbon cable extending from the rear of the ADC module through the cable slot located at the bottom rear of the terminal base, pulling the slack in the ADC cable through the cable slot.

4 After completing installation of the ADC module, replace the top of the ND600 Terminal on the base, pulling the slack in the keyboard cable through the cable slot and replace the four retaining screws.

OPTIONAL SYSTEM COMPONENT BOARD INSTALLATION

If an optional system component board (additional memory, firmware option or input/output peripheral interface option) is ordered with the system, it is normally installed in the ND600 Electronics Enclosure prior to shipment from the factory. However, if the optional system component board is ordered separately, it is necessary to install it into an available connector in the ND600 Electronics Enclosure.

1. Insert the system component board into an available connector in the ND600 Electronics Enclosure such that the component side of the board being inserted is at the top.

2. Connect any interface cables which are provided for interconnecting to an optional module or peripheral to the system component board.

NOTE: To insure proper interconnection between the system component boards and any associated perpherals, refer to the appropriate installation procedure outlined in the corresponding chapters of this instruction manual.

SYSTEM INTERCONNECTIONS

The basic ND600 System consists of two units, the ND600 Electronics Enclosure and the ND600 Terminal. All ND600 System Component Boards plug into either the front or rear board housing of the ND600 Electronics Enclosure. Basic system component boards to which external connection is required include the DMA board, DMBboard and ACX (or ACT) board, each of which is installed in the rear board housing of the ND600 Electronics Enclosure. The Terminal keyboard is interconnected to the DMA board. The Terminal display is inter connected to the DMB Board. The analog to digital converter (ADC) module is interconnected to the ACX (or ACT) board.

Installation procedures for interconnecting the ND600 Terminal, ADC module and optional X—Yplotter to the appropriate ND600 System Component Boards installed in the ND600 Electronics Enclosure are provided in the following paragraphs. Installation Procedures for firmware options or input/output peripheral interface options are provided in the corresponding chapters of this instruction manual.

2—3 ND600 Terminal Installation

1. Locate the ND600 Terminal on top or adjacent to the ND600 Electronics Enclosure (or adjacent to the cabinet in which the ND600 Electronics Enclosure is installed),

NOTE: The interconnecting cables between the ND600 Terminal Keyboard and the ADC module (installed in the ND600 Terminal 4—wideNIM enclosure) are normally connected internally to the ND600 Terminal and lead through the cable slot at the bottom rear of the terminal base prior to shipment from the factory.

2. Interconnect the ND600 Terminal Keyboard to the DMA board installed in the rear board housing of the ND600 Electronics Enclosure by inserting the 20—pinfemale connector on one of the ribbon cables extending from the cable slot at the bottom rear of the ND600 Terminal into the 20—pinmale connector on the DMA board (rear center connector, component side, viewing the ND600 Electronics Enclosure from the rear) such that the color mark on the ribbon cable is at the right.

3. Interconnect the ADC module installed in the ND600 Terminal 4—wideNIM enclosure to the ACX board installed in the rear board housing of the ND600 Electronics Enclosure by inserting the 26—pinfemale connector (designated ADC) on one of the ribbon cables extending from the cable slot at the bottom rear of the ND600 Terminal into the 26—pin male connector (designated ADC) on the ACX (or ACT) board such that the color mark on the ribbon cable is at the right. 4. Connect the display interface ribbon cable (contains a 26—pin female connector on one end and a 25—pinmale connector on the other end) between ND600 Terminal and the DMBboard installed in the rear board housing of the ND600 Electronics Enclosure as follows:

NOTE: If an X—YPlotter is ordered with the ND600 System, the display interface ribbon cable is replaced by a display/plotter interface ribbon cable which permits interconnecting both the ND600 Terminal Display and the X—YPlotter to the ND600 Electronics Enclosure. Refer to the X—YPlotter Interconnection procedure.

a. Insert the 26—pinfemale connector on the ribbon cable into the 26—pinmale connector (designated DISPLAY)on the DMBboard (rear center connector, component side, viewing the ND600 Electronics Enclosure from rear) such that the color mark on the ribbon cable is at the right.

b. Insert the 25—pinmale connector on the ribbon cable into the 25—pinfemale connector (designated DISP IN) at the right rear of the ND600 Terminal.

C 2—4 5. Connect an ac line cord from the ac line receptacle (designated AC INPUT) on the rear of the ND600 Terminal to a conveniently located 115 Vac outlet.

X-Y Plotter Interconnection

If an optional X—YPlotter was ordered with the ND600 System, interconnect it to the ND600 Electronics Enclosure as follows:

1. Remove the display interface ribbon cable (installed in step 4 of the ND600 Terminal Installation procedure) and connect the display/plotter interface ribbon cable (contains a 26—pinfemale connector on one end, a 25—pinmale connector in the middle and another 25—pinmale connector at the other end) between the ND600 Terminal, X—YPlotter and the DMBboard installed in the rear board housing of the ND600 Electronics Enclosure as follows: a. Insert the 26—pinfemale connector on the ribbon cable into the 26—pinmale connector (designated DISPLAY)on the DMBboard (rear center connector, component side, viewing the ND600 Electronics Enclosure from the rear) such that the color mark on the ribbon cable is at the right. b. Insert one of the 25—pinmale connectors on the ribbon cable into the 25—pin female connector (designated DISP IN) of the right rear of the ND600 Terminal. c. Insert the other 25—pinmale connector on the ribbon cable into the 25—pin female connector on the bottom front of the X—YPlotter.

2. Connect the ac line cord supplied with the X—YPlotter from the ac line receptacle on the bottom front of the X—Yplotter to a conveniently located 115 Vac outlet.

NOTE: The X—YPlotter must be calibrated for proper operation with the ND600 System. Refer to Chapter IV for the X—YPlotter Calibration procedure.

Power Connection

After completing system installation, replace the front panel, top and rear covers of the ND600 Electronics Enclosures, and connect an ac line cord from the ac line receptacle on the rear of the ND600 Electronics Enclosure to a conveniently located 115 Vac outlet.

CAUTION: Do not operate the ND600 System without the front panel, top and rear covers installed as this will hamper operation of the cooling fans and may result in damage to the unit,

2—5 C

C

C CHAPTER III CONTROL, INDICATOR AND CONNECTOR DESCRIPTIONS

GENERAL

This section contains detailed descriptions of the controls, indicators and connectors on the ND600 Terminal and the ND600 Electronics Enclosure.

ND600 TERMINAL ALPHANUMERIC STATUS DISPLAY

ND600 displays anyone of four separate pages of alphanumeric data simultaneously with spectral data at a fast, flickerfree 100 kHz rate. Each page contains parameter data pertinent to basic operational functions of the ND600. Page 1 contains the parameters normally associated with visually monitoring spectral data. Page 2 contains the parameters relating to set-up and performance of data acqUisition. Page 3 contains the data manipulation parameters. Page 4 contains the parameters available for set—upof an auto job sequence.

Parameter data which varies with operational functions, such as elapsed time, channel contents or count totals, is periodically updated by the system. Parameter data which is user selected, such as an operational mode, numerical value or mathematical mani pulation, is altered by positioning the display cursor to the desired parameter and then entering the new parameter data at the operand pushbutton array, or by sequencing to the desired parameter entry via the NXTV pushbutton.

3—1

is upon

configuration NOTE

NOTE

For

upon

is

For

TOTL

CFS AGRP

PAGE

LMRK

LE LCNT

GRPS

GSIZ not

.FAGE not A’3

5612 C: L[iF.K ‘3FF Ti:’TL

LE

example, example,

F

system system S

PP

an an

S

2: 1

- 1:

r’Current

integer

integer

The

The

of

Current Current

right

Left

Left Total

including

Left

Number Display

626.

memory memory

57521

channels/group

if

(2048, if

Li

number 2046

group

marker

L:”3 ‘326

marker marker 451 210

.

7

1000

marker

counts

binary binary were 1 1

1

group

Parameters

counts

acquire

of

configuration.

configuration.

size

left,

4096,

were

groups

of

channel

channel channel entered C: 013FF p)::HT ‘:“3RP i:

RE P[lPf.

between

channel.

multiple, multiple, ‘3

3FF

groups

size, (GSIZ)

PP

full

excluding

entered

group

or

(Note

(Note

scale

8192).

i.e.

energy. 700.

number.

content.

for

(GRPS)

markers,

is

number.

it it

the

for

in 2).

390 700

number value.

1:3:3

1).

is GSIZ

is If 0

ci El binary

1

rounded

the the

rounded

If

GRPS

is

the

in

X

number

GSIZ

3—2

number

GRPS

parameter,

increments

binary

OGRP

DGRP

RMRK

OGRP

RCNT

RE OGRP

up up

/

parameter,

to to of

=

of

the

the

channels

increments

number

groups

Current

Overlap

Right

Right

Right

from

next

next

it

would

t

32

1

marker

marker marker

available

available

of

entered

entered would

display

from

to

group channels

t::fr.

be

8192

/

rounded

channel

channel channel

‘:

be

1

for

for

numbers.

to

group

integer

integer

•/

rounded

channels

the

256

the

in

the

to

energy. number.

content.

number.

GRPS

GSIZ

groups

binary

binary

8.

system

to

depending

1024.

parameter

parameter

depending

multiple.

multiple. memory

frOP-St

DOFF

PTOT

PLEV

TOTL

PTI TBASE

AGRP

MODE

PAGE

L M AG t:c PAGE T PT TB P PT

cii:’ Li CIT L AS PP CIT F El...’ I E L ti

F 2 E

right

ADC

Time

channel acquisition

Total acquisition MCS

channels). markers PTIM modes;

Preset

including Preset Preset

TBASE

Current

LIST

Current

MCS

PHAL

PHAC Data 1437437 l:I 50000 Ii P L1

HAL digital

Li

base

marker mode

counts

X Acquisition

Li

total

time

level

X preset

LI

for

TMULT

for

acquire data

TMULT

List

Multichannel

PHA

PHA

left,

(ito

(1

terminating

for

(1

(ito

terminating

counts

(counts)

between

offset channel. D T B C: LT

PATE T

acquisition

to

number

Mode. to4 tiLl 03’] LIS

T 13PP

clock

live

PHAC.or

excluding = 9).

L

65K). group

= 1

T

PHA

Parameters

billion). between.

(0 million).

MCS

time

time in

71i3.

of

to markers,

io

preset number.

I

data scaling

any

&

passes dwell 8K

2029 2000

PHAL

mode, mode.

429

55 718 mode.

0

time.

time.

for

mode.

3—3

CT

LT

TMULT

RATE BUSY

DGRP

TOGO

Current

Current

units

System

Effective

markers. units

Current

passes

PHAL

Time

Preset

1

mm

entered entered

multiplier

or

modes;

remaining

time

busy

elapsed

elapsed

display

External).

input

remaining

status

for

for

preset

count

group

clock (10

live

TMULT.

TMULT.

in

in

psec

MCS

number

time

percent.

rate

number.

time

in

to

PHAC

mode.

in

between

in

100

of

time

time

or sec, _PAGE 3 4 E / OH 4.017 E 0) —5 • 583 CYCLES 50 Fl I NT ED A‘3PP 4 D.C 0 • 673 CTCIGO 49 P2 P S I NT AREA 84986 1 • 001 STEP1 ERASE F3 0 BI3ND 95571 D/O 1823.808 STEP2 ACR F4 TCITL 18055? 0 GRP 4 STEP3 STRF 101 TTv F UJHM 98.366 SF 1 . 000 STEP4 I,2 MC:C.’E P 0U PERK 1341. 848 STEP5 F2 DATA TOT STEP! 101 102 ri.o T STEP? NODE E:I i C. STEPS DATA F;LL ALITO 1 STRIP o. ic D’3RF 1 Wf3P.P AI3RP . 1 —

L..

PAGE 3 — Data Manipulation Parameters

E/CH Calibrated energy per channel. E(O) Calibrated energy offset.

AGRP Current acqufre group number. D/O Ratio(s) of gross counts between markers in current display group AREA Net area (total counts minus and respective overlap group(s). background counts) between Ratio(s) of net counts (total minus C markers. D/O background) between markers in current display group and respective BGND Background counts between overlap group(s) is obtained by markers. depressing the minus(—)pushbutton D/O at the operand pushbutton array and TOTL Total counts between markers, then the AREABGND pushbutton. including left, excluding right marker channel. DGRP Current display group number.

FWHM Full width at half maximumvalue SF Strip factor for spectrum in energy. stripping operation performed by depressing STRIPpushbutton.

PEAK Peak channel between markers in energy.

C 3-4 PAGE 4 — Auto Job Parameters

CYCLES Preset number of auto lob Fl Optional firmware controlled cycles (1 to 65K) F2 operational functions which are F3 performed when Fl, F2, F3 or CTOGO Preset number of auto lob F4 F4 pushbutton is depressed, or cycles remaining. when specified as steps in an auto job sequence.

STEP1 Operations performed in steps INTEG STEP2 1 to 8 of auto lob sequence. DlFF STEP3 ERASE Erase operation. PSRCH STEP4 ACR Acquire operation. Etc. STEPS STRP Strip operation. STEP6 PLOT Plot operation. 101 Optional input/output devices used for

STEP7 NXTG Increment AUTG by 1.102 data input/output when 101 or 102 STEP8 Fl Operational function pushbutton is depressed, or when 101 F2 specified for F1,F2, or 102 operation is specified as a F3 F3orF4. step in an auto lob sequence. F4 TTY Teletype. 10] Input/output operation MAGT 7 of 9—trackmagnetic tape. 102 specified for 101 or 102. LP Line Printer. PT High speed paper tape reader/ AUTG Current auto group number. punch. SU1 Available for future special DGRP Current display group number. SU2 units, such as SDCC, etc. SU3 AGRP Current acquire group number. MODE input/output mode (101 or 102).

BCDI BCDformatted input. BCDO BCDformatted output. BlNl Binary formatted input. BINO Binary formatted output.

DATA Input/output data (101 or 102). ALL Content of all channels in group. MRKR Content of channels between markers. ROI Content of channels in intensified regions. TOT Intensified region count totals. STAT Current status page.

STRIP Auto job additive (+) or subtractive (—)spectrum strip mode and factor. WGRP Work group for auto job spectrum strip operation. WGRP: WGRP X (+ STRIP)+ AUTG AUTO 3-5 -WGRP: AUTG X (+ STRIP)+ WGRP WGRP ______

ND600 TERMINAL PUSHBUTTON KEYBOARD

The ND600 Terminal’s 44—pushbuttoninteractive keyboard is functionally grouped for ease of operation. Eight Display pushbuttons control data display. 16 Function pushbuttons allows selection of data acquisition, manipulation and input/output functions. Four Status pushbuttons select and control status display. 16 Operand pushbuttons permit numerical entry, mode selection and mathematical manipulation. Lf-i 1L-;)-. r’I {* 64 —I — -1 j 0,, ø3F 0,,

m n 0 Yf 172 17 I2 0 0 a

ERIIE 173 SO7 9. ,.,Q ..-j h6j. a- 0 eYp

Display Pushbuttons

MPOS The MPOS pushbutton permits moving the left and right markers (vertical lines imposed upon the spectrum display) to the left or right on the display. Holding e,o/ the MPOS pushbutton depressed moves the left and right markers in the direction selected by the SHIFTpushbutton. The rate of movement is a function C 14’ ,/ I • I • of the iength of time tne MPOS push utton is heid depressed However, a momentary depression will only move the left and right0 markers one channel.

- The left and right marker channel numbers, contents and energies are displayed ‘ on Status Page 1.

MSPN The MSPN pushbutton permits moving the right marker to the left or right on the /7/ display, decreasing or increasing the number of channels between the left and /. right markers. Holding the MSPN pushbutton depressed moves the right marker in the direction specified by the SHIFTpushbutton. The rate of movement is a function of the length of time the MSPN pushbutton is held depressed. However, a momentary depression will only move the right marker one channel.

CFS The CFS pushbutton permits selecting the linear display range (counts full scale) or logarithmic display. Depressing the CFS pushbutton increases the counts full scale value by a factor of two when the right (>>) direction is selected by the SHIFTpushbutton, or decreases the counts full scale by a factor of two when the leff (<<) direction is selected by the SHIFTpushbutton. The range of counts full scale values is from 32 to 1M in binary increments. Logarithmic display is selected by depressing the CFS pushbutton after the minimumcounts full scale value (32) is reached when the left (<< ) direction is selected by the SHIFT pushbutton, or after the maximum counts full scale value (1M) is reached when the right (>>) direction is selected by the SHIFTpushbutton. q

3-6 XPND Depressing the XPND pushbutton expands the display defined by the left and right markers to horizontal full scale. Once expanded, the display can be returned to normal (display of the full group) by depressing the XPND push button a second time.

RST Depressing the RST/ADVpushbutton when the right (>>) direction is selected by

p the SHIFTpushbutton, resets the markers to the first and last channels of the current display group.

ADV Depressing the RST/ADVpushbutton when the left (<<) direction is selected by the SHIFTpushbutton sequentially advances the markers to the next assigned region o interest to t e rig t on t e Isp ay. ter t e ast assigned region of interest on the right selection reverts to the first assigned region on the left of the display.

INT Depressing the INT/1DELpushbutton when the right (>>) direction is selected by ,‘ the SHIFTpushbutton enters the channels between the left and right markers as r ,,/ an assigned regions of interest and intensifies the display of the marker defined channels, including left, excluding right marker channel.

DEL Depressing the INT/bEL pushbutton when the left (<<) direction is selected by the SHIFTpushbutton deletes any previously assigned region(s) or portions of a region between the left and right markers and clears the intensified display between the left and right markers.

MOTN The MOTN pushbutton permits moving the expanded display to the right or left. Holding the MOTN pushbutton depressed moves the expanded display horizontally in the direction specified by the SHIFTpushbutton. The rate of movement is a function of the length of time the MOTN pushbutton is held depressed. However, a momentary depression will only move the expanded segment one channel.

WIDTH The WIDTHpushbutton permits horizontally expanding or contracting the display. Holding the WIDTHpushbutton depressed horizontally contracts the display when the left (<<) direction is selected by the SHIFTpushbutton, or horizontally expands the display when the right (>>) direction is selected by the SHIFT pushbutton. Horizontal expansion increases the spacing between channels, causing the number of channels displayed to decrease, while horizontal contraction decreases the spacing between channels, causing the number of channels displayed to increase. The rate of expansion or contraction is a function of the length of time the WIDTHpushbutton is held depressed. However, a momentary depression will only expand or contract the display by one channel.

3-7 0,, • 0, C

;$,;v •;Pf I PO, 1.7’,I 444.14f Function Pushbuttons

ACQ Alternately starts, pauses or stops data acquisition in the selected mode. Depressng the ACQ pushbutton once starts data acquisition. Depressing the ACQ pushbutton a second time pauses data acquisition, allowing it to continue when the ACQ pushbutton is depressed a third time. During the time data acquisition is in progress, the letter “A” is flashed on the display. When data acquisition k paused, depressing the minus (—)pushbutton at the operand push button array and then the ACQ pushbutton stops data acquisition. Data acquisition can be preset to stop automatically after reaching a preset live or clock time (preset number of passes in MCS), after reaching a preset count total in the channels between the markers, or after reaching a preset count level in any channel. ADC digital offset from 0 to 8191 channels may also be selected for C: PHA acquisition. The desired acquisition mode, PHA preset time (MCS passes), preset count total, preset count level, digtal offset, and MCS dwell time are entered via the operand pushbutton array and displayed as acquisition parameters (Status Page 2). During PHA acquisition, the system automatically computes and displays the elapsed live and clock times, the preset time (passes) remaining, the count total and effective count rate in the channels between the markers, and the system busy status in percent.

AUTO Initiates the preselected auto lob sequence. Depressing the AUTO pushbutton initiates the sequence of up to eight auto job operations and automatically repeats

- the sequence the specified number of times. Entering a group number at the operand pushbutton array and then depressing the AUTO pushbutton sets the auto group (group in which the auto job operations are performed) to the group number entered and then initiates the sequence of auto job operations. The auto job is terminated upon completion of the last operation of the last specified auto job cycle or when the STOP pushbutton is depressed. Operations which can be included in the sequence are erase, acquire, spectrum strip, plot, next group, any of the four operational functions or the input/output operations. The auto group, strip factor, work group, the operational functions, erase, acquire, spectrum strip, plot, next group and input/output operations and the preset number of auto job cycles are entered via the operand pushbutton array and displayed as auto job parameters (Status Page 4). During auto job, the preset (Status Page 4). C number of cycles remaining is displayed as an auto job parameter

3—8

SCRL

AREA

BGND

ECAL

depressing

the

simultaneous

to

channel

selecting defined

(Status

channels, channels

4.

Depressing

intensified

up

the

the 2.

3.

array for

net

channel Depressing

Page

minus

known

Selects

calibrate

In

1.

select

this

to

the

SCRL

value(s)

counts

current

time.

pushbutton. energy

compute energy

(offset), Exit

(Status pushbutton.

Position

Position

respective

Select

3).

56

and

background

Page

reference

mode,

AREA,

portion

energy

contents

energy

channels,

another

in the

pushbutton

ALL,

mode

Depressing

then,

intensified

the

(total

regions

the

the

display This

up

Status

value

value

Page

4).

for

with

energy

the

the

and the

energy

WIDTH

to

BGND,

SCRL

AREA

the

ROl

calibrate

of

as

the low

between

removes

jp

display

portion

and

counts

The

energy

energy

3)

six

updates

numeric

at

at

the

counts),

Page

indicated

withinthe

AREA

starting

group

respective

or

to

and

calibrate

a

pushbutton

the

the

consecutive

the

region

numeric

region

BGND

calibration

qyjutsr

pushbutton. spectrum;

second

TOT,

the

FWHM

minus

1

high

peaks.

per

the operand

operand

the

of cursor

mode

minus

BGND

and

the

and

Scroll

respective

background

with

the

totals

channels

by

flashing

channel

pushbutton

respectively,

left

reference

)

current

display

time.

display

the

position

mode

background

D/O

and

permitting

3—9

spectrum

at

at

(—)

the

statically

or

the

pushbutton

Depressing

display

and

pushbutton

is

pushbutton

intensified

respective

the

the

are

pushbutton

the

PEAK

Scroll

performed

letter

by

parameter(s)

left

marker

(slope)

right

“E”

of

computed

is or

LE

RE

changing.

the

count

depressing

counts,

energy

updated

computes

the

intensified

marker

or

can

parameter,

parameter,

parameters,

from

entry

display

“E”

displays

counts)

left

markers

as

during

computes

the

E/CH

defined

overlap and

array

array

regions

be

totals

the

being

as

at

the

peaks.

and

FWHM

values. of

channel;

ECAL

selected

as

zero follows:

the

(Status

DATA

the

is

the

between

Spectral

display,

the

and

data and

and

the

and

right

the

of

region

terminated

Flashed

within’the

portionof

operand

group(s)

enter

enter

the

net

respectively

energy

ECAL

up

enters

known

numeric

E(O) depress

depress

energy,

displays

markers

acquisition

parameter

Page

markers

by

to

the

ratio(s) area

totals

the

the

data

the

parameters

causes

12 pushbutton

momentarily

on

the

content

energies

intercept

and pushbutton

3).

the

the

known

(total

known

markers

consecutive

content

by

the

current

and are

these

the

display

energy

at

are

of

displays

system

depressing

for

ENTER

ENTER

(Status

spectrum.

when

moved

display.

the

peak

the

specified

counts

of

values

low

high

101

for

marker

in

of

a

the

to second

two

by All SP1, SP2, Spare pushbuttons available for future operational functions. SP3

F1/F2, Depressing the F1/F2 or F3/F4 pushbutton when the right ( >> ) direction F3/F4 is selected by the SHIFTpushbutton performs the operational functions specified for the Fl or F3 parameter (Status Page 4), respectively. Depressing the F1/ F2 or F3/F4 pushbutton when the left (<<) direction is selected by the SHIFT pushbutton performs the operational function specified for the F2 or F4 parameter (Status Page 4), respectively.

NOTE: Pushbuttons F1/F2 and F3/F4 are only operational when one or more of the fj mwa otion pqcjqgs are ordered with the system and an operational function contained in these packages is specified for the respective Fl, F2, F3 or F4 parameter (Status Page 4).

STRP Multiplies a selected group by the. strip fcjps_(SF) and adds it to, or subtracts it from the current display group The strip factor (SF) is entered via the operation pushbutton array and displayed as a data manipulation parameter (Status Page 3). Entering a group number at the operand pushbutton array and then depressing the STRP/PLOTpushbutton when the right (>>) direction is selected by the SHIFTpushbutton, multiplies the selected group by the strip

factor and adds itto the current display group. Depressing the minus (—) pushbutton prior to entering a group number at the operand pushbutton array and then depressing the STRP/PLOTpushbutton when the right (>>) direction is selected by the SHIFTpushbutton, multiplies the selected group by the strip factor and subtracts it from the current display group.

PLOT Depressing the STRP/PLOTpushbutton when the left (<< ) direction is selected by the SHIFTpushbutton, plots the current spectral data display and the current alphanumeric parameter display (current status page or scroll data) at the X—’per. Output to the X—Yplotter is terminated by depressing the STRP/PLOTpushbutton a second time when the left (<<) direction is selected by the SHIFTpushbutton. Depressing the minus (—) pushbutton at the operand pushbutton array and then the STRP/PLOT pushbutton when the left (<<)direction is selected by the SHIFTpushbutton, alternately displays and supplies a (0,0) and full scale (X,Y) point for plotter calibration. Output of the plotter calibration points is terminated by depressing the STRP/PLOTpushbutton a second time when the left (cZ() direction is selected by the SHIFTpushbutton.

3-10 101, Depressing the 101 or 102 pushbutton performs the selected data input/output 102 operation at the input/output device specified for 101 or 102, respectively. The input/output device, input/output mode and input/output data for 101 and 102 are entered via the operand pushbutton array or selected via the NXTV pushbutton as auto analysis parameters (Status Page 4).

NOTE: Pushbuttons 101 and 102 are only operational when one or more input/output peripheral interface option is ordered with the system and the desired input/output device, mode and data is specified for the 101 or 102 parameter (Status Page 4). If no I/O device is specified when the 101 or 102 pushbutton is depressed, the selected data input/output operation defaults to the ND600 Terminal operand pushbutton array/CRT display.

ERASE Simultaneously depressing both ERASEpushbuttons clears all channels of the current display group.

STOP Depressing the STOP pushbutton terminates auto analysis or any input/output operation currently in progress.

NOTE: Depressing the STOP pushbutton does not terminate data acquisition.

3—11 Status

SHIFT

CRSR

NXTV ENTER

Pushbuttons

Depressing function parameter

(<<

Depressing by parameter the direction of selection to pushbutton selection pushbutton, cursor. parameter last depressing currently Holding display parameter Entering Depressing operand

cursor.

at NOTE: parameter was

numeric

to

:•

the

the

the

the

zero

last

parameter.

entered,

)/right

currently

next

SHIFT operand ‘______

of

parameter

of the

After

pushbutton

Depressing

minus entry

displayed reverts

reverts is

movement

to

entries

the entry.

the

selected the ERAS.

the

a at

the

status

selected SF

NXTV

sets

the

dual

(

pushbutton,

the

depressing

the

list

SHIFT

NXTV >>

at

CRSR

(—)

ENTER SF3

pushbutton

displayed

Depressing

to the

to left

the

operand parameter

available

function

last

However, is of

at ‘rrop E

)

pushbutton

the

status the

by 0

array the

(left,

again

pushbutton by

caret

display

pushbutton or

the

the

operand

pushbutton,

parameter

pushbutton

the

first

first

the

up, ENTER SF

the

currently operand

for

moves

page.

status

pushbutton

decrease

(one display array

sequentially

pushbutton,

the

SHIFT for

parameter to

line parameter

cursor

if

ENTER

the

pushbutton

depressed

3—12

the

the

the pushbutton

CRSR

flashing,

when

the page alternately

deletes

by

entry

status

pushbutton

enters

backs

pushbutton,

cursor,

displayed

right

NXTV

status to

or

line.

display pushbutton

pushbutton,

array

the

the is

.

contract/right,

for (PAGE). entry

parameter or

advanced.

selected, or

the

the up

sequentially

array

one parameter

right

first

pushbutton

to

Pa

the

After

when

down,

If

and

the

selects

cursor

parameter

parameter

(except

specify status

array

the

static)

•EF

status

parameter

moves

and (>>)

display

then

sets

the

no

Depressing

parameter

selected

when

line 0,

selection

to

and

page

display

parameter

no

the

selected

first

parameter

depressing the

to

for

direction

the

the is

displays

by

parameter value increase

value

then of

specify

the

held

parameter

the

direction

is

parameter

(PAGE)

display

next

line.

the

by

selected,

of

left

value

the reverts

PAGE momentarily

depressed,

of

by

selected

the

list a

value

the

status

is is

the

or

the

the

double

(<<)

minus

the

After

of cursor

value

displayed, selected

by display

required

list

of

expand).

value

parameter).

to

lower/upper CRSR (PAGE) status

the

display

was

one

display

of

at

the

(—)

left

entered

the

a

C ‘...‘,..‘. !:•IEF

Operand Pushbutton Array

This 16—pushbuttonarray permits entry of numerical values, operational codes and mathematical operators to define data acquisition, display, manipulation and input/output functions. The telephone format alpha characters on number pushbuttons 2—9permit entry of functions using understandable mnemonic codes. For example, entering PHAC specifies the PHA Clock Time Acquisition Mode.

Entries made at the operand pushbutton array (numerical values, numeric equivalents of mnemonic operational codes, and mathematical operators) are displayed in the order of entry just below the display of the current status page. This allows the operator to verify their correctness before they are entered by depressing the ENTERpushbutton.

Power On/Off Rocker Switch

Controls application of the ac line voltage to the display CRTand NIM power supply of the ND600 Terminal. When the upper portion of the rocker switch is depressed, power is applied. When the lower portion is depressed, power is removed.

NOTE: On later units, the switch will be located on the rear panel of the ND600 Terminal.

ND600 TERMINAL CRT CONTROLS

INTESITY Adjusts the brightness of the CRTdisplay.

FOCUS Adjusts the sharpness of the CRTdisplay.

This control, which is located on the rear of the terminal, adjusts the t vertical position of the olphnumeric and spectral data display on the POSITION CRTscreen.

This control, which is located on the rear of the terminal, adjusts the POSITION horizontal position of the alphanumeric and spectral data display on the CRTscreen.

3—13 ND600 POWER

Ji J2

J3

J4

(MSINP)

(MSSTA*)

(EXTTB)

(ACQEN)

ELECTRONICS

OFF/ON

Controls

of

with An Enclosure. each OV

An

of start occurs by negative is

or dwell is An NOTE:

pulses, or of negative

pulse. to Maximum

If

by clock PHA, NOTE: the An introduced +3V) acquisition enable/disable

220

the

15

switch

SW4

at

switch

channel setting

input

1 pulse

input

setting

input

ENCLOSURE

input

ACT—A

a

and occurs

channel.

MHz.

a

to

time ND600

ohms. the

time

minimum on

positive

is

+2.4

To

A application

enable

An

used

with

used or

TMULT

used or

SW3

used set

SW4 the

pulse

SW3

live

switch multiple

use

per

advance

When

base

at

on positive

board

positive

is

external

Input

to

to

negative

System. to

in a

the to

disabled.

on

to

on

the

the

time

channel

to

Requires

duration

level. +5V repetition acquisition. function. minimum

ON,

in

start multichannel

parameter

provide

enable

the

set

SW7

the

OFF

is impedance

10 (REAR

external positive

PHA.

pass,

clock

occurs

transition

of

set

transition in

to time

ACT—A MHz

3-14

a ACT—A

clocking

on

transition

When the and

amplitude

during

multichannel

POWER

to

positive

of

or

an

duration

Setting

recurrent

the

base

When scales

PANEL)

rate

level. OFF,

ac

on transition

is

leaving 30

hold

clock/time

external

board,

set

When board. is set

ACT—A

scaling

line

the of

nsec.

multichannel of

occurs

is

may

75

ON,

an off

pulses, to at

this switch

the

of

to

the

with 100

of

negative

Live

voltage

ohms.

mode

the

external one

POWER this

the

EXT.

also

acquisition.

0.5

pulse

scaling clock/time

pulse

input of If

board

kHz. Maximum

If

power for

on

a

base,

start

time

SW3 pulse.

second

input the SW6 SW4

be

minimum

+2.4

of

the psec.

incrementing

depending

to

depending

is

transition

substituted operation

to OFF,

pulse.

Scaling.

Clocking

signal

clock

correction is

is

to pass.

positive

is

normally

TBASE the

is

to

ON.

applied

set

intervals set

IF

pulse

ON

brought

Start

base

+5V

ND600

When

duration

power

SW3

to

time

to

either

Requires

Input

parameter

inverts

ON,

repetition

occurs

of in transition

upon

OFF, for can

occurs

upon Requires

open

for

the to

is

can

switch is

amplitude

to the

with

is

determining

Electronics

set

disconnected

impedance the

be selected

the

of

removed.

count ground

the start

the

be

the

clocking

pulse.

(biased

on a

on

to

selected

correction 0.5 circuits

internal

+3

disabled

SW6

setting

is positive

setting

acquisition the

of

OFF,

rate the

in

set

to

Jsec.

(OV), the

for

on

at :MCS

J5

J6

MODE

J7, the MODE connector,

to ADCOO* MODE time

signal location.

data PHA

to of

In

(CHNGj

ON,

both the

50

PHA

J8,

base.

MODE input

MODE

I.isec

DX23*

J4

2

2

2

of

J9

or

modes

ACQUISITION — Acquisition

and

(ACQEN*)

the

ADC

Sequential

lines

per

by

pin

2

2 -

PHA

is

externally

enables

above enables

storage

(PHAC

15).

11

the

(signals

*

MODE

A of sample transition

signals (i.e., where Swtch J6

duration. with This

Spare 10

least

is Setting

modes,

BNC

TTL

channel

acquisition

addition or

addition

provides

cycle. MHz

activated

pulse

ADCOO*

50

supplying

PHAL)

significant

2,

compatible

BNC’s.

ADCOO*

when

changer for not SW5

ohms.

pulse

the

sweep

respectively.

of

is

out

advance The

the

of

of

a

on

static

when this

TTL

MODE

by —

pulse put

in

train

a

a

J2

circuitry

the

signal

is ADCl2*). to

synchronization

20—bit

setting

the

12—bit level

compatible,

bit

the at

output

(MSSTA*)

the

MODE

or

ACT-A

for

upon

is

parameter

BNC )

auto

flashing

least

controlled

to DEVEN* next

3-15

from

system

data

data

either

feeding

signal

the

completion

analysis 2

J6.

board

significant

sample.

Acquisition +5

word

word

BNC.

channel

active A

test

switch

to

(Status

When

to

level

must

is

J6

by

selectively

CV

(signals

on

the

mode,

purposes.

displayed

can

either Both

of

low,

can

the be SW5

which

location

SW2

ACT—A

Page

bit)

a

is drive

controlled

ADC

modes this be

multichannel

DX04* activated,

is approximately

to

the or

2)

is

used

set

on

enables

When

the

SW8

level

coax board

at

defined to

data

internal

require

the

to

+5V

MCS

current

to —

on

ON,

via cable

changes

SW5

CRT). input

advance

(50-pin

DX23*,

one

selects

during

the

or by

scaling

a

or

a

J6

is

signal

50

channel

either of

terminated

service

ACT—A lines

the

an

set

Upon

provides

to

two

nsec

DXT

acquisition

MCS

external

where

an

ADC

to

CV.

pass.

(signals

supplied

of

external

infernal

termination

OFF,

time

board in

The

a C

ci CHAPTER IV OPERATING PROCEDURES

INTRODUCTION

From the point of view of the scientist using the multichannel analyzer, the most impor tant portion of the analyzer is the analog—to—digitalconverter which produces, in response to each input pulse, a number whose magnitude is a linear function of the peak amplitude of the input pulse.

The basic method used for conversion is a Wilkinson—typeconverter which employs a circuit which causes a capacitor to become charged to a voltage proportional to the peak voltage of the input pulse. Following this charging operation, the capacitor is linearly discharged, with the time required for this discharge therefore a linear function of the input pulse magnitude. During the discharge, pulses from a periodic pulse generator are counted by means of a simple scaler; the state of the scaler at the end of the process indicating in digital form the magnitude of the input pulse.

This description of the Wilkinson conversion method may also be used in describing the operation of the ADC which is used in the ND600 Analyzer System. This description is, of course, not complete, in that nothing has been said of such things as coincidence gating, generation of “end of conversion” signals, and the like. For a preliminary understand ing of the complete analyzer, however, no further discussion is needed of the ADC, in order to understand the overall structure of the pulse height analyzer.

DEFINITION OF TERMS AND DESCRIPTION OF COMMONSPECTRAL FEATURES

Before discussing the principles of radiation analysis, it will be helpful first to define, with explanatory remarks, the terms to be used in the discussion.

Some of these terms emerge from a description of the spectrum shown in Figure 4—1which shows the distribution of energy of gamma radiation detected by means of a scintillation crystal, NA) (Ti), which is one of the most commonly utilized detectors. While the general shape of the Cs137 spectrum is peculiar to this form of detector, the observations usually apply to other detectors.

4-1 The presentation is in logarithmic form, wherein the vertical position of each point is at a level which is a linear function of the logarithm of the number of counts recorded in the corresponding analyzer channel. Various features of the spectrum are indicated by 0 Figure 4—2, the legend underneath the figure, and the following explanation.

b

%. g

L...

Figure 4—1. Typical 1024 channel Cs137 Figure 4—2. Principle features of typical spectrum taken with energy scale set at Cs137 spectrum shown in Figure 4—1. approximately 1.3 MeV full scale. a. 32 keV Barium X—rayline. b. Backscatter peak c. Compton edge. d. 662 keV Cs137 photopeak. e. 749 keV photopeak of Cs134 impurity. f. Continuum due to accidental self— concidences producing partial sum pulses. g. Accident sum coincidence peak. h. Detail due to background radiation.

Barium X-Ray, 32 keV

This X—rayis useful from the operator’s point of view in setting the analyzer zero energy position. It can be removed from the spectrum by use of an absorber such as a one— millimeter thick iron disk. There should be a flat region on the low energy side of this flne, extending back to the photomultiplier noise region. Typical noise, at room temperature, does not extend beyond the equivalent of 10 keV. Slightly incorrect amplifier adjustments can cause this noisy region to extend up to the low energy side of the X—rayline, at high counting rates. Amplifier misadjustments can be decreasing the counting rate. At low counting rates amplifier misodjustments produce less apparent noise, whereas photomulti— plier noise is not affected appreciably by counting rate and becomes proportionately a greater part of all recorded information.

C 4-2 Backscatter Peak

This broad line is produced by gamma photons which are scattered back at about 1800 from surrounding material. The amount of scattering is a function of the distance of the source from the material, descreasing with increasing distance. The proportion of backscattered gammas entering the crystal to the number of gammas directly received, for a fixed sample—to—surrounding—shielddistance obviously decreases as the distance from the source to the detector decreases. The shielding around the detector and source should not be nearer than approximately one foot, and the source should not be more than two or three inches from the detector.

Compton Distribution

Although the Cesium 137 source emits a nearly monochromatic gamma, the sodium iodide crystal does not absorb all of the energy of all of the gamma photons entering the crystal. The amount of energy absorbed in the crystal is quite random, except that there is a minimum amount of energy with which any gamma may escape after interacting. The probability of any gamma, which has lost only part of its energy in an interaction with an atom within the crystal, losing all or part of its remaining energy in interactions subsequent to the initial “collision” increases with crystal size. The resolution of the crystal —photomultiplier combination usually decreases somewhat as the crystal size increases, but the slight loss in resolution is much less important than the effect of a large number of gammasescaping the crystal after losing only part of their energies.

0.662 MeV Photopeak

Those gammas which lose all of their energies within the crystal produce a large number of scintillailons in the crystal. The number of light photons produced is, on the average, proportional to the gamma energy absorbed, but unfortunately only a small percentage of light photons produce photoelectrons at the photomultiplier cathode. Since the number of scintillations and the number of photoelectrons produced is subject to statistical vari ations, the pulse height produced at the photomultiplier anode differs from individual gamma photons, despite the fact that all of the absorbed gamma photons were virtually identical in energy. The width of the photopeak, at half height, is approximately equal to 2 /TT, where N is the average number of photoelectrons produced at the phototube cathode. A typical width, at half height, for the cesium 137 photopeak, is 53 keV.

0.794 MeV Cesium 134 Photopeak

Accidental Self-coincidence Continuum

At any counting rate, there is cifinite probability of two gammas entering the crystal at nearly the same time. Even if these gammas are of identical energies, there is a certain chance that one, or neither, will lose all of their energies, or that both will be totally absorbed. There is a greater chance that they will enter at slightly different

4-3 times, perhaps a microsecond apart, than nearly coincidentally. There will always be a photomultiplier output pulse which is greater than if only one of the gammas had entered, if the two are coincident within a microsecond. The “sum” pulse produces the apparent continuum beyond the photopeak, and in fact produces a continuum at lower energies also, obscured by the non—coincident gamma counts. The number of counts in this continuum is directly proportional to the source intensity, for a given isotope. It is obvious that not only is this continuum capable of completely obscuring very weak lines, but what is quite as important in some cases is the fact that counts appearing in this continuum represent counts which have been “swept out” of some other region of the spectrum by the accidental self—coincidences. Analyzers capable of perfect, dead time corrected, timing of experiments are frequently accused of incorrect timing because of the absence of counts in a line, swept out by accidental coincidences. Errors of a percent can occur at counting rates of 10,000 pulses per second while the accuracy of the timing should be better than one percent. The sweepout effect must be considered during tests of timing accuracy or during quantitative measurements of activity.

Accidental Self-coincidence Sum Peak

Calculation of the shape of the self—coincidence component of the complete spectrum would be difficult, since the amplifier and analyzer characteristics enter the situation. It is not difficult to see, however, that it is not unreasonable to expect that two com pletely absorbed gammas virtually in coincidence will occur frequently enough to produce a sum peak at the region corresponding to 1.324 MeV. Such “accidental” or quasium peaks can readily be distinguished from true sum peaks by changing the counting rate without changing the source—to—detectorposition (use a weaker sample). True sum peaks (‘ do not vary in intensity, relative to other lines in the spectrum, as a function of source intensity.

Background Detail

The detector used in this measurement was not shielded.

PRINCIPLES OF RADIATION ANALYSIS

In this section will be discussed the numerous concepts and instrument requirements which are encountered in the analysis of the energy distribution of events detected by various radiation detectors. The discussion will be general in the sense that it will usually not refer to the use of Nuclear Data analyzers but to matters encountered in the use of any pulse height analyzer. It should not be taken to represent universally accepted inter pretations, but it is a reasonably oblective discussion.

In any interpretation of a multichannel analyzer spectrum, it is important that all the effects of experimental conditions be carefully considered. For example, in the spectrum shown in Figure 4—1, experimental conditions can alter the shape of the spectrum in many ways. The amount of X—radation detected depends upon the material between C 4-4 the source and the sodium iodide crystal, and the backscatter peak magnitude depends upon the nature and location of the surrounding material. The reasons for which these changes in condition can alter the spectral shape are for the most part beyond the scope of this discussion. But it is important to appreciate that conditions which might appear irrelevant to those not well acquainted with the techniques, can markedly affect the spectrum shape. Not only can experimental results be misinterpreted, if the experimental conditions are improperly controlled, but the operation of the analyzer cannot properly be evaluated unless test conditions are quite well reproduced.

The effect of counting rate, that is to say, source intensity, upon the shape of the spectrum is evident from comparative measurements made under the same conditions except for source intensity. The apparent continuum of radiation beyond the photopeak is at a higher level for the case of higher counting rate than for the low counting rate measure ment. This is to be expected for the following reasons.

The probability of two events being nearly coincident, by accident, at any given counting rate can readily be calculated. If the input pulses are one microsecond wide, after amplification and shaping, then at 10,000 events per second at the radiation detector, about one percent of the events will be to some degree improperly reported by the detector, It is not always important that the number of accidental self—coincidences be minimized, but in some measurements if such coincidences occur once per hundred pulses, the error may be important. What is more important is there may well be information of interest obscurred by the presence of large number of “accidentals”. Where accurate quantitative measurements are involved, and whenever experimental conditions permit, analysis should be at a sufficiently low counting rate to reduce the number of accidental coincidences to an acceptably low level. The effects produced by accidental self—coincidence are commonly referred to as pulse pile—upeffects.

More frequently than in the past, automatic data reduction techniques are utilized in interpreting accumulated data. The method most commonly used is to subtract, point by point, one or more components of the spectrum by use of a previously measured or computer—derivedstandard spectrum. If the standard spectrum was compiled at low counting rate, then the remainder of the complex spectrum, after subtracting out a single component may be in error if the complex spectrum was measured at high count ing rates. The same sort of error will be made if the source—detector geometry has been changed from that used in accumulating the standard. This is further evidence that for highly accurate work, source intensities should be kept as low as economics and other experimental factors permit. Carefully standardized detector—source geometrics, and standardized energy scales are recommended in applications involving activation analysis.

A large proportion of the experiments made with this type instrument do not involve gamma analysis, of course, and in some cases nuclear particles (protons, neutrons, deuterons, etc.), or dust, rather than gamma radiation is involved. But, in as much as the input signals are of the same general shape and randomness as those encountered in gamma analysis, the requirements upon the analyzer are roughly the same.

4-5 Analog to Digital Converter

Conversion Gain Selection. One factor to consider in the selection of the proper conversion gain is storage capacity of the analyzer memory being used. Since the number of address ad vance pulses for a full scale (8 volt) input signal corresponds to the Conversion Gain switch positions of 256, 512, 1024, 2048, 4096 and 8192, it may seem feasible to select the switch position corresponding to the memory size, i.e., for a 1024 channel memory, set the switch at 1024, for a 2048 channel memory, set the switch at 2048, etc. This is true in some experiments but not necessarily in others. For example, if the energy of interest does not exceed four volts, it would be better to select a conversion gain of 2048 with a 1024 channel memorysize since the spectrum peaks would be spread out over the full memory rather than half as would be the case if a conversion gain of 1024 were chosen.

Another factor to consider is resolution. With the Conversion Gain switch set at 1024, each channel represents 8 millivolts for a full scale 8 volt input. This means the voltage levels can be resolved within 8 millivolts of each other, hence the term resolution. As the conversion gain is lowered (voltage per channel increased), the resolution decreases accord ingly. Therefore, if the experiment being performed requires high resolution to obtain the desired accuracy, it may be advantageous to use a higher conversion gain setting.

Still another factor to consider is speed. Since the analysis time for a full scale input pulse with the Conversion Gain switch set at 1024 is twice as long as it is with the switch set at 512, it may be feasible to use a lower conversion gain setting when speed rather than resolution is desired. However, since the average analysis time rather than the maximum is usually used in evaluating the selection of the proper conversion gain, the percentage of increase in speed is considerably less and the loss in resolution may be enough to make the increase in speed meaningless. Therefore, first consider how these factors will affect the experiment being performed and then select the conversion gain which is most applicable.

Lower Level Discriminator Adjustment. In some experiments, intense noise or low energy radiation may be present. To reduce the effect of dead time, which is a result of noise analysis, the THRESHOLD(LLD)control must be adjusted above the level of the noise. The THRESHOLD(LLD)control biases a discriminator circuit such that signals below the bias level imposed by this control are not presented to the ADC for analysis. For those signals which exceed the bias level, the bias is removed to permit passage of the entire signal. Therefore, a large signal would be analyzed into exactly the same counting channel, independent of the bias, but small signals would not be analyzed.

A percent dead time meter is a useful tool in determining whether or not the ADC is preoccupied with the useless analysis of noise. This allows the user to determine whether or not the setting of the THRESHOLD(LLD)control affects the indicated percent dead time.

When there is no appreciable noise mixed with the input signal, a minimum THRESHOLD (LLD) control setting equivalent to 30 to 4OmVis usually appropriate. For highest linearity in the lower energy regions, the THRESHOLD(LLD)control should be set at the minimum value. However, if there is an apparent increase in noise, the minimumsetting should be increased accordingly.

4-6 Upper Level Discriminator Adjustment. The setting of the ULDcontrol (may be loctaed on the front panel or internal) selects the triggering level of the upper level discriminator circuit. Input pulses which exceed the bias setting imposed by this control will cause the linear gate of the ADC to close, prohibiting the analysis of the input pulse. For most exper iments, this control is set to maximum(approximately 8.8V), but can be set as desired iment depending upon experiment requirements.

Zero Level Adjustment. The Zero control is used primarily for precise adjustment of energy zero to correspond to the lower boundry of channel zero. It will be found that alteration of the Conversion Gain switch or input coupling (AD/DC) switch changes the energy zero position. It is therefore recommended that the proper setting of the ZERO control to locate the zero energy intercept be correctly determined each time a different conversion gain or input coupling mode is selected. It is likely thata calibration performance check once a month will be adequate for most applications, but this must be determined by experience.

ND600 Terminal

The ND600 Terminal is the system’sdisplay and operational control center. It contains the display CRT, 44—pushbuttoninteractive keyboard and four—wideNIM enclosure and power supply.

The CRTprovides display of four separate pages of alphanumeric data simultaneously with spectral data. Each page contains parameter data pertinent to basic operational functions of the ND600. Page 1 contains parameters normally associated with visually monitoring spectral data. Page 2 contains parameters relating to set—upand performance of data acquisition. Page 3 contains the data manipulation parameters. Page 4 contains the parameters available for set—upof an auto—jobsequence.

The 44—pushbuttoninteractive keyboard is functionally grouped for ease of operation. An eight—pushbuttonarray controls data display, a 16—pushbuttonarray allows quick selection of data acquisition, manipulation and input/output functions, a four—pushbutton array selects and controls status display, and another 16—pushbuttonsarray permits numerical entry, mode selection and mathematical manipulation.

The 4—wideNIM enclosure and power supply houses and powers the ADC and other front— end signal conditioning modules and places them in close proximity to the CRTdisplay and pushbutton keyboard.

4-7

for

procedures, and

mode,

The

ND520

of BNC

selected

a. The Initial to

System storage

be

pulses

During sequential

Analysis

counted

radiation pulse

can

1. indexed A

is

DATA

Pulse

brief

able

routine

the

acquired.

PHA

following

alphanumeric

following

be

Control

CONV

THRESHO

Set

ND575ADC

ULD

ACQ/OFF/STRB

ZERO

DC/AC

COIN/OFF/ANTI

cables

height

Height

System

directly

address

ACQUISITION

is

amplitude expressed

AMP

to

Included

address

definition

spectrum

ADC

storage

by

by

of

ready

intensity

accept

before

listing.

the

signals

the

between

the

GAIN

OUT

analysis

Analysis

and

operating

Set-Up

procedures

register

In

LD(LLD)

proportional

channel

in

for

experimenter.

Nal

channel,

are

certain

operating

storage

by

and

Module

status

analysis,

PAD

the

of

BNC

on

as

normal

detector

number

initial

the

data

and (amplitude

a

accumulate

memory. an

in

controls

function

and

scaler

page procedures

applications,

NAI

for the

amplitude

provide

Spectrum

depending

acquisition

operation.

the

set—up

the

to

the

of

a

Data

selection

and

detector

the

preset

in

counts

ND600

converter

to

ND575

A

of

analysis),

the

step—by

new

ND520

initial

procedures

count amplitude

Handling

describe

either

basis

Storage

upon

ADC

clock

is

or

information.

These

additional

and

Analyzer

and

SIGNAL

that

of

sampling

enables

positions

generates

PAD

step

energy

whether

4-8

and

the

multichannel

one

time.

parameter

data

Unit.

AC fully

mode

2K procedures

OFF

OFF Fully

Fully

Fully Initial of

for

instructions

are

the

ND520

an

is

(down System.

BNC.

or

acquisition the

PHA

external

then

per

clockwise

When

connected

in

as

counterclockwise. clockwise

counterclockwise.

add

analyzed

resultant

This

a

velocity.

Position

The

acquisition

which

follows:

train

entry.

unit

spectrum

PREAMP

or

added

position)

address

should

performing

three

scaling

subtract

to

of

equipment

of

the

number

input

at

in

ensure

(if voltage

to

to,

pulses

Also

acquisition

Other

be

the

storage,

the

is

IN

ND600

the

internal,

(time

of

or

then

performed

operation

signal.

included

factory). BNC

pulse

data

the

ADC

is

the

subtracted

with

relationships

amplitude

may

then

analysis)

used

Analyzer

pulse

ND600

energy which

and

the

by

height

it

be

modes

The

transferred

to

is

is

has

connecting

as

between

required.

number

height

a

preset

index

from,

pulses

represents

a

Analyzer

and

calibration

can

been

procedure analysis

are

System

matter

that

also

analysis

the

of

a

the are ______

b. ND520 PAD Module

Control Initial Position COARSE GAIN 4 FINE GAIN Mid range. DISC 10.0

2. After the ADC and PAD controls have been initially set, initiate acquisition as follows: a. Set the POWERrocker switches on ND600 Electronics Enclosure rear panel and ND600 terminal keyboard to POWERON. b. Adjust the INTENSITY control on the ND600 Terminal until the display is visible on the CRTscreen. Then adjust the FOCUS control for the desired display sharpness.

NOTE: When power is applied, the display is initialized to Status Page 1 and 2048 data channels with the left and right markers positioned at channels 1 and 2047, respectively. c. Simultaneously depress both ERASEpushbuttons to clear the contents of all data channels to zero. d. Depress the SHIFTpushbutton to select the left (<<)direction and then depress the INT/bEL pushbutton to delete any intensified channels.

_FAGE 1 TOTL C CiGRP C ALGRF 1 i:iRF C 21i4e, C’GPF C 3 F.:F S 1 C:G F I 1 F:r1F::: 2C47 L C:HT C F:C:NT C LE 1.0CC FE 2047.000 CFS LOG

H FELL 0

Initial display of Status Page 1 and 2048 data channels with the left and right markers

positioned at channel 1 and 2047, respectively. e. Disconnect the BNC cable from the ND575 SIGNAL BNC and set the ND575 ACQ/OFF/STRB switch to STRB. f. Depress the ACQ pushbutton.

NOTE: When power is applied, the acquisition mode (MODE parameter, Status Page 2) is initialized to PHA Live Time (PHAL)and acquisition time is initialized to infinity seconds, i.e., the PTIMand TMULTparameters (Status Page 2) are set to zero (0) and one second (iS), respectively. 4-9 g. Adjust the ND575 ZERO control until storage is observed in channel one (1). C _FAGE A TOTL e CIGPP e AG P P 06 P F’ ‘33 I Z 2cj48 013 P F’ I1 GPP S 06 PP LMRK P riP : 2Fi47 LC:N T It PC.NT LE 1 PE 2047. 000 C:F S 512

2048 channel display showing storage in channel 1.

h. Set ND575 ACQ/O FE/STROBEswitch to ACQ.

i. Re—connectthe BNC cable from the ND520 AMP OUT BNC to the ND575 SIGNAL BNC.

I. Adjust the ND575 THRESHOLD(LLD)control clockwise until storage of a spectrum is C observed. The system is now in operation and the ND575 ADC is properly zeroed.

FAG E A T CITL 28830 CIGPP 0 AG PP 06 P F’ 0 1381 Z 2048 06 P F’ ‘3P P8 06 PP L IIPK p ri R: 204? L C NT 0 F.:CNT 0 LE i.ct RE 2047.000 C:F S

fr%.J I 2048 channel display showing storage of a Cs137 spectrum.

NOTE: If acquired data is never to be directly compared with other data runs, i.e., channel by channel comparison or spectrum stripping, ADC zero can be set at the highest value which ensures a positive intercept for all conversion gains. If data is to be compared C directly or stripped from other data, such as reference standards, precise front—endcalibra tion as described in the following paragraphs is required. 4-10

br

data

6.

peak 5.

4.

channels

2.

This

to NOTE: pushbutton,

3.

source.

1.

exemplatory

This

calibration proper the

linear

ZERO

ing System

Using _GSIZ ______CFS LE GRPS RGRP

LCNT LMRK PAGE

TOTL

1

Adjust

Depress

accumulation

is

Initial

falls

Using selects

Set Depress

when

Position

procedure

the

a

over

control,

system

Calibration

typical

ND575

The

32

at

power

the

ND600 ND520

32.

System

ACQ

accuracy the

a

and

channel

enter

display minus

purposes

the

1C24

storage

operation,

CCC MPOS

512

also 0

32

the

CONV

procedure 662,

C

display

2 rt

1

I is

pushbutton.

to

time

COARSE 1024

marker

(—)

Set—Up

applied.

system

assumes

groui

662 1

apd

group

could

respectively.

a

pushbutton

MeV

RE RCNT DGRP

RMRF( OGRP OGRF

OGRP

to

at

Gain Nat

cursor

(right

i.e.,

determine MSPN

pushbuttons,

the

for

and

can

(DGRP)

size

and

be

range.

the

detector

switch

operand

system obtained

662.

be

Spectrum

to

marker).

power

front

FINE

of

pushbuttons,

and

the

calibrated

and

1024 662

CCC

Since

peak

to

calibration

will

end then

C C C

C

GAIN

GSIZ

1

is

pushbutton

the

the

1024.

using

channels.

on,

Storage

4-11

After

position

equipment

suffice.

Nal

ACQ

acquire

ND520

parameter

controls

and

for

respectively.

markers position

a

1024

detectors

each

solid

direct

pushbutton.

procedure

at

all

array

and

amplifier

group

channel

Cs137

1

(particularly

controls

gain

so

state

keV/channel.

positioned

the

then

(Status

reading

and

that

are

(AGRP)

will

adjustment

left

GeLi

has

depress

display

depress

not

gain

0.662

are

Page

and

be

been

in

very

detector,

at

set

parameters

controls

the

used

keV/channel.

right

both

MeV

showing

channels

1)

the

to

performed

This

allow

linear,

detector)

Using

as

initial

ENTER

markers

ERASE

Cs137

the

procedure

and

but

sufficient

the

left

32

are

better

calibration

positions.

the

for

pushbutton.

to

pushbuttons.

photo

is

CRSR

and

and

at

initialized

The

fairly

verify

ND575

662,

assumes

right follow 7. 0.032

pushbutton locations.

8.

NOTE:

for

GAIN

GAIN Any simultaneous

parameter

completely Alphanumeric

alphanumeric

pages Pages particular options desires

the The

displayed

- _GSIZ 1.

PAGE

AGRP TOTL GRPS CFS LE LMRK LCNT

energy

Adjust

After

CRSR

of

procedure

Depress

MeV

5,

are

switch

Switch

eight

to

or

The

6

satisfactory

pushbutton

available further data

status

calibration

experiment, and

for

ND575 The

32.000

X—ray

and

blank

procedure

13698

status

with

the

settings 1024

setting

data

user

Status

206

512

then

for

system

pertinent

7

32

page.

2

1 minus 1

are

identify

and

peak

spectral

status

ZERO

entry

pages is

the

for

of Page to

not

also

of

is of calibration

is

OGRP DGRP OGRP for DGRP RMRK RCNT RE

(—)

and such

alphanumeric ACQ

set

1024

used 256,

now

of

4, page

A to

desired control

can

blank

a and an

data.

pushbutton

special

the the

basic

2,

particular

as

calibrated

primarily energy was

be

pushbutton ______

512,

selection

Parameter

0.5,

662.000

dates,

display 0.662

except

selected

or and

operational

Status described

is

alphanumeric

2048,

662

when

112

achieved,

0.25

calibration

the

parameter

0 0 0

at

1

MeV titles

experiment.

during

cursor

for

is

for

Pages

the

again.

Entry

ND520

outputting

for

4096

and

as

the

4-12

Cs137

1 above.

or

operand

follows:

display

keV/channel. functions

to

acquisition 0.125

X—ray tory peak respectively, 1,

1024

other

depress

PAGE

and

data

of

the

parameter

FINE

2,

photopeak

calibration.

1

8192.

falling channel

A

to PAGE

alphanumeric 3

keV/channel of

pushbutton keV/channel peak

associated

parameter.

and

similar

the

GAIN

on

of

alphanumeric

and

the

S—Y

and

ACQ

4

parameter

at

data

display

after

each

fall

system.

readout

control

procedure

left

662

plotter.

with

array

pushbutton,

appliable

at

achieving

The

contain

and with

with information

keY

the

showing

certain

of

parameter

so

when

and

blank

right

Status

respective

Cs137

a

proper

the

Status

that

can

CONV

alphanumeric

then

to

display

currently markers,

satisfac—

status

32

be

the

firmware

both

a

Page

photo—

a

channel

depress

keV

performed

data

user

minus(—)

the

CONV

0

of

is 2. If the status page desired is a higher numbered page than the current status page, depress the NXTV pushbutton until the desired status page is displayed.

3. If the status page desired iS a lower numbered page (or a higher numbered page) than the current status page, enter the number of the desired page at the operand pushbutton array and then depress the ENTERpushbutton. When the ENTERpushbutton is depressed, the selected status page ‘is displayed. If the ENTERpushbutton is depressed without an entry at the operand pushbutton array, Status Page 0 (no status display) is selected.

When power is applied to the ND600 System, the display is initialized to Status Page 1 with each of its parameters set to an initial value. When power is applied, the parameters of Status Pages 2, 3 and 4 are also set to initial values. The initialized state of Status Pages 1, 2, 3 and 4 is shown below:

_FFIGE 1 — FAGE TOTL i OGF.:F MODE PHAL. TOG 0 FIGPF 1 OGRF AG PP DGRP GSIZ 2i148 UGRF TBASE T MUL T GRPS 1 DGRF FT I M LT Lr1RK 1 PMRK PT 0 T e CT LCNT e RCNT P LE V e BUSY t. oee LE l.i3 RE 247.1iO DUFF €1 RATE oet CFS LOG TOTL e

Status Page 1 Status Page 2

— F AGE 4 << E/CH i. E( El. ElCIEl CYCLES 1 Fl AGR P D’O a. ElE1EI CTOGO e F2 A RE A a D/O 0. 030 STEP1 F3 BGND DO 3. ElEIEI STEP2 F4 TO Tt a D G R P STEP3 101 TTY F WHM a. aae S F 1 . ‘33El STEF4 MODE EICDO PEAK ‘3. aae STEP5 DATA ALL STEP6 102 STEP? MODE STEPS DATA AUTG 1 STRIP DGF:P 1 I,JGRF e AGRP 1

Status Page 3 Status Page 4 4-13 Parameter data on Status Page 1, 2, 3 and 4 which varies with operational functions, such as elapsed time, channel contents or count totals, is periodically updated by the system. Parameter data which is user selected, such as an operational mode, numerical value or mathematical manipulation is altered as follows:

1. Position the display cursor to the desired parameter. a. If the status parameter to be altered is near the top of the current status page, depress the SHIFTpushbutton to select the left (<< ) direction and depress the CRSRpushbutton until the display cursor is adjacent to the desired parameter. Each time the CRSRpushbutton is depressed, the display cursor will move to the next parameter to the right or down, line by line. After selection of the last parameter of the current status page, selection reverts to the first (PAGE) parameter. b. If the status parameter to be altered is near the bottom of the current status page, depress the SHIFTpushbutton to select the right (>>) direction and depress the CRSRpushbutton until the display cursor is adjacent to the desired parameter. Each time the CRSRpushbutton is depressed, the display cursor will move to the next parameter to the left or up, line by line. After selection of the first (PAGE) parameter, selection reverts to the last parameter of the current status page.

2. Enter the new value for the selected parameter. a. If the parameter value to be altered is a numerical value, sequentially enter the digits of the number at the operand pushbutton array, preceded by a minus (—)if the value is negative, insert a decimal point (.) where required if the value is a decimal fraction, and then depress the ENTERpushbutton. Entries at the operand pushbutton array are displayed as they are entered in the line following the last line of the current status page for veri fication of their correctness prior to depressing the ENTERpushbutton. For most numerical entries, the number can be up to 6 digits, exclusive of sign and decimal point. For decimal entries, at least one digit must precede the decimal paint (e.g. 0.436). b. If the parameter value to be altered is for a parameter which is defined by a list of alphanumeric codes (such as an acquisition mode, time multiplier, I/O device, etc.) or by a list of integer values (such as, a status page number, group size, acquire or display group number, etc.), it may be selected by depressing the NXTV pushbutton until the desired value is displayed for the parameter selected by the display cursor. Holding the NXTV pushbutton depressed sequentially displays the list of parameter value for the parameter selected by the display cursor. After the last parameter value in the list is displayed, selection reverts to the first parameter value (except for the PAGE parameter).

Entering minus (—)at the operand pushbutton array and then momentarily depressing the NXTV pushbutton permits backing up display of the list by one parameter value. However, if the NXTV pushbutton is held depressed, display of the list is again sequentially advanced.

NOTE: The telephone format alpha characters on number pushbuttons 2—9of the operand pushbutton array permit entry of functions in understandable mnemonic codes. For example, PHAClock Time Acquisition is specified for the MODE parameter (Status Page 2) by sequentially depressing the number pushbuttons containing the alpha characters PHAC and then depressing the ENTERpushbutton. The numerical equivalent of the mnemonic code (i .e. the numbers of the pushbuttons corresponding to the alpha characters) is displayed in the line following the last line of the current status page for verification of its correctness prior to depressing the ENTERpushbutton. 4-14 PHA Spectrum Storage for a Preset Clock Time

The following is a typical procedure for acquiring 1024 channels of data in the pulse height analysis mode for a preset clock time of 60 seconds. Memory group 2 will be selected for data storage. This procedure assumes the Initial System Set—upand Spectrum Storage procedure has been performed to verify proper system operation, i .e., power is on and all controls are set to initial positions.

1. Enter Stop Mode by depressing the ND600 STOP pushbutton.

NOTE: If system is still in the acquire mode as indicated by display of a flashing “A”, depress the ACQ pushbutton, the minus (—)pushbutton and then depress the ACQ pushbutton again. If a static “A” is displayed, depress the minus () pushbutton and then the ACQ pushbutton.

2. Select an ADC conversion gain of 1024 channels by setting the ND575 CONV GAIN switch to 1024.

3. Select memorystorage group size of 1024 channels. a. Select Status Page 1. b. Set the display cursor to GSIZ parameter using the CRSRpushbutton. c. Enter 1024 at the operand pushbutton array and depress the ENTERpushbutton.

4. Select group 2 as the acquire and display group. a. Select Status Page 2. b. Set the display cursor to the AGRP parameter using the CRSRpushbutton. c. Enter 2 at the operand pushbutton array and depress the ENTERpushbutton. d. Set the display cursor to the DGRP parameter using the CRSRpushbutton. e. Enter 2 at the operand pushbutton array and depress the ENTERpushbutton.

5. Erase the selected memory group by simultaneously depressing both ND600 ERASE pushbuttons.

6. Select the PHA Clock Time Mode of Acquisition. a. Set the display cursor to the MODE parameter using the CRSRpushbutton. b. Depress the NXTV pushbutton until PHAC is displayed for the MODE parameter.

4-15

7.

b. a.

c.

scaling

d.

performing data

appropriate

accumulation

The Analsis

The counts can radiation

can

acquire

Multichannel acquisition 8. Multichannel — P AG MCI TCITL C’ F’ P F’ T AGE Cl L T E:

T

other

following

be

either

Select

Depress

Set

Set

Start Enter F E A P UT E:’

I for ii SE P E F

U

can

expressed

mode.

mode.

the

the

60

of

intensity

data

is

60

be

be

these

a

signals

seconds

the external

1

display

display

a the

8703ci

preset

at

Scaling

scaling

advanced in

P

two

totalized

procedure acquisition

HA

One

character the

6

each

NXTV

multichannel by C Ij

cJ

operating

on

as

(clock acquisition

cursor

cursor

operand

the

is

equipment

a

k

channel

a

a pushbutton LT RATE T [:6

CT T

function

by

time

and

comparable number CI MIJ

LI

for procedure

S PP 6 “A”

to

to

time) by L Ci

Y the

T

stored

performing

procedures

pushbutton

basis

the

the

depressing is

3224.

scaling

for

internal time

______

is

of

of

flashed

and

TMULT

PTIM

employed.

a

enables

until

in counts

for

time.

fixed to

655 333

of then 58

6 each

15 procedures,

€1

performing

counting

parameter

60

or

recurrent

describe

array

on

iS

the

parameter

per

period

automatically

an Data

seconds.

the

4-16

channel

is

the

ACQ

external

displayed

unit

and

acquisition

Display

60

Counts

channel

display

which

in

data

of

multichannel

using

seconds

a

depress

of

pushbutton.

the

a

using

time

of

single

series

time

acquisition

time

full

represents

the

Nal

of

to

the

Cs137

for

stop

(dwell

the

Status

ENTER

indicate

of

can in

scale

memory.

multichannel

of

detector

base

CRSR

the

data

the

acquiring

CRSR

scalers.

spectrum

also

scaling

TMULT

time).

The

Page

generator

is

other

PHA

pushbutton.

pushbutton.

in

which

4K.

the

pushbutton.

be

the

and ND600

The

2

clock

acquired

passes.

relationships

ND600

parameter.

Up

data.

after

and

scaling

multichannel

represents

ND520

address

to

to

will

time

resultant

acquiring

one

enable

During

is

When

when

pass.

PAD

now

register

in

mode.

million

the

that

data

acquire

are

1024

for C connected to the ND600 unit by connecting BNC cables between the Nal detector and the ND520 PREAMPIN BNC and between the ND520 DISC OUT BNC and the ND600 Ji (MSINP) BNC (rear panel). These procedures assume the Initial System Set—Upand Spectrum Storage Procedure has been performed to verify proper system operation, i.e., power is on and all controls are set to initial positions.

Multichannel Scaling (Single Pass)

The following is a typical procedure for performing a single multichannel scaling pass in a 1024 channel memory group at a dwell time of 10 msec per channel. The multichannel scaling pass is initiated by a +3 to OVstart pulse applied to the ND600 J2 (MSSTA*)BNC (rear panel) from the external equipment.

NOTE: Each multichannel scaling pass can be initiated simply by depressing the ACQ pushbutton rather than applying an external start pulse if a shorting BNC k inserted in the ND600 J2 (MSSTA*)BNC.

1. Enter the Stop Mode by depressing the ND600 STOP pushbutton.

2. Select a memory storage group of 1024 channels. a. Select Status Page 1. b. Set the display cursor to the GSIZ parameter using the CRSRpushbutton.

c. Enter 1024 at the operand pushbutton array and depress the ENTERpushbutton.

NOTE: The display group (DGRP) and acquire group (AGRP) parameters are initialized to 1 when power is applied.

3. Erase selected memory group by simultaneously depressing both ND600 ERASEpushbuttons.

4. Select the Multichannel Scaling Mode.

a. Select Status Page 2 b. Set the display cursor to MODE parameter using the CRSRpushbutton.

c. Select the MCS mode using the NXTV pushbutton.

5. Select a dwell time per channel of 10 msec. a. Set the display cursor to the TBASEparameter using the CRSRpushbutton. b. Enter 1 at operand pushbutton array and depress the ENTERpushbutton.

4-17 d. 6. c. 7. b. a. pass the to automatically 8. passes scaling Multichannel The in the shorting (rear NOTE: 1. _pTIr1 MODE PAGE PTOT AGPP PLE’.) TE:ASE DOFF TOTL the each display ACQ Set Select Select will Set following Enter Start When Enter panel) desired in pass the the subsequent A BNC begin a data pushbutton 1 the multichannel preset a a CRT. 1024 227654 display display at from is time single Scaling stop viewing is is STOP the acquisition initiated MC3 when a inserted channel 2 €1 C C the 1 1 1 number multiplier typical operand acquiring pass cursor MCS cursor mode the (Preset external rather level TcIGCI LT Tr1IJLT DGF.:P PATE EIIJf3Y C:T by scaling is start pass. in of memory to to by procedure added by pushbutton a the than multichannel using of Recurrent data. the the +3 depressing depressing pulse equipment. 1OMS ND600 pass to TMULT to PTIM applying group C. 0.000 the OV I the is CiS CCC is for using applied. CFS C C C start array 1 parameter completed, Passes) J2 data at performing ND600 parameter the scaling a a pushbutton 4-18 (MSSTA*) the pulse dwell and separate ND600 stored Display channel scaling NXTV ACQ When depress using applied passes time set using in a STOP start preset BNC. pushbutton. the pushbutton. and the the pass. of the spectrum of can the the to Status previous pass view CFS pulse pushbutton. CRSR 10 number the be ENTER CRSR Counts msec parameter is initiated the to ND600 Page after pushbutton. completed, pushbutton. pass. initiate per The pushbutton. resultant of full 2 a recurrent channel. multichannel and J2 single simply scale Each (Status each (MSSTA*) resultant spectrum the mulfichannel multichannel is by multichannel pass Page ND600 1 Data K. depressing scaling if BNC 1024 on 1) acquired a will

C

C 2. Select a memory storage group of 1024 channels.

a. Select Status Page 1.

b. Set the display cursor to the GSIZ parameter using the CRSRpushbutton.

c. Enter 1024 at the operand pushbutton array and depress the ENTERpushbutton.

NOTE: The display group (DGRP) and acquire group (AGRP) parameters are initialized to 1 when power is applied

3. Erase selected memory group by simultaneously depressing both ND600 ERASEpushbuttons.

4. Select the Multichannel Scaling Mode.

a. Select Status Page 2.

b. Set the display cursor to the MODE parameter using the CRSRpushbutton.

c. Select the MCS mode using the NXTV pushbutton.

5. Select a dwell time per channel of 10 msec.

a. Set the display cursor to the TBASEparameter using the CRSRpushbutton.

b. Enter 1 at the operand pushbutton array and depress the ENTERpushbutton.

c. Set the display cursor to the TMULTparameter using the CRSRpushbutton.

d. Select a’time multiplier of 1OMSusing the NXTV pushbutton.

6. Select 10 recurrent passes.

a. Set the display cursor to the PTIMparameter using the CRSRpushbutton.

b. Enter 10 at the operand pushbutton array and depress the ENTERpushbutton.

7. Start data acquisition by depressing the ND600 ACQ pushbutton. The first multichannel scaling pass is initiated when the start pulse is applied. Upon completion of the first pass, the ND600 awaits the arrival of the next start pulse. Each subsequent pass is initiated when another start pulse is applied. The counts obtained on each subsequent pass are added to those stored in the selected memory group on the previous passes.

8. Observe and count the number of passes on the oscilloscope. When the last (10th) of the preset number of passes is completed, the ND600 will automatically stop acquiring y data. Set the CFS parameter (Status Page 1) to the desired viewing level using the CFS pushbutton and view the resultant spectrum on the display CRT.

4-19 second Sequential During

rate in varying

an The which the Data number of spectrum. NOTE:

for DATA Data The ground another spectrum in Page

Data subtraction

This FAGE AG ricE:’ PTI1 DOFF FLE’J FTCIT TEIASE TC1TL

sequential

one

external

7,500

list display

List R

of

resultant

is P E

subtraction

can

2)

subtraction

is

sequential

SUBTRACTION in memory

100 accomplished entry

is

at

ana

which spectrum

Mode

If

stored

samples

from

be

channel

stored 2261149

the

the

Listing

kHz.

This

cursor

digital

process

og

subtracted

memory

can

spectrum

operand

of

another ADC PlC

is

group,

inputs,

in

is 10

in 2 C C C

from 1

Acquisition 1

from

initialized be

per

analysis

listing,

to one,

memory

accomplished

computer a

removes

is

control

the

second

by

second.

locations,

a

previous used

and as C:’G T LT TMIJLT E:USY CT PATE

pushbutton

represents

from

etc.

It Ci

cleared

subtracting

AGRP PP GO

any

events

a

process

group.

then

to

led

so

the

to memory

a or

provides

The

channel

sample

cleared

permits

0, stored

by

parameter,

magnetic

transferring

identifying by i.e.,

memory

(words) C. C.

the

12—bit

is

array

prevents

the I

The

first OMS 000 CCC

a

performed.

group,

desired slowly

data

known 0 C C

precise 1

reaching ADC the

use

memory

subtraction

and acquiring

group

data from

tape.

first

of 4-20

can

entering

underflows

peaks. internal

this

there

then

varying

spectrum

t

spectrum

the words

amplitude

scaling

Display

channel

can

event

group

e

be

0

information

memory

depressing

terminates

ADC

is

the

used

be

operation

can

The minus

no

autostrobe

analog

or

is

passes.

background, used

of and

spectrum from

less

are

need to

stored

from

be

versus

preset

Status

as

identify

(—) observing

background.

stored

to

accepted

occurring

a

inputs,

the

to

acquisition

to

previously

is

buffer

and

remove

in

Counts

time

level

a

circuitry

re—acquire

Page accomplished

after

ENTER

channel

second

as

the

an

storing

the

digitization

12—bit whether

in

(PLEV

2

up

ten

when

background

unknown

full

acquire

and

conlunction

digitized

pushbutton.

accumulated

and

to

memory at

Since

zero, multichannel

scale

this

a it

digital a

subtracting resultant parameter,

prohibits

maximum

or each

nominal

by

group

spectrum.

information

the

the

not

is

of

group.

setting

data

from

8K.

time

words

back

slowly

with

the

1024

data

rate

restart.

a

Status

one

(- ______

SPECTRUM COMPARISON

Data stored in up to four memory groups can be overlapped and displayed either at fixed vertical displacements (stacked) or with a common baseline (superimposed) for spectral comparison. The procedure for overlapping two memory groups affixed vertical displace ment is as follows:

1. Select group 4 as the current display group (memory group to which another memory group is to be compared). a. Select Status Page 1. b. Set the display cursor to the DGRP parameter using the CRSRpushbutton. c. Enter 4 at the operand pushbutton array and depress the ENTERpushbutton.

2. Select group 3 as the overlap group (memory group to be displayed at fixed vertical displacement to the current display group). a. Set the display cursor to the first OGRP parameter (right hand column, top line). b. Enter 3 at the operand pushbutton array and depress the ENTERpushbutton.

3. Observe the two overlapped spectra at the display CRT. Display of the selected overlap group can be distinguished from the current display group as it has no visible markers or intensified regions.

_PAGE TOTL 185826 OGRP 3 AGRP 4 OGRP 0 GSIZ 512 OGRP 0 GRPS 4 DGRP 4 LFIRK 151 RFIRK 18? LCNT 3692 PONT 38?? LE 6O • 948 RE 745.552 CFS 16K

Display of Status Page 1 with 512 channel overlapped spectral data display of CoóO spectrum in overlap group 3 vertically displaced relative to Cs137 and Co60 composite spectrum in current display group 4.

NOTE: Overlapped display with a common baseline is selected by setting the display cursor to the DGRP parameter, entering minus (—)at the operand pushbutton array and then depressing the ENTERpushbutton. When overlapped display with a common baseline is selected, an is displayed following the DGRP parameter to indicate suppression of the display offset. Return to overlapped display at fixed vertical displacement is selected by setting the display cursor to the DGRP parameter, entering minus (—)at the operand push button array and then depressing the ENTERpushbutton. 4-21 4.

only

(right the ______

(total and NOTE: the

or

Data

SPECTRUM

‘as b. a. memory

1. c. 2.

CRSR a. b. _PAGE A’3RP E’CH

TCITL GGND AREA

FUHM PEAK

subtracted

markers the

overlap

Select

then

updated

Select

Select Set

Enter Select

Set

Enter

hand

stored

counts

pushbutton.

strip —.

group The

the

the

depress

673.250

4

Status column,

-1

in

95.408

185826 135720

group

group Status

factor.

—1 in

value 4.017 50106 1 display

when at

display

minus STRIPPING

from /

the /\______

at

is

one

as

the

to

the 4 3

the

Page

the 4

current

by

Page

displayed the the

background

memory

operand

be

second

as

cursor

operand cursor AREA

depressing

strip

AREA

the data

added/subtracted). E(0’ D/0 D.”J D/0 SF D’3RP

3

3.

and

display

current

factor.

to

line

group to BGND

in

pushbutton

for

BGND

observe

pushbutton ______

the

the

any

counts)

from —5.583 —1.000

the

the 0.000 0.990 0.000

group

can

DGRP

strip

display

pushbutton. other

The

minus D/O pushbutton

top).

the

4

be

factor between

array

and

minus

parameter

memory

array

multiplied

value

parameter

group

(—)

4-22

This

the

and

(SF)

pushbutton

(—)

Display spectrum displaced overlapped

composite

and

displayed

is

overlap

the

value

(memory

group.

depress specifies

depressed.

parameter

depress

using

by

markers

can

of is

a

in

group.

be

relative

the

selected

spectrum The

the

the

at

group Status

for

spectral

overlap

the

subtractive

changed

the

in

ratio

CRSR (Status the

ENTER procedure

ENTER

the

to/from

operand

Page

The

first

to

strip

of

in

data

group

current

pushbutton.

Cs137

Page

pushbutton.

to

D/O

gross

current

3

D/O

pushbutton.

stripping

factor

with

the

display which

is

pushbutton

3

3)

as

parameters

counts

display and

vertically

parameter

ratio

512

Using

follows:

display

and

another

CoóO

of

with

of channel

between

added

the CoóO

group

net

array

group

one

are

counts

to

and

(1)

4. ( 0..

4.

the

data strip 3.

pus

NOTE: _PAGE _PAGE PEAK AGRP FWHM E/CH BGND AREA AI3RP TOTL CFS I3RPS LE LCNT ‘351Z TUTL LMRK

hbutton

STRP/PLOT

Select Enter

stored

factor

Subtractive

3 600.948

array.

the

or

in 185826 132116

at 0.000 4.017 0.000 3632

by current

the 512

right 16K 1

pushbutton. 5

0 entering 0 4 4 3 4 1 1

operand <<

spectrum

(>>)

display SF D D/0 E<0) DGRP D/0 RCNT OGRP RE D’3RP OGRP OGRP PFIRK /0

a

direction

pushbutton

minus

Data ______

stripping group 745.552 —5.583 —1 0.000 0.000 0.000

stored 387? (—)

• 000 1

4.

using 87 4 0 0 3 4

and

array

can

in

4-23

then

the

either

strip

to

group spectrum

SHIFT subtracting

Display overlapped

spectrum overlapped displayed Display

group composite

select

the

group

be

strip

3

pushbutton. specified

4.

group

from

of

of

3

in

group

in

is

relative

spectrum

Status

Status

spectral

current CoóO

spectral

overlap

multiplied

Cs

3

as

137

number

by

spectrum

Page

Page

the

to

entering

and display

data

in

group data

Cs137

strip

current 3

by 1 at

CoóO

with

with

display

display

the

—1

3

in

group

group

a

and

vertically

overlap

composite

and

512

operand negative 512

display

CoóO

after

and of

4.

added

channel

channel

Co60

depress

(strip)

(—)

to

the

region,

respectively,

9.

region, to

respectively,

left NOTE:

8.

number

pushbutton.

7.

MSPN 6.

the

channel

4.

channel 5. REGION

number

be

current

marker 3.

2.

follows:

last selected

A

interest,

1.

facilitate

specific

1

desired

limit.

If

If

channels

Depress

Hold

Depress

Hold

Depress

Depress

Select

and

the

the

pushbuttons,

of

channel

depress

depress

display

of

After

number

number

region

the

OF

totalized

the

the

channels

right

left channels

region

region

Status

the

the

the

the

the

channel

and

INTEREST

and

of

MSPN

the MPOS

marker

the

the

group.

marker

numbers.

(RMRK of

(LMRK

fine

the

SHIFT

SHIFT

SHIFT

RST/ADV

depress

depress

desired

of

of

Page

interest

SHIFT and/or

SHIFT

to

the

in

current

pushbutton

pushbutton

adjustment

interest

interest,

marker

be

is

the

pushbutton

is

pushbutton

parameter).

pushbutton

parameter).

XPND

1.

positioned

SELECTION,

contained

the

positioned

the

region

pushbutton

pushbutton

current

The

readout.

pushbutton

can

display

can

of

MSPN

MPOS

release

pushbutton

channel

then

the

depressed

depressed

of

of

be

display

to

to

to

the

to

interest

right

group.

in

to

until be

selected

pushbutton

When

When

A

select

to

select

to

select

the

to

the

the

left

the

specific

number

entered

INTENSIFICATION,

select

select

4-24

position

marker

the

group

left

may

and

and

MPOS

desired

its

the

left

and

is

the

the

the

Observe

using

right

coarsely

channel

or

observe

observe

the be

the

left

of

or

right

region

as

left

right

until

right

minus

(RMRK)

right

pushbutton.

the

depressed

the

right

region

one

right

right

the

marker

marker

(<<

the

limits

the

(>>)

(>>)

left

left

of

one

number

the

of

the

of

bracketed

MPOS

of

(>>)

(>>)

status

parameter

left

of

)

the the

the

and

marker

the

status

status

coincides

coincides

or

direction.

in

direction.

direction.

to

interest,

display

TOTALIZATION

multiple

left

marker

the

steps

right

right

and

is

expand

or

or

dkplay

display

approximately

display

using

(LMRK

last

limit

left

left

MSPN

8

markers

limit

should

with

with

coincides

can

and

release

channel

(<<

(<<)

assigned

the

of

of

the

of

of

parameter)

of

be

pushbuttons.

9.

the

the

the

the

bracketed

be

the

MPOS

)

the

the at

direction,

selected

direction,

the

desired

left

right

left

equal

in

the

with

right

regions

left

equal

desired

AND

the

MSPN

and

and limit

first

limit.

marker

the

should

to

marker

region

as

READOUT

to

right

and

of

the

of

The

the C; PAGE 1 TOTL 719044 OGRF C AGRP 1 OGRF C i3f:IZ 1024 OGRP C GPPS 2 DGP.P LFIPK 297 RMRK 367 LCNT 3075 RCNT 2987 LE 297.000 RE 367.000 CFS 64K

: Display of Status Page 1 and 1024 channel Cs137 and CoóO composite spectrum after positioning left and right markers at the left and right limits of Cs137 photopeak, respectively.

NOTE: The left and right markers can be set directly to any specified channel or energy value by positioning the display cursor to the respective marker channel (LMRKor RMRK parameter) or marker energy (LEand REparameters), entering the desired channel number or energy value at the operand pushbutton array, and then depressing the ENTEP,,ishbutton. ,1 The selected region of interest can be entered as one of the multiple assigned regions of interest as follows:

1. Depress the SHIFTpushbutton to select the right (>>) direction.

2. Depress the INT/tEL pushbutton. This intensifies the display of the channels within the selected region of interest (between the markers), assigning the channels as a region of interest. The channels will remain assigned as a region (intensified) even though the markers are subsequently moved.

• PAGE 1 TCJTL 719044 OGRP C AGRP 1 OGRP C GSIZ 1024 UGRP C GRPS 2 DGP.P 1 LMRK 297 _RMRK 367 LC:NT 3075 RCNT 2987 LE 297.000 RE 367.000 • CFS 64K

Display of Status Page 1 and 1024 channel Csl 37 and CoóO composite spectrum after selecting and intensifying the first region of interest (Cs137 photopeak).

4-25

NOTE:

the

of

2.

bracketed

FWHM area

as

(<<) The

half

in

markers

pushbutton.

pushbutton, selecting

of

SHIFT Cs137

Display

1.

SHIFT

markers,

lNT/tEL

3.

interest

each

markers

interest

CF

LE

L 6

L 13S

T

AG PAGE

full

total

CNT

PP

MR

CIT

Depress

Select

maximum

To

(total

S

P

I

direction,

pushbutton S

K Z

L

pushbutton

F

and

cid

remove

width

region

are

of

AREA

depress

counts

pushbutton.

and

by

currently

are

CoóO

Status

(first

counts

551

PEAK

Status

displayed

or

2C8472

the

the

at

intensifying

amplitude

+

advanced

1447

1

sequentially

is

the

64

551 Fi24

CoóO

AREA

BGND

in

composite

depressing

half

the

quickly

markers

Page

parameters

to

to

Page

minus

:

the

intensified

bracketed

select

select

SHIFT

maximum

for

photopeak).

BGND

The

channels 1

3.

P

RE

C: o

P

Ci

Ci

background

to

and

and

CNT

i

6

6 6

6FF

determined the

can

TOTL

the

PP

F

P PP

the spectrum

the

markers

each

K:

pushbutton F

the

advanced

to

the

1024

TOTL

be

pushbutton.

second

channels

by

right

left

amplitude

reflect

RST/ADV

if

621

within

obtained

peak

assigned

the

acquisition

channel

(<<) can

parameter

counts),

after

(>>)

CCC

947

621

by

region

to

markers.

channel

to

the

C C

C

the

be

from

depressing

bracket

direction

select

and

region

pushbutton

4-26

as

set

direction

net

This

region

follows:

the

the

the

is

(Status to

total

energy

updates

the

not

of selecting

Cs137

Display

in bracket display,

any

background

peak

of

and

the

interest

ascending

C:FS

LE

LCNT

LMRK

AGRP TC1TL

FAi3E

3PFS

left

3812

counts

in

and

single

and

interest

Page

within

progress

SHIFT

and

channel

then

the

(<<)

then

of

all

observing

bracket

and

1,

(net

CoóO

(second

Status

region

display

E.32CC0

depressing

regions

the

counts,

currently

162487

pushbutton

depressing

2,

energy

direction

intensifying

and

1C24

energy

area),

64K

537

632

region or

composite

the

Page

by

2

I

1

the

CoóO

the

of

3).

by

sequence.

the

depressing

channels

the

background

bracketed

within

the

depressing

TOTL

markers

1

_RMRK

of

and

the

The

to

RE

PONT

06FF

OGRP

OGRP 06FF

full—width

photopeok).

and

AREA,

the

interest

RST/ADV

spectrum

select

depress

RST/ADV

total

parameter

1024

the

third

with

are

the

The

7C2.CCC

by

BGND,

region

the

the

counts

counts,

channel

not

the

at

the

region

the

after

net

653

7C2

left

moved.

C

C C

1 C ______

• PAGE _E/CH 1 . E (0) 0.000 AG P F’ D / CI 0.000 AREA 506769 CI., 0 0.000 E:GHC’ 212275 Cl/Cl 0.000 T CITL 719044 CIGP F’ F (.IHM 23. 774 S F 1 - 000 FE A K 335. oee

Display of Status Page 3 and 1024 channel Cs 137 and Co60 composite spectrum showing area, background, FWHMand peak energy of first intensified region (Cs 137 photopeak).

3. To update the status display to reflect the net total counts (AREAparameter), the background counts (BGND parameter), the full width at half maximumamplitude (FWHM parameter) and the peak channel energy (PEAKparameter) in the next sequential region (if more than one is assigned), depress the SHIFTpushbutton to select the left (<< ) direction, depress the RST/ADVpushbutton to advance the markers to the next sequential region and then depress the AREABGND pushbutton to update the display of the AREA, BGND, FWHMand PEAKparameters to reflect the net area, background, FWHMand peak energy within the region bracketed by the markers.

• PAGE _E/CH 1.000 E(0) AGRP I 0v0 0.000 AREA 121917 0/0 0.000 E:GND 6555 C-U TCITL 208472 C’GRP 1 FWHr1 35.661 SF 1.000 PEAK 587. 000

Display of Status Page 3 and 1024 channel Cs 137 and CoóO composite spectrum showing area, background, FWHMand peak energy of second intensified region (first CoóO photopeak).

The region of interest bracketed by the markers can be readout as follows:

1. Select Status Page 4. 4-27 2. Select the input/output device, mode and data for 101 as follows:

NOTE: If 102 is desired, substitute 102 for 101 in the following steps. a. Set the display cursor to the 101 parameter using the CRSRpushbutton and depress NXTV pushbutton to select desired input/output device code (TTYfor Teletype, MAGT for 7 or 9—trackmagnetic tape, LP for line printer or PT for high speed paper tape punch). b. Set the display cursor to the 10 1/MODE parameter using the CRSRpushbutton and depress NXTV pushbutton to select BCDO (BCDformatted output) or BINO (binary formatted output) as desired. c. Set the display cursor to the lol/bATA parameter using the CRSRpushbutton and depress NXTV pushbutton to select MRKS(Content of channels between the markers).

NOTE: The content of channels in each region (if more than one is assigned) or the total counts in the channels in each region can be selected by setting the lol/bATA parameter to ROl or TOT, respectively.

3. Depress the 101 pushbutton. The content of each channel in the region of interest bracketed by the markers is readout to the I/O device specified for 101.

DISPLAY EXPANSION AND POSITIONING

Display expansion is useful to permit closer examination of narrow spectral peaks such as encountered in spectra acquired using a solid state detector. It also helps in visually resolving multiple peaks of similar energies and in precisely setting regions of interest for peak integration and peak data readout.

ND600 provides two flexible methods of expanding selected segments of the spectral data display. One method uses the MPOS and MSPN pushbuttons to bracket the desired segment and the XPND pushbutton to expand the selected segment to horizontal full scale.

1. Using the MPOS and MSPN pushbuttons, bracket a desired segment of the display.

_FRI3E 1 TOTL 202337 QGRF C RGRF 1 CIGRF C I3SIZ 1024 OGRP C 13RPS 2 C’3RF 1 LMRK 302 RF1RK 36E. .LCNT 93 RCNT 9:E, LE 302.000 RE 3E..000 C:FS 16K

1024 channel display of Cs137 and CoóO composite spectrum after positioning the left and right markers at the left and right limits ji of the Csl 37 photopeak, respectively. 4-28

peak,

and

composite

right

1024

2.

WIDTH

full

across

XPND

The 3.

The 1. _PAGE AGRP TOTL GRPS GSIZ LCNT LMRK CFS LE GSIZ AGRP TOTL CFS LMRK GRPS LE

LCNT

right

other

scale

display

Depress

Depress

Return

channel

markers

respectively.

the pushbutton

......

pushbutton

limits

spectrum

and method entire 302.000 302.000

202337 the

202337

can

the

the

positioned display 1024

1024 the 893 302 32K 302

893 of

16K

expanded

be

XPND

SHIFT display 2 1 1 2 1

1

uses

the

a

MOTN

depressed

with expanded

<<

second

of

Cs137 the OGRP OGRP RMRK DGRP OGRP RCNT

RE pushbutton OGRP OGRP OGRP RMRK RE DGRP

RCNT

pushbutton

Cs137

at

the

group.

display

pushbutton

WDTH

the

time.

left photo—

......

until

to

and left 366.000

366000

display

and

pushbutton

to

the

to

to CoóO 366

986 normal 366

986

select

to expand 0

0 0 desired 1 Li 0 0

1

position

as

4-29

few

(display

the

to

the

degree

as

expand

photopeak.

right

Full

pushbutton.

photopeak Expanded

has

the

bracketed two _PA6E LNRK GRPS GSIZ AGRP LCNT TQTL

CFS LE

of

caused

scale

expanded

(>>)

of

channels

the

the

display

horizontal

display

full

display

to direction

302.000

the segment

202337

Note

move

segment group)

1024

full

marker expansion 302 893

32K after 2 1

1

to

that

scale.

off

to

and

expansion

as

by

bracketed

horizontal

in

the

depressing

display few RMRK OGRP DGRP OGRP OGRP RCNT

RE

depressing

then

either

is

display.

as

attained.

hold

two

of

expansion direction

366.000

Cs137

full

Cs137

WIDTH

the

channels the 366

986 scale. Li Li Li 1 pushbutton

2.

across segment direction display of selected

4. select for 3.

pushbutton.

Both independently, SCROLL markers

of The channels, select up contents

and can (Status _PAGE AGRP GRPS GSIZ LMRK TOTL LE LCNT CFS

the

the

totalization

to

Depress

Closely

Scroll Return

region

also

methods

the

CRT

a 12

spectrum.

another

group.

Page is

for

specific by

is of

consecutive be

face

DISPLAY

brought 302000

to

starting

Display

selected 202337

the the

totals precise

the

the

selected. examine

4).

select

allow 1024

of 893 302 32K

portion

Depressing display SHIFT

or

or

channels

MOTN

region 2 1 1

the

are

The

The

readout

into

concurrently,

with

region mode

close

an

by

the CRT

intensified

changing. pushbutton,

numeric

procedure

view.

of OGRP DGRP QGRP OGRP RCNT RMRK RE

to expanded

the Scroll

pushbutton of

the

provides

in

expanded

examination

the

normal

to

of

the using interest.

SHIFT

up

left

select

interest

spectrum

display

Depressing

MOTN

to

display 366.000

marker

the

such

regions

for

segment

(display

Spectral

six

pushbutton,

static

moves

depressed

display

an 366 986

markers.

selecting

The

selection.

consecutive

mode

as 0 0 0

pushbutton of

expanded

or

is

channel.

CRT

which using

selected the

any

periodically

during

the of

to

data

4-30

to

data

the

the

expanded

display

until segment

MOTN

visually

the

moves photopeak Expanded

on

are

display

full

left

data segment

is

when

expanded

intensified region

scroll It

the

selected

within

also

group) on

of

the

pushbutton

acquisition of

updated

desired resolve

display

simultaneous

the

the

the

display

display

the

of

expanded

provides

to

into

to

the

left

numeric

by

interest

display current

the by

bring spectrum

regions

view.

segment any current

as depressing

to

the

(<<)

right

after mode

when

the

when

the

numeric

the

multiple

display

lOl/IDATA

to display

can

contents

with

or

on markers

right

depressing

direction and

marker

expanded is position

the

of

channel

the

then

the

as

the scroll

the

can

right

display

to across

follows:

group.

peaks

count

current

of

be

defined

are expanded XPND the

be

the parameter

is up

display contents

(>>)

defined

Cs137

the

moved the

used

left totals or

of

to

to

MOTN

the

face

56

portion

in

to

(

) ______

1. Select the desired display group for scroll display as follows: a. Select Status Page 1. b. Set the display cursor to the DGRP parameter using the CRSRpushbutton. c. Enter the desired display group number at the operand pushbutton array and depress the ENTERpushbutton.

2. Select up to 56 marker channels, the channels within up to six consecutive intensified regions within the marker defined portion of the spectrum, or the count totals in up to 12 consecutive intensified regions within the marker defined portion of the spectrum for scoll display as follows: a. Select Status Page 4. b. Set the display cursor to the lO1/tATA parameter using the CRSRpushbutton. c. Depress the NXTV pushbutton to select MRKS, ROl or TOT as desired. MRKRspecifies up to 56 marker channels, ROI specifies the region channels and TOT specifies the region totals.

3. Depress the SCRLpushbutton. This provides display of the numeric contents of either the marker channels, region channels or region totals as selected for the IC 1/DATA parameter.

4. If spectral data display simultaneous with scroll display of numeric data is desired, momentarily depress the WIDTHpushbutton.

5. Depress the SCRLpushbutton a second time to terminate the scroll display and return to normal display.

@632 829 79.3 782 823 748 776 722 781 720 711 701 749 770 762 693 750 728 68? 734 693 738 696 747 790 750 789 924 2503 12839 13777 1937 666 638 649 637 641 642 646 616 644 627 628 648 603 619 632 625 648 630 666 620 556 609 589 604 647

Scroll display of the numeric contents of the first 56 channels within the current marker defined portion of the spectrum. The number I L______. preceded by @ is the left marker channel number.

4-31 ______

@632 @658 924 2503 12839 13777 1937 666 @664 @830 761 893 2011 8190 11219 2744 668 837 ‘1 1111 522 718 1794 4278 3216 796 370 @1118 @1168 453 746 2380 9515 17767 8442 896 230 @1176 @1195 Scroll display of the numeric contents of four intensified regions within the current marker defined portion of the spectrum. The numbers preceded by @ are channel numbers (left marker, first and last channel of each region, right marker).

@632 32646 @664 1830 26486 @837 @1111 11694 @1118 @1168 40429 @1176 @1195

Scroll display of the total counts in four intensified regions within the current marker defined portion of the spectrum. The numbers preceded by @ are channel numbers (left marker, I right L______first and last channel of each region, marker).

AUTOMATIC ENERGY CALIBRATION

The built—inenergy calibrate function permits precise calibration of any acquired gamma energy spectrum over any energy scale. The system is initially calibrated at 1 keV per channel and automatically computes and displays the energy values of the marker channels. Thus, by selectively positioning the markers, the energy value of any peak or channel can be read directly from the display.

NOTE: The energy calibration function may be used for any calibration units, i .e, energy, time, mass, wavelength, etc.

The calibrated energy scale is based upon the known energy values for two known reference energy peaks. The known energy can be obtained from a calibration source such as Cs137 acquired before or concurrent with the unknown spectrum.

Cal ibration of the system for any energy scale can be performed either by selecting the energy calibrate mode or by changing the values of the E/CH and E(O)calibration parameters (Status Page 3). The energy calibrate mode is selected by depressing the 4-32 ECALpushbutton. In this mode, calibration is performed by positioning the left and right markers at the known low and high reference energy peaks in the spectrum and then entering the known energy values for the LE and REparameters (Status Page 1), respectively. After entry of the two known reference energies, the system computes the energy per channel (slope) and zero energy intercept (offset) and updates the display of the E/CH and E (0) parameters (Status Page 3) to the respective computed values.

The following is a procedure for energy calibration. This procedure assumes that a spectrum with several identifiable peaks has been acquired using Nuclear Spectroscopic Standards (in this case, Cs137 and Co60) and that the detector, amplifier and ADC are accurate and linear over the observed energy range. In this procedure, the 661 .2 keV photopeak of Cs137 and the 1332 keV photopeak of Co60 will be used as the low and high energy reference peaks, respectively.

1. Select Status Page 1. -

2. Using the MPOS and MSPN pushbuttons, position the left number at the low energy reference peak (661.2 keV) and the right marker at the high energy reference peak (1332 keV).

3. Depress the ECALpushbutton. This causes the system to enter the energy calibrate mode as indicated by the character “E” being flashed on the display.

4. Set the display cursor to select the LEparameter using the CRSRpushbutton.

5. Enter the low energy reference value (661.2) at the operand pushbutton array and then depress the ENTERpushbutton.

6. Set the display cursor to select the REparameter using the CRSRpushbutton.

7. Enter the high energy reference value (1332) at the operand pushbutton array and then depress the ENTERpushbutton.

PAGE 1 -: E T’JTL 26G652 D’3RP El AI3RF 1 ‘:“3RP El 3S I 2Ei4R 013F:P 0 GRF3 1 [:I3P I LMRK 661 Pi1PI:. 1332 LCHT 1E”316 RI::[-IT 5993 LE 661 2190 _F:E 1332’9’30 CFS 32k

Display of Status Page 1 and 2048 channel Cs137 and CoóO composite spectrum after positioning the left and right markers at the respective low and high energy reference peaks and then entering the low (661.2 keV) and = high (1332 keV) energy reference values for — the LEand REparameters, respectively.

4-33 ______

8. Depress the ECALpushbutton again. This exits the energy calibrate mode as indicated by removal of the flashing “E” from the display, computes the energy per channel (slope) and the zero energy intercept (offset) and updates the display of the E/CH and E (0) parameters (Status Page 3) to the respective computed values.

FAGE 3 E-’CH 1.000 E(IJ) 0397 1 DCI 0.000 AREA 0 t..’: 0.000 E:13N[: 0 [:1:1 U. 000 TOTL 2613652 DI3RP 1 FWR[1 0.000 SF 0.000 PEAK 0.000

Display of Status Page 3 showing the values computed for the E/CH and E (0) parameters after performing the energy calibration procedure.

NOTE: Although the display of the E/CH and E(O)parameter only shows three digits below t e decima points, t e system internally maintains seven significant digits above and below the decimal point.

9. By positioning the left or right marker to any channel in the spectrum, the energy value of that channel is computed and displayed as a Page 1 Status Parameter (LEfor the left marker and REfor the right marker). The energy values computed are displayed in the energy units of the energy reference values entered. For example, if the energy reference values entered ore in keV as they were in the above procedure (661 .2 keV and 1332 keV), the values for the LEand REparameter (Status Page 1) and the E/CH and E (0) parameters (Status Page 3) are displayed in keV. The energy values computed for the left and right markers are also adjusted for the digital offset selected for the DOFF parameter (Status Page 2), i.e. the digital offset is added to the respective marker channel number prior to computing its energy value.

NOTE: The left or right marker can be positioned to any channel either by using the MPOS and MSPN pushbuttons or by setting the display cursor to select either the LMRKor RMRK parameter (Status Page 1), entering the desired channel number at the operand pushbutton array and then depressing the ENTERpushbutton. The left or right marker can also be positioned to any energy value by setting the display cursor to select either the LEor RE parameter (Status Page 1), entering the desired energy value at the operand pushbutton array and then depressing the ENTERpushbutton.

The microcomputer logic automatically computes the energy per channel (slope) and the zero energy intercept (offset) based upon the values entered for the low and high energy reference peaks. The formula for calculation of the slope is as follows: 4-34 ___

= E2-El E/CH LX X2-Xl where = E/CH = energy per channel (slope) El = energy value entered for the low energy reference peak (LEparameter) E2 = energy value entered for the high energy reference peak (REparameter) Xl = channel number of the left marker (LMRKparameter) X2 = channel number of the right marker (RMRKparameter)

The formula for calculation of the offset is as follows:

E (0) = E2-E/CH (X2 + D)

where E (0) = zero energy intercept (offset), i.e., energy at channel zero. E2 = energy value entered for the high energy reference peak (REparameter) E/CH = energy per channel (slope) calculated above X2 = channel number of the right marker (RMRKparameter) D = digital offset selected for the DOFF parameter (Status Page 2)

The formula for calculation of the left or right marker channel energy (LEor REparameter) is as follows:

E = (X+D) (E/CH) + E (0)

where E = energy calculated for the LEor REparameter X = channel number of the left or right marker D = digital offset selected for the DOFF parameter (Status Page 2) E/CH = energy per channel (slope) calculated above E (0) = zero energy intercept (offset) calculated above

AUTO JOB

The Auto Job routine permits entry and execution of up to eight separate operations which can be automatically repeated from 1 to 65,535 times. Operations which can be included in the sequence are ERASE,acquire (ACR), spectrum strip (STRP), PLOT, next group (NXTG), the operational functions (Fl, F2, F3, F4) or the input/output operations (101, 102). The auto group, strip factor, work group, the operational functions, erase, acquire, spectrum strip, plot, next group and input/output operations, and the preset number-of auto job cycles are entered using the NXTV pushbutton or via the operand pushbutton array and displayed as status parameters (Status Page 4). Execution of an auto job sequence is accomplished by depressing the AUTO pushbutton. During auto job, the system automatically displays the preset number of cycles remaining. A typical procedure for set—upand execution of an auto job sequence is as follows:

1. Select a group size of 1024 channels.

a. Select Status Page 1.

b. Set the display cursor to the GSIZ parameter using the CRSRpushbutton. 4—35 ______

_PFIOE 4

Display of Status Page 4 showing auto job set—upparameters. c. Enter 1024 at the operand pushbutton array and then depress the ENTERpushbutton. This select two groups of 1024 channels each for a basic system memory of 2048 channels.

2. Acquire the work group spectrum in group 2 for a preset live time of 600 seconds. This spectrum will be multiplied by —0.1and added to the spectrum in auto group 1 when the strip operation (STEP3) is performed in the auto lob sequence.

NOTE: This spectrum could represent the ambient background radiation in the absence of samples acquired at 10 times the counting time for each sample (600 seconds versus 60 seconds which will be used for auto job). a. Select Status Page 2. b. Set the display cursor to the MODE parameter using the CRSRpushbutton. c. Depress the N XTV pushbutton to select PHAL. d. Set the display cursor to the AGRP parameter using the CRSRpushbutton. e. Depress the NXTV pushbutton to select 2 as the acquire group number. f. Set the display cursor to the DGRP parameter using the CRSRpushbutton. g. Depress the NXTV pushbutton to select group 2 as the display group number. h. S the display cursor to the TMULTparameter using the CRSRpushbutton. i. Depress the NXTV pushbutton to select 15 (one second).

. Set the display cursor to the PTIM parameter using the CRSRpushbutton. k. Enter the preset time (in this case, 600) at the operand pushbutton array and then depress the ENTERpushbutton. 4-36 I. Depress the ACQ pushbutton to acquire a spectrum in group 2 for a preset live time of 600 seconds. Upon completion of 600 seconds (live time) acquisition automatically terminates.

m. Upon completion of acquisition in group 2, select a preset live time of 60 seconds for the auto job acquire (ACR)operation by entering 60 at the opercrid pushbutton array and then depressing the ENTERpushbutton.

3. Select Status Page 4.

4. Set the display cursor to the CYCLESparameter using the CRSRpushbutton.

5. Enter the number of auto job cycles (in this case, 50) at the operand pushbutton array and depress the ENTERpushbutton.

6. Set the display cursor to the STEP1 parameter using the CRSRpushbutton.

7. Depress the NXTV pushbutton to select the operations to be performed for step 1 of the auto lob sequence (in this case, ERASE).

8. Set the display cursor to the STEP2 parameter using the CRSRpushbutton.

9. Depress the NXTV pushbutton to select the operation to be performed for step 2 of the auto job sequence (in this case, ACR).

NOTE: Data acquisition during auto job is performed in the mode currently selected for the MODE parameter (Status Page 2).

10. Set the display cursor to the STEP3 parameter using the CRSRpushbutton.

11. Depress the NXTV pushbutton to select the operation to be performed for step 3 of the auto job sequence (in this case, STRP).

12.. Set the display cursor to the STEP4 parameter using the CRSRpushbutton.

13. Depress the NXTV pushbutton to select the operation to be performed for step 4 of the auto job sequence (in this case, 102).

14. Set the display cursor to the STEP5 parameter using the CRSRpushbutton.

15. Depress the NXTV pushbutton to select the operation to be performed for step 5 of the auto job sequence (in this case, F2).

16. Set the display cursor to the STEP6 parameter using the CRSRpushbutton.

17. Depress the NXTV pushbutton to select the operation to be performed for step 6 of the auto job sequence (in this case, 101).

NOTE: No operations are to be performed for step 7 and 8 of the auto job sequence, therefore the STEP7 and STEP8 parameters are left blank.

18. Set the display cursor to the AUTG parameter using the CRSRpushbutton. 4-37 19. Enter the auto group number (in this case, 1) at the operand pushbutton array and then depress the ENTERpushbutton.

NOTE: The auto group is the group in which all input/output and data processing operations of the auto job sequence are performed. The auto group can be entered prior to executing (

the auto job sequence, irregardless of the current status page, by entering the desired group V number at the operand pushbutton array and then depressing the AUTO pushbutton. The auto group can also be incremented by one during execution of the auto job sequence by entering NXTG as an operation in the sequence.

20. Select peak search intensify (PSINT) as the operational function for F2.

a. Set the display cursor to the F2 parameter using the CRSRpushbutton.

b. Enter the function select code for PSINT (in this case, 502) at the operand pushbutton array and depress the ENTERpushbutton.

21 . - Select readout of totals in BCDformat to the Teletype for 101.

a. Set the display cursor to the 101 parameter using the CRSRpushbutton.

b. Depress the NXTV pushbutton to select TTY.

c. Set the display cursor to the 10 1/MODE parameter using the CRSRpushbutton.

d. Depress the NXTV pushbutton to select BCDO.

e. Set the display cursor to the 101/1DATAparameter using the CRSRpushbutton.

f. Depress the NXTV pushbutton to select TOT.

22. Select readout of all data in binary format to magnetic tape for 102.

a. Set the display cursor to the 102 parameter using the CRSRpushbutton.

b. Deprss the NXTV pushbutton to select MAGT.

c. Set the display cursor to the 102/MODE parameter using the CRSRpushbutton.

d. Depress the NXTV pushbutton to select BIN0.

e. Set the display cursor to the 102/DATA parameter using the CRSRpushbutton.

f. Depress the NXTV pushbutton to select ALL.

23. Set the display cursor to the SF parameter using the CRSRpushbutton.

24. Enter the strip factor (in this case, —0.1)at the operand pushbutton array and then depress the ENTERpushbutton.

25. Set the display cursor to the WGRP parameter using the CRSRpushbutton.

4-38

describes

operating

X—Y

Refer

i.e.

described

Set—up

The

the

require g. f.

PLOTTER NOTE:

and

e. d.

Plotter b. of

29.

a. of

c.

in at 28. operand

group

and 27.

group

then

26.

group

the

any auto

system

ND600

printing

depressing

all

Plotter

depress

to

Acquire

Repeat

Perform

Readout Erase

Depress

Readout

Multiply

Set

Set

Enter

1

50th 1

time

and

before

that

job

Chapter

power

as

(which

pushbutton

The

1

its

characteristics.

prior

the

the

to

in

the

READOUT

Spectrum

sequence,

operations

is

is

by

auto

the

the

use

input/output

the

the

order

steps

obtain

capable display display

normal

a

properly

the

the

the

for

is acquire

depressing

the

to

the

is

work

with peak

corresponding

peak

Il

on

EN

group

the also

a

AUTO

total

spectrum

for a

ENTER

for

spectrum

array

TER

and

preset

to

a

Storage

the

operation

group

search

cursor

normal

cursor

search

of

interconnection

auto

and

the

this

background

group

interconnected

1.

f

counts

pushbutton.

all

50

driving

HP7O41A

pushbutton.

and

and

the

pushbutton.

auto

automatically

live

auto

job

number

controls

in

times.

to

to

on

stored

report

for

procedure

operating

depressing

STOP

functional

auto

input/output

in

the

the

time

automatically

group)

can

the

job

auto

several

each

corrected

AGRP

DGRP

X—Y

in

spectrum

(in

group

at

be sequence

pushbutton.

are

of

job

work

the

The

for

to

and

this

performed.

60

intensified

procedure.

has

set

Plotter.

the

types

operations

repeat

the

4-39

by parameter

parameter

display

1

seconds

Teletype.

system

the

case,

group

been

to

to

interfaces

ENTER

entering

spectrum.

in

ND600,

to

terminates.

of

initial

magnetic

X—Y

auto

the

be

performed

X—Y

2)

2

It

will

during

region

in

performed

Therefore,

by

pushbutton.

specified

Plotter

These

is sequence

using

using

cit

group

group

position.

1

set—up

first

and

Plotters.

now

0.1

the

at

tape.

auto

of

the

the

procedures

the

firmware

Auto

operand

necessary

and

perform

1,

Instruction

to

1.

auto

for

in

50

CRSR

CRSR

lob

as

intensifying

verify

operand

the

add

They

job

this

The

described.

point

times.

group

by

calibration

the

pushbutton

it

pushbutton

pushbutton

options

can

following

auto

proper entering

to

further assume

to

plotting

Manual

pushbutton

following

ito

calibrate

be

the

Upon

job

each

terminated

be

system

the

spectrum

the

assume

sequence

1

procedure

completion

for

procedure

array

included

and

and

and

at

Teletype.

peak

Initial

sequence

the

array

its

the

operation,

select

select

inked.

the

and

X—Y

region

stored

System

in is Calibration Procedure

1. Set controls at the 7041A X—YPlotter as follows: a. Set the NULL DETECTORON/OFF switch to ON. b. Set the NULL DETECTORRECORDERswitch to NO MUTE. c. Set the NULL DETECTORPLOT RATEswitch to EXT. d. Set the LINE switch to ON. e. Place a sheet of 8.5 —in.x il—in, or il—in. x i7—in. plotter paper (as desired) on the X—YPlotter. f. When the sheet is properly aligned, set the CHARTswitch to HOLD. g. Set the SCALEswitch to 8.5 x 11 or ii x 17 according to the plotter paper size being used. h. Set the PEN switch to LIFT.

2. Select the display group to be plotted as follows: a. Select Status Page 1. b. Set the display cursor to the DGRP parameter using the CRSRpushbutton. c. Enter the desired display group number at the operand pushbutton array and depress the ENTERpushbutton.

3. Depress the SHIFTpushbutton to select the left (<<) direction.

4. Depress the minus (—)pushbutton at the operand pushbutton array and then depress the STRP/PLOTpushbutton. This alternately supplies (0,0) and full scale X,Y calibration voltages to the X—YPlotter.

5. Adjust the plotter X and Y ZERO SETand SENSITIVITYcontrols to position the pen cartridge at the desired (0,0) and full scale X,Y points on the recorder paper, respectively.

6. Repeat step 5 as often as necessary to attain satisfactory calibration. When satisfactory calibration is attained, depress the STRP/1’LOTpushbutton again, or depress the STOP pushbutton.

Readout Procedure

1. Repeat step 2 of the Calibration Procedure to select the display group to be plotted. EZI

2. Select the desired Status Page to be plotted with the spectral data in the current display group. If no alphanumeric status data is to be plotted, select Status Page 0. 4-40 NOTE: The numeric scroll display specified for the lOl/bATA parameter (Status Page 4) maybe selected for plotting by depressing the SCRLpushbutton. Plots of both the numeric scroll display and the spectral data in the current display group can be attained by momentarily depressing the WIDTHpushbutton after depressing the SCRLpushbutton.

3. Depress the SHIFTpushbutton to select the left (<<) direction.

4. Depress the STRP/PLOTpushbutton. The current alphanumeric parameter display (current status page or scroll display) and the current spectral data display are plotted at the X—YPlotter. Output to the X—Yplotter can be terminated at any time by depressing the STRPA’LOTpushbutton a second time.

NOTE: During plotter readout of spectral data, a marker is displayed at the channel currently being plotted.

STATUS DISPLAY INPUT/OUTPUT

Up to 36 characters of user selected information can be entered at the operand pushbutton array and displayed on any of the eight available status pages. The 36 characters can be any special parameter data which can be defined using the number (0—9)and special character (/1 , +1 —, ., or &)pushbuttons of the operand pushbutton array and the ENTER pushbutton to specify a space, such as a date, time, or other numerical information the user desires to identify or label a particular experiment. The procedure for entry of information from the operand pushbutton array is as follows:

1. Select Status Page 4.

2. Set the display cursor to the 101 parameter using the CRSRpushbutton.

3. Depress the ENTERpushbutton to “blank” the parameter value for 101, i.e. to select the ND600 Terminal operand pushbutton array/CRT display as the input/output device for 101.

4. Set the display cursor to the 10 1/MODE parameter using the CRSRpushbutton.

5. Depress the NXTV pushbutton to select BCDI.

6. Set the display cursor to the lOl/bATA parameter using the CRSRpushbutton.

7. Depress the NXTV pushbutton to select STAT.

8. Select the Status Page on which the information entered iS to be displayed (in this case, Status Page 4).

9. Depress the 101 pushbutton. This selects the BCDreadin mode to the CRTstatus display from the operand pushbutton array. This mode is indicated by a colon (:) and a caret (< ) being flashed on the display in the two lines below the last line of alphanumeric data contained on the selected status page. After entry into this mode any sequence of pushbutton characters available on the operand pushbutton array maybe entered using the ENTER

4-41

4.

5.

2.

3.

channel

information

The

the

1.

plot

the starting pushbutton

pushbutton. entered such

readout operand

NOTE:

36 lines. 10/30/76< 10/30/76: AGRP STEP STEP A STEP STE STEP PAGE STEP STEP5 STEP4 C: C:

DG characters YC TOG

IJ

ND600

operand line R

TG

operation

as

Depress

Depress

Set

Set Select P P7 L 6 S 0 3 2 ES

1

Up

or

10/30/76,

to

with

characters

to

pushbutton

The

the

the

any

an

to

Terminal

from shift where

pushbutton

Status

two

display

display

the

If

the

the

36

X—Y

are

sequential

as

the

off

the

characters

first fines 0 4 1

1

NXTV this

ENTER

entered, desired,

with

plotter,

Page sequentially

<<

information

the

array.

operand

operand

cursor

cursor

will

— character can STRIP F4 F3 F2 Fl

102 101

array

display excess DATA MODE WGRF DATA

MODE

4.

pushbutton

pushbutton

group

require

be

to

the

to

to

avoid

can

The

pushbutton

pushbutton

can

provide

removed

the

the

excess

character

entered

to

of

of

be

depress

information also

0000

depressing

re—entry

the

101

101/MODE

data the BCDI

STAT

entered

to

to

a

be

0 characters

left.

select

line.

parameter

from

“blank”

and

channels. the

space.

array

array/CRT

entries

used

4-42

of

and

displayed

the 1,

is

the

BCDI.

The

the

is

to

displayed

parameter

0,

array.

Display

lines

(10/30/76)

displayed

the

display

For

as

STOP

causing

will

enter

using

second

/,

information

follows:

The

display

parameter

example,

after

3,

overlap

in

pushbutton

numerical

of

the

procedure

at

0,

as

the the

line

using

entry

Status in

any

displayed

as

/,

entered

CRSR

the

two

first

displays

the

those

into

value

to

7

time

the

at

first

and

Page

enter

pushbutton.

lines

information

character

for

input/output

before

the

the

CRSR

in

by

previously

for

6

in

line.

inputting

4

operand

up

the

status

is

pushbuttons

and

depressing

two

showing

101,

to

pushbutton.

performing

to

two

display

be

entries

redundant

If

27

display.

into

i.e.

more

redundant

retained

pushbutton entered,

device

of

numerical

the

the

the

any

at

to

a

in

than

date

the

date,

the

select

STOP

for

data

for

101.

C; C: the entered. the simultaneously removes selected 8. enter flashed 7. are 9. 6. at marker channels information 10, 10. 10 A AGRP PAGE D’GRP STEPS STEP? STEP6 STEPS STEP3 CTOGO CYCLES STE STEP STEP4 the IJ values selected displayed 20, 20 T 30, G P12 Depress Depress Sequentially Select Set operand 1 channel, on 30 the 30, status from depress This the entered the 40 is flashing status 40 Status as display to the the the display mode pushbutton depressed. page. 50 and entered depressing be 1 1 1 ENTER; operand 101 NXTV < page into enter Page 50 entered. can caret cursor in pushbutton. into STRIP F4 F3 F2 Ft the IC’ 102 and LuG DATA MODE DATA MODE be in the the pushbutton 1 enter

array (<) pushbutton P and data the exited the the F to also numerical line l01/tATA and set line 40, first ENTER and channels as below 0. at the MR BCD line a below depress This 000 depress five to KR any display array. 0 I left pushbutton select value of the selects marker 4-43 will time the parameter numerical marker ENTER; the last point for MRKR. This remain last display Display numerical by markers. the ENTER defined line each depressing after to mode line in enter BCD of the using entries until the of data of of pushbutton; each alphanumeric is channels read—in first value the Status 50 alphanumeric channel indicated the the channel from the and data value. channel CRSR ERASE entries Page stop depress mode the respectively, channels in enter starting by pushbutton. pushbutton. which For 4 display. data pushbuttons into and to showing a data ENTER. 20, example, the caret which contained the between they with contained depress marker resultant However, (< enter the are the numerical are The

This to ) five the being ENTER; on left 10 enter values on the BCD ______

The status display can also be specified as the output device for BCDreadout of contents of all channels, the contents of the channels between the markers, the contents of the channels in each intensified region or the region totals. The procedure for selecting the status display as the BCDreadout device is as follows: ( NOTE: Use of the Scroll display mode is preferred to this method of BCDreadout as the data presentation is more clearly formatted. However, if the user desires to visually scan through the contents of a selected group of data channels, this method is appropriate.

1. Select Status Page 4.

2. Set the display cursor to the 101 parameter using the cursor pushbutton.

3. Depress the ENTERpushbutton to “blank” the parameter value for 101, i.e. to select the CRTdisplay as the input/output device for 01.

4. Se.t the display cursor to the 10 1/MODE parameter using the CRSRpushbutton.

5. Depress the NXTV pushbutton to select BCDO.

6. Set the display cursor to the lOl/bATA parameter using the CRSRpushbutton.

7. Depress the NXTV pushbutton to select the desired readout data (ALL, MRKR, ROI or TOT).

8. Depress the 101 pushbutton. The contents of the data channels selected is sequentially displayed in up to six lines on the CRTwith channel identification for the first channel, every 100th channel, and the last channel. After six lines are displayed, the data displayed on the first line is rolled off the CRTwhile the data in subsequent channels appears in the sixth line. This method of display continues until all specified data has been displayed. The CRTreadout mode can be paused by depressing the minus (—)pushbutton, and then allowed to continue by depressing the minus (—)pushbutton again. The CRTreadout mode can be terminated at any time by depressing the STOP pushbutton.

.PAI3E 5 << 3153 2707 7 2605 7 2332 7 2075 7 19 40 7 1815 7 1615 7 1521 7 1446 7 1266 1275 1188 7 1090 7 1047 7 10 33 7 946 7 @366

readout to CRTdisplay of marker channel contents.

4-44 CHAPTERV ND600 DATAMANIPULATION PACKAGE (47-0054)

DESCRIPTION

The ND600 Data Manipulation Package provides the ND600 System with the following firmware controlled operational functions: Addition of a constant to, or subtraction of a constant from the data spectrum, integration, differentiation, data transfer, data smooth, square root calculation, relative error calculation, and spectrum compression. Any of the data manipulation functions can be assigned to either the Fl, F2, F3 or F4 parameter (Status Page 4) by positioning the display cursor to the desired “F” parameter, entering the 3—digitselect code of the selected functon at the operand pushbutton array and then depressing the ENTERpushbutton. When the ENTERpushbutton is depressed, the mnemonic code of the selected function is displayed for the selected “F” parameter (Status Page 4). When any one of the data manipulation functions is assigned to a particular “F” parameter, each of the other data manipulation functions can be sequentially selected for that parameter by depressing the NXTV pushbutton. The 3—digitselect code and mnemonic code for each of the data manipulation functions are as follows:

Select Code Mnemonic Code Function

200 ADD Add a constant to, or subtract a constant from .e •, add a negative constant to) each channel in the current display group.

201 INTEG Integrate the area defined by the left and right markers in the current display group and store the integral curve in the marker defined area.

202 DIFF Differentiate the area defined by the left and right markers in the current display group and store the differential curve in the marker defined area.

5—1 __

203 Select 204

205 206

207

All depressing

depressing and

sequence ADD requires depressing group than first INSTALLATION NOTE: pair) The

the

XFER

ND600

transferred

the

function

which

by

Code

data

entry

The

current

first

are

Functions

the the

the

Data

must

manipulation

REL

always

entering

requires of

corresponding

“F” corresponding

to

display

the

ERR

be

Manipulation

the

pushbutton,

require

installed

___ source

performed

XFER

Mnemonic SMOOTH function

SQRT COMPRESS

REL

current

entry

the

group.

ERR

functions

desired

entry

group

of

“F”

“F”

on

display can

and on a

package

Code

the

pushbutton

positive

pushbutton.

of

number.

the

group also

therefore

except

a

Firmware

group

value

data

be

consists

number

or

performed

5—2

_

data group

Transfer Function Calculate Perform data Calculate Compress

display in

ADD

spectrum

Functions

and or

negative at

cannot

the

Option

The

the as

spectrum

spectrum

then at

of

and

into

current

steps

data

group

operand

a

the

the two

be

on

in the

XFER five—point

the the

the

the

selected

(—)

board

operand

data

the in

512

performed

the spectrum

data

by

square

display in constant.

relative

in

REL

current

an

can

current

pushbutton

data

x

the

the

a

spectrum

(70—2434).

auto

spectrum

ERR

8

factor

as

be

pushbutton

EPROM’s

coefficient current

current

root

spectrum

group.

in display

steps

function counting

during performed

job

acquisition

the

The

of

of

from

sequence.

array

in in

two.

display the

specified display

XFER

group.

auto

(one

an

the

in

any

array

is

error

smooth data

either

prior

auto any

performed.

current

function

job.

firmware

group

specified

group.

group.

spectrum

of

and

specified

group

The

job

to

on

by

the

The

rather

then

ADD

the

is

( ( l\D XFER SMOOTH ADD Tel: 01FF Boston, Sales spectrum Transfers Tel: Atlanta, INTEG the selected United each functions Any from The entering assigned data Addition differential Adds pushbutton. into integral markers relative Performs markers Integrates

Differentiates (i.e., ND600

(47-0054)

ND600

T

S E 617/535-5665

404/284-1747 PECI current and the ND600 of transfer, adds of States the Function

a Function C Mass. Georgia Function the Service constant Function error the curve System current for in in its

of H to data

the NUCLEAR a is

in Data a and the data the Function the curve five-point a other select display any assigned negative that

the N Data Facilities constant calculation,

Canada FICATION data data the spectrum, in area current

current I with manipulation of (200) (202) current display the to,

parameter CA

(203) Manipulation in functions Manipulation area (201) code spectrum the smooth, group. defined the or marker the constant to (204) coefficient “F” Tel: to, Tel: Tel: Cleveland, subtracts Denver, defined Los display

display L (20X). group. marker a

display DATA following integration, and particular Angeles, or 714/898-7760 303/755-6607 216/331-5145 status by can square by defined from subtraction Colorado functions spectrum to) the group group When depressing Ohio by Package defined group. be smooth Calif. a

parameters, INC each

the S any left constant capabilities: sequentially

root Package “F” area. differentiation, and and any left and specified channel Tel: Schaumburg, can Tel: San area. Tel: New compression. calculation, parameter, provides of on stores stores one and the right 312/884-3600 Francisco, 415/483-9200 212/962-3666 a York, be from the constant by of right NXTV in group data the the New the the Illinois Calif. York COMPRESS the REL SQRT group spectrum The the Calculates the THE The data current two corresponding Compresses Calculates display XFER analysis number. corresponding in All performed. performed analysis installation. require require requires Tel: Frankfurt, Washington, Europe Tel: the the current specified desired XFER N ND600 512 spectrum ERR 529952 REL 301/345-6766 current U can by Schaumburg, Function data Telephone group the entry display CLEAR sequence sequence. Golf entry Functions x a Germany ERR in Function function the be the 8 during D.C. factor group Firmware display manipulation the Data the and EPROM’s group of performed Function and acquisition square relative of function in “F” “F” group. current a data Meacham (312) (205) a any DATA Manipulation of value are Tel: Tel: then number auto Uppsala, London, Illinois The pushbutton. pushbutton positive requires selected group. Specifications Printed is two. (206) spectrum specified Option 22733, performed (018) first root counting 884-3621 (one the ADD analysis. can and display (207) either Sweden England 60196 functions group Roads in INC transferred 15-25-15 and of REL or 25357 entry also as firmware therefore U. and board the negative steps then group or S. by package in The group. error subject rather ERR The be

on rfJ data XFER A. of the as depressing throughout your Schaumburg, Other representatIve. Please Representatives except performed (70-2434) the the depressing data 10/77 in ADD steps function of by current pair) spectrum cannot to to than local

an (—) Sales Functions data source write the consists entering the spectrum change. PS auto function ADD in which constant. and the the data or spectrum current 1033 an Illinois the be display call is world. for on Service located group the auto and in of 2.5 the for in )

)

output

function

spectrum

by or

Fl rather

The auto

The

the

entering

code

background

F4 The and by

counts), the

number

number at

Upon

intensified DESCRIPTION

The

as

pushbutton the

depressing

parameter

the

ENTER

following

XTRCT

capability

the

intensified

ND600

job

a

(XTRCT)

determining

than

of

input/output

area),

step

of

ND600

(from

peak

was

sequence,

the

its

with

the

channels

pushbutton.

the

function

region

3—digit

counts

in

Intensified

percent

assigned

intensified

to

(Status

the

left

the

with

five

is

is

of

an

current

region

INTENSIFIED

background

an

displayed

determining

STOP

counts to

auto

of

the

previously

the

in

example

it select

device

in

can

right),

error

Page

interest

the

to

is

peak

peak

the

display

line

job

Region

pushbutton.

performed

When

region

the

be

per

region,

4)

code

region,

(square

for

sequence.

selected

printer

performed

channel

extraction

the

ratio

of

Fl

second

by

between

assigned

REGION

the

the

the

group.

Peak

performing

peak

parameter

(100)

channel

positioning

the

(peak

peak

selected

root

ENTER

the

on

(LP)

for

(area

in

Extraction

extraction

at

area

the

the

either

CHAPTER

peak When

peak

function

of

each

The

channel,

PEAK

assigned the

channel

the

location

the

data

pushbutton

divided

(Status

left

the

6—1

(total

“F”

XTRCT

101

the

channel

regions

operand

region,

by

the

area

EXTRACTION

and

XTRCT

spectrum

Package

parameter

display

can

report.

depressing

parameter

VI

height

to

XTRCT

counts

FWHM

of

Page

by

plus

function

right

the

of

be

the

energy,

the

pushbutton

is

current

function

interest.

4)

assigned

two

101

depressed,

cursor

divided

function

in

left

in provkles

markers

following

and

and

(Status

the

the

the

(Status

times

can

parameter

limit

PACKAGE

intensity

elapsed

the

performed

to

on region

current

corresponding

by

be

to

array,

in

In

the

the

FWHM

is

Page

the

of

a

Page

information

the

either

the

the

terminated

this

selected

2048—channel

the

desired

ND600

background,

live

minus

information

4).

acquisition

(Status

function’s

background

current

and

4):

example,

(47-0055)

by region,

in

the

time

energy,

then

depressing

the

the

as

“F”

System

“F”

Fl,

Page

at

display

is

a

in

background

peak

depressing

the

parameter,

any step

outputted

mnemonic

pushbutton

seconds),

F2,

the

group

for

GeLi

divided

height).

4)

the

with

time

XTRCT

each

in

F3

for

the

group.

on or

F t N

41745 2

5 3

1

firmware

The

of dkplay,

1983

INSTALLATION

LEFT

NOTE:

17:3

2i2

9:313

the

Intensified

current

P1.1

14175:flu

13

113

: 14

the

pair)

When

19

intensified

2137. j35•

9913.

status

which

Region

PEAK

the

cni 1313

1313

page.

101

must

Peak

region

parameter

be

:E17

4.

3:.

3.

FNHN

Extraction

installed

552

1357 i22

391

peak

(Status

extraction

on

Package

6-2

the

22113

4914 E:GN’

Page

ii2

Firmware

5:3

report

consists

4)

is

blanked

is

Option

of

displayed

22117

two

3:493

55713

AREA

7135

.4

to

board

512

select

following

:*i. 1.

4. 2.

x i.

(70—2434).

8

135 55

34 :3j

EPROM’s

output

j:34:.

291.

547.

C:TS/SEC

the

5:3.

TO-:

to

last

(one

:33:3

51313 Ø:

II;3:

the

line

CRT

Ff::.,.ECiND

31 513.

19.

4

547 917

:374

755

(

( ( N U C LEAR DATA IN C TECHNICAL Golf and Meacham Roads Schaumburg, Illinois :: 60196 S PECI FICATIGNS Telephone (312) 884-3621

ND600 Intensified Region Peak The intensified region peak extraction (XTRCT) Extraction Package (47-0055) function can be assigned to any of the “F” status parameters by entering its select code (100). The The ND600 Intensified Region Peak Extraction XTRCT function can be performed either by Package provides the ND600 System with the depressing the corresponding “F” pushbutton or as capability of determining the peak channel, FWHM a step in an auto analysis sequence. When the and intensity information for each intensified region XTRCT function is selected as a step on an auto of interest between the left and right markers in the analysis sequence, it is performed on the data current display group. Upon determining the peak spectrum in the current acquisition group rather channel in each region, the following information is than the current display group. outputted at the 101 device: the peak number (from left to right), the channel location of the left limit of The Intensified Region Peak Extraction Package the region, the number of channels in the region, the consists of four 512 x 8 EPROM’s (two firmware peak channel energy, the FWHM in energy, the back pairs) which require the Firmware Option board ground counts in the region, the area (total counts in (70-2434) for installation. the region minus the background counts), the percent error (square root of the area plus two times the background, divided by the area), the counts per second (area divided by current elapsed live time in seconds), and the peak to background ratio (peak channel height divided by the background height).

Sample Printout of Peak Extraction Report on a 2048-channel GeLi spectrum with five previously assigned peak regions of interest.

PN LM MW F’KE FNHM EGNC’ AREA ER c:Ts,-sEc: PK/E:GN[:’

I 178 14 j::5. ii 3. it22 4914 22117 0. :31 j:343. 0:3]: 19. 765 2 202 10 207. iZjl3 3. 057 2210 349]: 2. 55 291. 083 4. :374 3 981.3 1:3 990. 1.30 3. 391 612 6570 j. 3:4 547. 500 50. 917 4 1745 14 1753. 00 3, :317 126 :347 3. 91 70. 583 21. 28:3 5 1983 13 1990. 00 4. 552 58 706 4. 06 58. 633 31. 547

Specifications subject to change NUCLEAR DATA INC Printed in U.S.A. 10/77 PS 1034 2.5

Sales and Service Facilities cleveland, Ohio New York, New York Washington, D.C. London, England Other Sales and Service United States and Canada Tel: 216/331-5145 Tel: 212/962-3666 Tel: 301/345-6766 Tel: 22733, 25357 Representatives located throughout the world. Atlanta, Geprgia Denver, Colorado San Francisco, Calif. Uppsala, Sweden Tel: 303/755-6607 Please write or call Tel: 404/284-1747 Tel: 415/483-9200 Euroie Tel: (018) 15-25-15 Schaumburg, Illinois for Boston, Mass. Los Angeles, Calif. Schaumburg, Illinois Frankfurt, Germany your local Tel: 617/535-5665 Tel: 714/898-7760 Tel: 312/884-3600 Tel: 529952 representative. 0

C

C C CHAPTERVII ND600 INTENSIFIEDREGION ISOTOPE IDENTIFICATION PACKAGE (47-0056)

DESCRIPTION

The ND600 intensified Region Isotope identification Package provides a report identifying the isotope, half—life, energy and percent abundance for each peak determined during the intensified region peak extraction process. Each isotope is identified on the basis of finding an energy line which corresponds to the isotope in the isotope library. The intensified region isotope identification package requires that the ND600 System include the ND600 intensified Region Peak Extraction Package (47—0055)and either the Standard or Special Isotope Library Firmware.

The Intensified Region Isotope Identification Package provides three firmware controlled operational functions: isotope identification setup, output isotope identification report, and list isotope library table. Any of the intensified region isotope identification functions can be assigned to either the Fl, F2, F3 or F4 parameter (Status Page 4) by positioning the display cursor to the desired “F” parameter, entering the 3—digitselect code of the selected function at the operand pushbutton array and then depressing the ENTERpushbutton. When the ENTERpushbutton is depressed, the mnemonic code of the selected function is displayed for the selected “F” parameter (Status Page 4). When anyone of the intensified region isotope identification functions is assigned to a particular “F” parameter, each of the other intensified region isotope identification functions can be sequentially selected for that parameter by depressing the NXTV pushbutton. The 3—digitselect code and mnemonic code for each of the intensified region isotope identification functions are as follows:

Select Code Mnemonic Code Function

400 SETUPID Permits entering a value in keV which represents an acceptable tolerance (+) between the calculated energy and the actual energy listed in the isotope library when generating an isotope identification report.

7-1 Select Code Mnemonic Code Function

401 ID Outputs the intensified region pea extraction report and then the intensified region isotope identification report at the input/output device selected for the 101 parameter (Status Page 4).

402 LISTTAB Lists the isotope library table at the input/output device selected for the 101 parameter (Status Page 4).

The SETUPID function is selected for the Fl parameter (Status Page 4) and performed as follows:

1. Select Status Page 4.

2. Set the display cursor to the Fl parameter using the CRSRpushbutton.

3. Enter 400 at the operand pushbutton array and depress the ENTERpushbutton. SETUPID is displayed for the Fl parameter.

4. Set the display cursor to the PAGE parameter using the CRSRpushbutton.

5. Enter 7 at the operand pushbutton array and depress the ENTERpushbutton. Status Page 7 is displayed.

6. Depress the SHIFTpushbutton to select the right (>>)direction and depress the F1/F2 pushbutton. The set—upintensified region isotope identification parameters are displayed as follows:

_PAGE IRID TOL 2.

NOTE: The energy tolerance is initialized to 2.000 keV when power is applied, but can be changed to any value desired. For example, to change the energy tolerance to

1.5 keV perform the following:

7. Set the display cursor to the TOL parameter using the CRSRpushbutton.

8. Enter 1.5 at the operand pushbutton array and depress the ENTERpushbutton. 1.500 is displayed for the TOL parameter.

NOTE: After entering the desired energy tolerance, the system is ready to perform the ID function. The ID function can be selected for the Fl parameter by depressing the NXTV pushbutton or for any other “F” parameter by entering its 3 digit select code at the operand pushbutton array and then depressing the ENTERpushbutton. (

7-2

PN

c:O—57

co—so

c:s—i37 SE—75

EU—152 ISOTOPE

5 4 1.

-

the

with

The

The

LIST

two

output

NOTE: function depressing

spectrum

or

isotope rather

Fl The auto

The

LEFT

.1745

19:33

:02

j7::

as

pushbutton

LIST

printout

LIST

reports

the

following

ID

job

TAB

a

than

of

step

function

identification

line

TAB

When

TAB

was

sequence,

with

F’W

the

io

14

13 14

function

the

are

the

of

in

HL.

function

printer

function

assigned

intensified

1332. 11-:

272.

1213,

with

five

is

the

the

STOP

an

i:

122. displayed

30

12.

current

IFE

can

an

s.

auto

PEAK

standard

101

can

previously

the

26Y 40D

40D

OOY

?O’T’

example

it

(LP)

be

55

:

:1

cm

i0

pushbutton 0

to

report. to

is

is

be

job

parameter

display

line

performed

the

performed

performed

assigned the

region

following

terminated

1173.

1332.

sequence.

library :

.

:

ENER’3’T’ 2. : printer

136.

:122.

1:.:5.

121.. 661.

Fl

of

Fl

FWHM

assigned

:o:

915

group.

parameter

c: performing

parameter

peak

100

200 400

500

600 000

800

to

(Status

either

table

on

by

(L.P)

the

the

extraction

at

depressing

the

When

peak

AE:UND

100.

100. The

last

assigned

any

101

99. ii.

85.

57.

37.

on

by

Page

data

(Status

7-3

(Status

the

ID

line

the

depressing

regions

time

E:GND

the

:w:1

5937

90 10

60

00

00 00

00

parameter

1:

104

4)

function

ID

spectrum

following

report

of

ID

to

the

is

Page

by

function

Page

the

blanked

the

function

of

depressing

corresponding

4)

and

the

interest.

current

4)

(Status

101

can

in

and

pages

and

on

3t6j2

corresponding

then

the

be

AF.:E:Fi

to

44E parameter

1

-I,:

is

975

depressing

1c,3

a

performed

status

select

terminated

selected

Page current

the

2048—channel

the

was

In

STOP

“F”

this

intensified

4).

obtained

: i.

-

3. 1

page.

the

EF:

(Status

acquisition

i 59

-

53 15

pushbutton.

example,

as

the by

-

CRT

UFiI

pushbutton.

at

a

j.

depressing

step

Fl

CTS/SE’:

any

zs

:4

pushbutton

by

display,

Page GeLi

‘-

57.

region pushbutton

-

assigning

time

in

the

group

u

l

41; 7e.35

ijmi

4)

an

The

ID

for

by

the

the

FK/E:GNE:’

19

:.

1 4’:

4

7i

I’:

55: : ISOTOPE HLIFE ENERGY XABUND

BE—? 53. 313D 477. 5ii 10. 30 NA—22 2. SOY 1274. 5130 99. 95 NFI—24 15. 1.313H 1368. 500 IflO 00 ( 2754. 1130 99. 85 C:L—3:3 37. 30M 1642. 400 32. 80 216?. 5013 44. 00 FIR—41 1. 83H 1293. 60i3 99. 00 1. 26001E+09Y 1460 700 10. 70 K—42 12. 40H 1524. 700 1?. 90 SC—46 :33. 90D 1389. :oo 100. 00 1120. 500 100. 00 C:R—51 27. 8.OD 3213. ioo 9. 90 MN—54 314. OOE:’ 834. 8013 1130. 00 MN—SE 2. 5?H 846. 600 99. 00 1811. 200 30. 00 2112. 61313 15. 50 FE—59 44. SOD 1i.99 3cici 56. ‘30 142. 5013 0. 80 192. 2013 2. 80 1291. 5130 44. 00 CO—5? 270. OUt:’ 122. 100 85. 60 136. 41.30 10. 60 CO—58 71. 30D 810. 000 99. 40 CO—SO 5. 26Y 1173. 200 99. 90 1332. 500 100. 00 CU—ES 5. IOM 11339. 200 9. 00 ZN—ES 244. 0O[:’ 1115. 400 50. 60 AS—76 26. 40H 559. 2130 43. 00 1215. 801.3 5. 00 ( SE—?5 120. 40E:’ 264. 600 59. •10 136. 000 55. 60 279. 600 25. 00 E:R—82 35. 40H 775. 700 83. 013 554. 3130 72. 00 619. 100 43. 00 KR—8:3 2. 80H 196. 100 37. :313 166. 0013 6. 80 834. 700 13. 00 1529. 800 11. 30 REI—:39 14. 91.3M 1030. 700 60. 00 658. 800 10. 70 94:3. 500 10. 00 1246. 400 46. 60 SR—85 64. 00[:’ 514. 1300 99. 30 SR—91 9. 70H 1024. 2013 33. 00 653. 000 12. 00 749. 800 24. 00 106. ?0D 898. 000 93. 40 1836. 100 99. 40 ZR—95 55. 00D 756. 900 54. 80 724. 2130 43. 60 NB—94 20000. 30Y 871. 0130 1130. 00 702. 000 100. 00 NB—95 IOD 765. 800 99. 80 (

7-4 o . 0 .0•11 r w n in tnintnn in i i w wwzv ccc I i ii i 1’ I liii ii I ph W W W W I& II’ I 4 4 WW W (1W N ia N NNPS IA® 5 S S WN 4 (1 4NWW W

4 IA W N S N NO N S N CD N SN(fiS ON N N NO IA NW W S N 4CDNS OS N W OS S S S S a N 0000 55 V <-C -C XX X V -C VVVV

IA phfhphA jA WCDÔW(IWIACflWWN wwwmmma NIAwNwSmWwSNCDcImsaWNcnmWNWNNcnNWNmW CDWSSNNSWWCDSCDWCDONIAW

NCDWmmWWWIAIA4ONOhNWWWmLIW(RmW(ILMmNmNSWUIIACDNUINWmSSNCDSNLRNCDNWS 555SS555555S505000555555055500550(INNI’tOCJI5505005505050 05555500500505505555550050500555050555555055555555555 IA IAIA N4NW NIAWIAIOCDWIACDIAIAWIAIAN CDIANIAIA%fl CDIA IAIA NW4O%OSIANWNNW & WIASSmCINWNmSSSmIAOSWSWO4CD4SWWS4NWCD4NNoSWthNW0050IA4I.hmawao 55555555555555555555555555555555555555fl5555555555555 CE—139 140. OOD 165. 9 :30. i::E—141 32. 40D 145. 500 49. 00 CE—144 284. OUD 133. 500 10. 80 696. 500 1. 50 SM—153 46. 80H 103. 200 28. 40 EU—152 14. 0@Y 1407. 900 24. 30 121. 800 33. 20 344. 200 31. 40 778. :300 15. 20 964. 000 17. 30 1086. 000 10. 00 1112. 000 16. 40 EU—154 7. 84Y 1274. 800 33. 60 123. 100 40. 50 723. 300 19. 10 873. 200 11. 30 996. 300 10. 70 1004. 800 17. 60 EU—155 5. OOY 105. 300 22. 40 86. 500 33. 50 HF—181 42. 50c:’ 482. 200 83. 00 133. 100 41. 00 345. 700 12. 00 W—187 23. 90H 685. 700 32. 00 134. 200 10. 10 479. 300 26. 60 AU—198 2. 70D 411. 800 95. 50 HG—203 46. 60D 279. 200 81. 50 B 1—214 16. 02Y 609. 300 47. 00 1120. 400 17. 00 1238. 300 6. 00 1764. 000 17. 00 RA—226 1600. 02Y 609. 400 43. 00 295. 200 18. 00 000 35. 00 1120. 400 14. 00 1764. 700 16. 60 PFI—233 27. 40t:’ 311. 900 38. 00 98. 400 13. 50 300. 100 6. 60 NP—239 2. 35[:’ 277. 900 12. 10 99. 500 11. 00 103. 700 18. 00 106. 400 22. 80 228. 100 9. 50

(

7-6 INSTALLATION

The Intensified Region Isotope Identification Package consists of two 512 x 8 EPROM’s (one firmware pair) which must be installed on the Firmware Option board (70—2434). The Standard Isotope Library consists of four 512 x 8 EPROM’s(two firmware pairs) which must be installed on the Firmware Option board (70—2434).

NOTE: The Intensified Region Isotope Identification Package requires that the Intensified Region Peak Extraction Package (47—0055)and either the Standard or Special Isotope Library Firmware be installed on the Firmware Option board (70—2434).

7-7 /

( C CHAPTERVIII ND600 AUTOMATIC PEAKSEARCHPACKAGE (47-0057)

The ND600 Automatic Peak Search Package automatically determines the centroid FWHM and intensity information for each peak in the marker defined portion of the data spectrum stored in the current display group. The values are determined using a peak extraction process which is based on the values entered for the full width half maximumand sensitivity parameters. Upon extraction of each peak the following information is outputted at the input/output device selected for the 101 parameter (Status Page 4): the peak number from left to right, the channel location of the left limit of the peak, the peak width in channels, the peak centroid energy, the FWHMin energy, the background counts in the peak, the peak area (total counts in the peak minus the background counts), the percent error in the area calculation (square root of the area plus two times the background, divided by the area), and the counts per second (area divided by the current elapsed live time in seconds). In addition to output of the peak search information, the spectral display of each peak can be automatically intensified as the peak is extracted to permit visual identification of each extracted peak on the spectral display.

The Automatic Peak Search Package provides four firmware controlled operational functions: set up peak search, peak search, peak search intensify and calculate variable FWHMcurve coefficients. Any of the automatic peak search functions can be assigned to either the F], F2, F3 or F4 parameter (Status Page 4) by positioning the display cursor to the desired “F” parameter, entering the 3—digitselect code of the selected function at the operand pushbuttons array and then depressing the ENTERpushbutton. When the ENTERpushbutton is depressed, the mnemonic code of the selected function is displayed for the selected “F” parameter (Status Page 4). When anyone of the automatic peak search functions s assigned to a particular “F” parameter, each of the other automatic peak search functions can be sequentially selected for that parameter by depressing the NXTV pushbutton. The 3—digitselect code and mnemonic code for each automatic peak search function are as follows:

8—1 Select Code Mnemonic Code Function ( 500 SETPS Permits entry and display of the setup peak search parameters (Status Page 7). Included are the coefficients of the variable FWHMcurve, the run number, the sensitivity level, and two energy versus FWHMvalues for defining the variable FWHMcurve.

501 PSRCH Automatically determines the centroid, FWHM and intensity information for each peak in the marker defined portion of the data spectrum and outputs the peak search information at the input/output device selected for the 101 parameter (Status Page 4).

502 PSINT Automatically determines the centroid, FWHM and intensity information for each peak in the marker defined portion of the data spectrum, intensifies the spectral display of each peak, and outputs the peak search information at the input/output device selected for the 101 parameter (Status Page 4). ( 503 VFWHM Calculates the coefficients of the variable FWHM curve based on the values entered for the energy versus FWHMparameter (Status Page 7). This curve is used to improve performance when processing Nal spectral peaks.

Setup Peak Search Function

The SETPSfunction is selected for the Fl parameter (Status Page 4) and performed as follows:

1. Select Status Page 4.

2. Set the display cursor to the Fl parameter using the CRSRpushbutton.

3. Enter 500 at the operand pushbutton array and depress the Fl pushbutton. SETPS is displayed for the Fl parameter.

4. Set the display cursor to the PAGE parameter using the CRSRpushbutton.

5. Enter 7 at the operand pushbutton array and depress the ENTERpushbutton. Status Page 7 is displayed. (

8—2

APS

6.

HW(E) Parameter

APS

HW(0)

pushbutton.

.PAGE

EN2 HW(O)

ENi RLIN

Status

Depress

Status

Parameter

Parameter

the

The

a a 3.

000 000

000

SHIFT

setup

7

3

variable

the spectral spectral

peaks, of

peaks function expanded When

can average the

Nal full

can curve). parameters average

Description

The

can

The

Descriptions

Display

the

peak

pushbutton

number

GeLi

be

be width

be

HW(E)

HW(0)

peaks

with

HW/E

HW2 HW1

processing

SENS

number

the

used changed

changed

number

peaks, peaks, number

search

FWHM

can

peaks

displayed,

half

at.

respect parameter

can parameter

HW(E)

of

to

be

channel

of

channels

to

determine

maximum

be

parameters

the

to

the

to

curve). for

used to

of

channels

GeLi

select

parameter

be

obtained

0. 0.

3. 3.

to

any

any

channels

the

calculate

calculate

to actually

000

000

000 APS

000

determined

the

is

is

0

8—3

spectral

value

value

at

HW(0) the

or

determine

initialized

initialized

points

square

the

the

at

the

are

right

by

at

is

the

desired.

desired.

HW(E)

variable

variable

full

counting

zero

parameter.

displayed

set

observing

the

of

peaks,

root

full

(>>)

during

the

width

the

equal

full

to

to

intercept

parameter

width

of

0.000

5.000

GeLI

HW(0)

FWHM

an

FWHM

When

width

The

direction

the

energy

the

to

half

as

several

estimation

When

0.

number

half

HW(0)

follows:

peaks

peak

when

when

of

processing

maximum parameter

half

curve

curve

(the

When

or

the

maximum

GeLi

and

processing

extraction

the

and

maximum

power parameter

power

of

rate

variable

coefficients

coefficients

of

depress

processing

slope

channels

entering

peaks

points

the

(an

of

GeLi

is

is

points

change

applied

HW(0)

applied

of

estimate

points

Nat

process.

sets

FWHM

in

the

of

spectral

the

the at

an

of

Nd Nat

function

the

F1/F2

the

of

in

but but Parameter Description ( RUN The run number (RUN) parameter is initially set to 0 but can be set to any number from 0 to 65,535. The currently displayed run number is incremented by one whenever the PSRCHor PSINT function is performed.

SENS The SENS parameter is initialized to a value of 7.500 when power is applied but can be changed to any value desired. The SENS parameters sets the sensitivity level of the peak extraction process with respect to background. To increase sensitivity, i .e., to extract peaks that slightly exceed the average background content, decrease the value of the SENS parameter. Maximum sensitivity k obtained by a SENS parameter value of 1.000. To decrease sensitivity, i.e., to extract only large peaks, increase the value of the SENS parameter.

EN1, EN2 The energy (EN 1, EN2) versus Full width half maximum (HW1, HW2) HW1, HW2 parameters, except the HW1 parameter, are initially set to 0. The HW1 parameter is initialized to the value of the HW(0) parameter (5.000). Values entered for these parameters define two points (EN, HW)on the variable FWHMcurve.

A value for any of the APS status parameters is entered as follows: ( 1. Set the display cursor to the desired parameter using the CRSRpushbutton.

2. Enter an appropriate value for the selected parameter at the operand pushbutton array and depress the ENTERpushbutton. The value entered is displayed for the selected parameter.

Peak Search Function

The PSRCHfunction can be selected for the Fl parameter by depressing the NXTV pushbutton or for any other “F” parameter by entering its 3—digitselect code (501) at the operand pushbutton array and then depressing the ENTERpushbutton.

The PSRCHfunction can be performed by depressing the corresponding “F’ pushbutton or as a step in an auto job sequence. When the PSRCHfunction is selected as a step in i auto lob sequence, it is performed on the data spectrum in the current auto group rather than the current display group. The PSRCHfunction can be terminated at any time by depressing the STOP pushbutton.

The following is an example of performing the PSRCHFunction on the marker defined portion (from 21.737 to 2040 .460 keV) of a 2048—channel GeLi spectrum and finding 17 peaks. In this example, the PSRCHfunction was assigned to the Fl parameter

8—4

PEAK

RUN#=

LT

HW(0)

SENS

display,

SRCH value

assigned

NOTE:

Peak page. The

(Status

17 15

±6 13

14 12

11 10

PN

9

8 7 5

6 4

3

2

1

HW(0)

1460

1836 1331 1274

1171

Search

LEFT

of

SEARCH

895

812 658

508

387

308 251

275 161 131

117

FRM Page

= =

82 =

When

the

to

3.000.

1000.

3.

3.

parameter

the

4)

peak

Report

11

12

11

10

11 10

14

10

10

11 00000000

00000000

PW

the

8

8

5 8 9

8

9

and

101

DONE

21.

1836.

1460. 1332.

1274.

1172.

00000

search

101

897. 661.

813.

512. 391.

254.

310. 278. 165.

136.

121.

performed

parameter

87.

73?

was

CENT

parameter

3

21

10 71

29 88 40

65 27

42

78

76

33 81 73

34 94

83

report

set

CT

HW/E

TO

to

by

(Status

2. .

2.

2.

1.

2. 1. is

1. 1.

1. 1.

1. 1. 1.

1.

1.

1.

a

depressing

FWHM

(Status

displayed

value

078

751 346

524 285

843 565

928

643

305 659 334

407 918 144

740 865 =

=

Page

0.

1017.

of

Page

00000000 2040.

8-5

3.000.

4)

following

the

11440

00000

11858

17259

BKGND

for

4)

1062

2469 5950

6190 4120

8687 7535

4130

7576 9671

7176

Fl

198 656

611

460

is

output

pushbutton

blanked

The

the

SENS

of

last

the

28046

32474 11614

23901

32210

34958

to

5539

1731 6801

8483

3905

AREA

parameter

with

line

±29

427

237

586

437 select

peak

32114.

of

the

28.

21.

21.

38. 27.

search

output

0.

1.

0. 1. 0.

2.

7.

4. the

1.

0.

0.

XER

line

59

62

39 56

60 33

80

79

99 41

17

89 83 97

19

is

73

75

current

set

report.

printer

to

28.

5. 0. 0.

32. 0.

11. 23. 1.

6.

0.

0. 0.

8.

3.

32.

34.

to

the

539000000 128500000 032000000

427000000

801000000

731000000

586000000

237000000 437000000 482500000

905000000

CTS.”SEC

a

status

04550000

61400000

47350000

90100000

20950000

95800000

CRT (LP) Peak Search Report Parameter Descriptions ( Parameter Description

RUN# Current run number.

SRCH FRM/TO Energy in keV of the left/right marker channels.

LT Current elapsed live time in seconds.

CT Current elapsed clock time in seconds.

HW(O) Average number of channels at the full width half maximum points of GeLi peak or an estimate of the number of channels at the full width half maximum points of Nal peaks at channel 0 (zero intercept of the variable FWHMcurve).

HW/E Rate of change in the number of channels at the full width half maximum points of Nal peaks with respect to the square root of energy (slope of the variable FWHMcurve; equals 0 for GeLi peaks).

SENS Sensitivity level of peak extraction process with respect to background. PN Sequential number of peak (from left to right) within marker defined area. (

LEFT Channel location of the left limit of the peak.

PW Peak width in channels.

CENT Energy of peak centroid in keV.

FWHM Full width half maximum of peak in keV.

BKGND Background counts within peak area.

AREA Net area (total counts minus background counts) of peak.

%ER Percent error in area calculation determined by taking the square root of the area plus two times the background, divided by the area.

CTS/SEC Counts per second calculated by dividing the area by the current elapsed live time in seconds.

(

8-6

pairs)

The

where:

INSTALLATION

EN

HW(0)

HW/E

HW

HW

entered the

The

(Status The

(HW(0),

array

button

Calculate

of

The NOTE:

RGN Thus, When

manner

STOP a The

current pushbutton

job or

Peak

The

step

each

for

VFWHM

Automatic

formula

=

sequence,

VFWHM

VFWHM

PSINT

PSINT

which

and

ADV

Search

HW/E

the

pushbutton.

PSINT

or

in any

Page

as

for display

peak

The

= = HW/E)

=

=

an

for

then

start

Variable

the

other

pushbutton.

the function

function

array

for

must

7).

function

auto

PSINT

function

function

any

function

Intensify

*

1

Energy as

Full

Full

PSRCH

Peak

depressing

it

channel

energy

variable

group.

HW/

parameters

it

“F”

be

is and

“F”

job

Jj

width

width

is

performed

function

FWH

Search

can

installed

c

extracted

in

parameter

sequence.

then

parameter

is

function.

is can

is

Function

(EN

/N

of

keV.

The

+ performed,

performed

half

half

M

performed,

be

FWHM

be

the

be

each

depressing

1,

Curve

HW(0)

Package (Status

performed

selected

PS1NT

(rate

de—intensifies

maximum

maximum

selected

EN2)

on

ENTER

on

by

by

peak

curve

by

the

In

When

the

of

Coefficients

automatically

by

Page

entering

function

entering

versus addition,

t

it

consists

change

for

Firmware

data

pushbutton.

(including

the

depressing

calculates

by

is:

for

outputs

at

in

the

7)

the

depressing

ENTER

channel

channels.

the

spectrum

8-7

full

of

the

PSINT

its

can

Fl

its

in

of

the

the

Fl

the

width

Option

Function.

3—digit

channel

HW

parameter

twelve

3—digit

dublets)

be

intensifying

and

the

pushbutton.

parameter

variable

PSINT

0.

automatic

function

with

terminated

in

the

half corresponding

displays

the

board

select

512

code

preceding

corresponding

respect

function

can

maximum

by

current

FWHM

x

by

is

(70—2434).

(503)

peak

depressing

be

8

each

code

the selected

depressing

at

EPROM’s

readily

to

provides

values

any

curve auto

the

search

at

peak

the (502)

(HW1,

“F”

the

time

left

as

square

“F”

group

pushbutton.

the

on

identified

based

for

(six at

operand

report

a

the

visual

limit

HW2)

by

pushbutton

the

step

the

NXTV

the

firmware

rather

NXTV

root

depressing

on

spectral

operand

of

coefficient

in

in

parameters

identification

the

pushbutton

using each

of

the

an

pushbutton

than

push

When

EN).

values

auto

or

same

dsplay.

peak.

the

the

the as

NUCLEAR DATA INC TECHNICAL Golf and Meacham Roads Schaumburg, Illinois 60196 S PECI FICATIDNS Telephone (312) 884-3621 : ND600 Automatic Peak Search Package (47-0057) The ND600 Automatic Peak Search Package auto SETPS Function (500) matically determines the centroid FWHM and intensity Permits entering values for the HW and SENS information for each peak in the marker defined parameters (Status Page 7). The HW parameter sets portion of the data spectrum stored in the current the average number of channels at the full width display group. The values are determined using a half maximum points of the peaks to be determined peak extraction process which is based on the values during the peak extraction process. The SENS entered for the full width half maximum and sensitivity parameter sets the sensitivity level of the peak parameters. Upon extraction of each peak the extraction process with respect to background. following information is outputted at the 101 device: the peak number from left to right, the channel PSRCH Function (501) location of the left limit of the peak, the peak width Automatically centroid, FWHM and in channels, the peak centroid energy, the FWHM determines the information peak in marker in energy, the background counts in the peak, the intensity for each the portion of and peak area (total counts in the peak minus the back defined the data spectrum outputs the bround counts), the percent error in the area peak search information at the 101 device. calculation (square root of the area plus two times PSINT Function (502) the background, divided by the area), and the counts per second (area divided by the current elapsed live Automatically determines the centroid, FWHM and time in seconds). In addition to output of the peak intensity information for each peak in the marker search information, the spectral display of each peak defined portion of the data spectrum, intensifies the can be automatically intensified as the peak is spectral display of each peak, and outputs the peak extracted to permit visual identification of each search information at the 101 device. extracted peak on the spectral display. The Automatic Peak Search Package consists of twelve 512 x 8 EPROM’s (six firmware pairs) which The Automatic Peak Search Package provides three Option Board (70-2434) for functions: set up peak search, peak search and peak require the Firmware installation. search intensify. Any of the functions can be assigned to any of the “F” status parameters by entering its select code (50X) and performed by depressing the corresponding “F” pushbutton. The PSRCH and the PSINT functions can also be performed as steps in an auto analysis sequence. Functions selected as steps in an auto analysis sequence are performed on the data spectrum in the current acquisition group rather than the current display group. When anyone of the functions is assigned to a particular “F” parameter, each of the other functions can be sequentially selected for that parameter by depressing the NXTVpushbutton. Peak Search Report

SEARCH FROM 55. ‘352 TO 186:3. 9713 LT = 2i’3’3. 1313’3 i::T = 21351. E31313 C HN = 5. 131313 SENS = 4. _31313

PN LEFT P[’.l ,::ENT FNHM E*:::,]N[:i AREA ER C:TS,”SEC:

1 158 31 87. 65 1. ‘.3:3 43832 725313 a ss 264813131313 2 236 11 121. :35 1. 1.35 12998 64’.359 a 47 32. 13296131.31313 3 266 9 136. 31 1. 12 89713 7:317 2. 135 3. 9138661.3131313 4 324 113 165. 66 1. ‘33 :395:3 178132 1. ‘36 :3. 9131131313131313 5 5134 7 255. 134 1. 23 52:32 1215 8. 93 ‘3. 613743:313013 6 551 9 278. 92 1. 1:3 7046 892 13. 72 1.3.445969131313 7 614 :3 ]jj3. 14 •1. ‘i 5622 509 21. ::l a 25433913013 E -5 ii :.‘i 4 .t :;- 7::1 i:.i I 1 E 55.ouoo 9 1fl1 113 5 5? 1 4 55( 949 90 1. 4945613L1’.j1.j 10 1314 13 661. 18 1. 49 65138 48248 13. 5j 24. 12390000 11 IE:O 11.3 El: 1 451: ‘1 ii r o 445 E713013 12 17:36 14 :397. 52 1. 71 :3002 231359 ‘.3.:36 11. 529500013 i: .4 i. 117’: -i : 4..E1 E4OIE o 4: :: 14 2541.3 12 1274. 22 2. 18 756 197 21. 01 13. 0983751300 15 2620 53 1331. :39 2. 13 4106 56961 13. 45 2:3. 48030000 IE :i 11 14E’3 ‘35 1 ES 55E 17’ J3 73 13 OEEI7’5’XlO 17 3660 20 1835. :34 2. 53 90 11412 0. 94 5. 7060000013

TOTAL NE:R FEAKS = 17

Peak Search Report Parameter Descriptions C SEARCH FROM/TO—Energy in keV of left/right CENT—Energy of peak centroid in keV. marker channel. FWHM—Full width half maximum of peak in keV. LT—Current elapsed live time in seconds. BKGND — Background counts within peak area. CT—Current elapsed clock time in seconds. AREA—Net area (total counts minus background HW—Average number of channels at full width half counts) of peak. maximum points of peaks to be determined during error in area calculation determined peak extraction process. %ER—Percent by taking the square root of the area plus two times SENS—Sensitivity level of peak extraction process the background, divided by the area. with respect to background. CTS/SEC—Counts per second calculated by dividing PN—Sequential number of peak (from left to right) the area by the current elapsed live time in seconds. within marker defined area. TOTAL NBR PEAKS—Total number of peaks found LEFT—Channel location of the left limit of the peak. during automatic peak search process. PW—Peak width in channels.

Specifications subject to change. NUCLEAR DATA INC Printed in U.S.A. 10/77 PS 1036 2.5

Sales and Service Facilities cleveland, Ohio New York, New York Washington, D.C. London, England Other Sales and Service United States and Canada Tel: 216/331-5145 Tel: 212/962-3666 Tel: 301/345-6766 Tel: 22733, 25357 Representatives located throughout the world. Atlanta, Georgia Denver, Colorado San Francisco, Calif. Uppsala, Sweden Please write or call Tel: 404/284-1747 Tel: 303/755-6607 Tel: 415/483-9200 Europe Tel: (018) 15-25-15 Schaumburg, Illinois for Boston, Mass. Los Angeles, Calif. Schaumburg, Illinois Frankfurt, Germany your local Tel: 617/535-5665 Tel: 714/898-7760 Tel: 312/884-3600 Tel: 529952 representative.

600

selected

functions

Select

operand

the

pushbutton either

isotope identification operational

NXTV efficiency report,

fication

The

for

Search

to

DESCRIPTION

isotope,

The

an

each

desired

Automatic

ND600

energy

the

Code

pushbutton.

Package

identification

list

pushbutton

package

peak

“F”

half—life,

ND600

is

Fl,

curve.

is

isotope

“F”

assigned

functions:

Automatic

parameter

line

depressed,

functions

determined

F2,

Isotope

parameter,

(47—0057)

AUTOMATIC

requires

of

Any

F3

library

decay,

array

AID

Mnemonic

The

an

to

functions

or

Identification

Isotope

automatic

a

of

(Status

isotope

can

3—digit

the

F4

particular

and

that

during

the

table,

and

energy,

entering

parameter

be

mnemonic

then

automatic

the

Identification

Code

Page ISOTOPE

either

sequentially

are

in

select

the

calculate

isotope

the

ND600

depressing

as

percent

“F”

4).

the

automatic

Package

the

follows:

(Status

isotope

code

code

CHAPTER

parameter,

3—digit

isotope

When

IDENTIFICATION

identification Standard

the

detector are

the

cation

efficiency

energy

Permits Function

System

9-1

efficiency

selected

abundance,

and

of

Package

dual

the

hold the

Page

provides

library.

the

anyone

peak

select

mnemonic

identification

set—up

break

display

entry

ENTER

include

IX

time

parabola

efficiency

or

4)

selected

each

values

extraction

for

Special

by

provides

code

curve

of

five

and

point

The

and

parameters

setup,

percent

that

pushbutton.

positioning

and of

the

the

code

display

for

firmware

automatic

the PACKAGE

of

curve, the function

coefficients,

parameter

and

curve,

acquire

automatic

ND600

Isotope

the functions

output

a

defining

process

sample

other

for

efficiency

report

six

selected

(Status

of

the

each

the

the

energy

is

controlled

Automatic

Library

group

automatic

isotope

the

When

isotope

energy displayed

units.

(47-0058)

which

by

identifying

a

isotope

display

can

coefficients

of

dual

isotope

Page

and

depressing

and

function

numbers,

the

versus

the

be

Firmware.

identification

corresponds

ident—

tolerance,

graph

parabola

7).

activity

automatic

identification assigned

isotope

ENTER cursor

Peak

for

identifi

the

Included

at

the

of

the

the

to

the to

pushbutton.

6.

4.

5.

Page

2.

is

3.

The Automatic

604

1.

603

602

601

Select

displayed

AID

Depress

Enter

Set

Enter Set

Select

7

is

Code

the

the

function

displayed.

7

600

Isotope

Status

display

at

for

display

the

The

at

the

the

SHIFT

automatic

the

is

Page

operand

Identification

Fl

cursor

cursor selected

GRAPH COEFFS

LIST

Mnemonic

ISO

operand

parameter.

pushbutton

4.

ID

TAB

to

to

pushbutton

isotope

for

the

the

pushbutton

Code

the

Setup

PAGE

Fl

to

identification

parameter

Fl

select

array

Function

parameter

parameter

array

4096.

where

Calculates

efficiency

Displays

detector

entered

(Status

device

Page Lists

parameter then Outputs

at

Function

9—2

the

and

the

and

using

the

the

right

4).

depress

N

input/output

selected

Page

set

(Status

for

using

depress

a

efficiency

isotope

the

automatic

is

the

(>>)

curve graph (Status

the

up

the

any

7).

automatic

the

the

parameters

CRSR

coefficients

Page

energy

number

for

the

direction

library

of

in

CRSR

Page

ENTER

spectral

isotope

the

curve

the

device

pushbutton.

4)

ENTER

versus

4).

and

dual

peak

pushbutton.

of

101

table

pushbutton.

are

based

channels

and

selected

of

identification

performed

pushbutton.

data

parameter

parabola

search

efficiency

displayed

at

the

depress

upon

the

channels

dual

from

report

for

input/output

the

detector

as

the

Status

parabola

(Status

as

the

parameters

follows:

AID 1

values

report

follows:

F1/F2

and

to

1—N

101 (

EF1—EF6

EN1—EN6

EBP

DGRP,

AID

ETOL

Parameter

AID

_PAGE

HT

Bi

Cl

Al EN5 EN2 DGRP

EN6 EN4 ENI

EN3 ETOL

Status

Status

AGRP

350.

6.

—0. —17.

1173.

Parameter

Parameter

661.

165.

279.

391.

486250

87.

5000D

71066

2.

8747

200

600

8013

9013

700 2013 0013

I

7

Descriptions

Display

SAM

C2 B2

F12 EF5

EFE

EF2

EF4 EFI

EBP AGRP

EF3

three

efficiency define

ascending

having

are

upper keV

The

The current

corresponding

are

calculated keV changed The Description

NOTE:

lbrary in

sequence.

The

the

initially

initialized

energy

energy

display

energy

and

and

points

parabola

current

six

the

when

acquire

—3.

0.

113.

276.

The

defines

to

represents

energy

points

180465

curve.

highest

energy

(EN1-EN6) break

tolerance

any

1. 55073

group 38780

0. 0.

3. 4.

1.

2.

(EN

set

ISO

generating

0000

display

“F”

0013

9—3 337 634

254 733

053 595 AID

to

occurs.

group valid

to

1,

the

(EN,

values

ID

point

1

group

(DGRP)

pushbutton

0. and

efficiency

The

EF1;

an

point

function

group

(ETOL)

when

group

acceptable

Values

EF)

the

six

versus

(EBP)

EN2,

1

the

with

when

at

and

on

points

actual

performed

number

isotope

when

which

parameter

the parameter

the

of

or

entered

efficiency

s

EF2;

acquire

performed

power

the

on

should

second

dual

energy

tolerance

initiated

EN3,

transition

the

desired.

identification

first

for

as

is

parabola

group

data

is

be

is

applied.

three.

entry

(EF1—EF6)

a

listed

EF3) these

on

initialized

initially

step

entered

by

(+)

spectrum

(AGRP)

the

from

depressing

define

(EN2,

in

parameter

between

in

detector

The

data

report.

the

an

the

Either

set

for

parameters

first

parameters

to

auto

the

EF2)

in

isotope

spectrum

lower

to

350.0000

the

the

the

2.000

can

lower

job

to be Parameter Description ( parabola and therefore must be below the value of the EBP parameter. The second three entries (EN4, EF4; EN5, EF5; EN6, EF6) define the upper parabola and therefore must be above the EBPparameter (preferably above 500 keV).

Al, Bi, Cl The coefficient (Al, Bi, Cl, A2, B2, B2, C2) parameters are A2, B2, C2 initially set to 0•2 If the coefficients of the lower (Al + Blx + Cl x ) and upper (A2 + B2x + 2C2x parabolas are known, the dual parabola detector efficiency) curve can be defined by entering the known coefficient values for the corresponding Al, Bi, Cl, A2, B2 and C2 parameters. The coefficients of the dual parabola detector efficiency curve can be determined based on the values entered for the energy (EN1—EN6)versus efficiency (EF1—EF6)parameters by performing the COEFFS function.

HT The hold time (HT) parameter is initially set to 0. The value entered for the HT parameter is the time differential in seconds (S), minutes (M), hours (H), days (D) or years (Y) between the time the analysis sample was collected and the time that data acquisition on the analysis sample was performed with the time unit (S, M, H, D or Y) selected by depressing the ( NXTV pushbutton. This value is converted to seconds and used in calculation of the decay listed for the identified isotopes in the isotope identification report.

SAM The sample size (SAM) parameter is initially set to 1. The value entered for the SAM parameter is the sample size in units and must be greater than 0. This value is used in calculation of the activity in microcuries per unit of sample volume listed for the identified isotopes in the isotope identification report.

A value for any of the AID status parameters is entered as follows:

1. Set the display cursor to the desired parameter using the CRSRpushbutton.

2. Enter an appropriate value for the selected parameter at the operand pushbutton array and depress the ENTERpushbutton. The value entered is displayed for the selected parameter.

(

9-4 Output Isotope Identification Report Function

The ISO ID function can be selected for the Fl parameter by depressing the NXTV pushbutton or for any “F” parameter by entering its 3—digit select code (601) at the operand pushbutton array and then depressing the ENTERpushbutton.

The ISO ID function can be performed either by depressing the corresponding “F” pushbutton or as a step in an auto lob sequence. When the ISO ID function is selected as a step in an auto lob sequence, it is performed on the data spectrum in the current acquisition group rather than the current display group. The ISO ID function can be terminated at any time by depressing the STOP pushbutton.

The following is an example of performing the ISO ID function on the marker defined portion (from 21.737 to 2040 .460 keV) of a 2048—channel GeLi spectrum. In this example, the ISO ID function was assigned to the Fl parameter (Status Page 4) and performed by depressing the Fl pushbutton with the line printer (LP) assigned to the 101 parameter (Status Page 4) for output of the peak search report and then the isotope identification report.

NOTE: When the 101 parameter (Status Page 4) is blanked to select the CRT display, the two reports are displayed following the last line of the current status page.

Peak Search and Isotope Identification Reports RUN * = SRCH FRM 21. 737 TO 2040. 46i LT = 1000. CT = 1017. 00000 HW(0’ = 3. 00000000 HW/E = 0. 000000 SENS = 000000

PN LEFT PW CENT FWHM BKGND AREA XER CTS/SEC 1 82 11 :37. :33 1. 865 17259 3495:3 a 75 34. 95800000 2 117 9 121. 94 1. 740 11858 32210 0. 73 32. 20950000 3 131 10 136. 34 1. 144 11440 3905 4. 19 3. 905000000 4 161 9 165. 73 1. 918 9671 8483 1. 97 8. 482500000 5 251 8 254. 76 a..334 7576 586 21. 41 0. 586000000 6 275 8 278. 81 1. 407 7176 437 27. 83 a 437000000 7 308 5 310. 33 1. 659 4130 237 38. 89 0. 237000000 8 387 10 391. 42 1. 305 7535 6801 2. 17 6. 801000000 9 508 14 512. 78 1. 643 8687 1731 7. 99 1. 731000000 10 658 10 661. 27 1. 565 5950 23901 0. 79 23. 90100000 11 812 $ 813. 40 1. 928 4120 427 21. 80 0. 427000000 12 895 10 897. 65 1. 843 6190 11614 1. 33 11. 61400000 13 1171 11 1172. 88 2. 285 2469 32474 0. 60 32. 47350000 14 1274 8 1274. 29 2. 524 656 32114. 56 0. 032000000 15 1331 11 1332. 21 2. 346 1062 28046 0. 62 28. 04550000 16 1460 11. 1460. 71 3. 078 611 129 28. 59 0. 128500000 17 1836 12 1836. 10 2. 751 198 5539 1. 39 5. 539000000

PEAK SEARCH DONE 9-5 ml

ISOTOF’E HLIFE ENERGY AE:UND X EFF LIC:.’LIS ( NA—22 2. SOY 7. 74133E—01 1274. 600 99. 95 0. 31057:30 0. 000360497 K—40 1. 26001E+09Y 1. 00000E-i-O0 1460. 700 10. 70 0. 2730350 0. 011887700 CO—57 270. OOD 4. 05641E—01 122. 100 85. 60 4. 43:2700 0. 056520600 136. 400 10. 60 CO—SO 5. 26Y :3. 81132E—01 1173. 200 99. 90 0. 3369990 0. 292979000 1332. 500 100. 00 SE—75 120. 40E:’ 136. 000 55. 60 279. 600 25. 00 KR—88 2. 80H •155 000 6. 80 EP—5 64 OOE’ 2 24574E—02 514 000 93 0 0 EE3E340 0 .411100O Y—88 106. 70D I. 02592E—O1 898. 000 93. 40 0. 4459740 0. 735042000 1836. 100 99. 40 CE’—103 450 ooc s E2602E—01 EO0 100 00 4 5343700 0 o:s:o:ioo SN—113 115. 20D 1. 21360E—01 391. 700 100. 00 1. 2540000 0. 120804000 c—i: :o 0ü’ 3 7aO57E—01 EEl :io 4 EO 0 E:.3330 0 12E..7EOOci CE—139 140. OOD 1. 76334E—01 165. 900 80. 00 3. 7330000 0. 043523000 EU—i52 14. OUY 121. :300 33. 20 EU—154 7. 84Y 9. 18602E—01 1274. 800 33. 60 0. 3105310 0. 000899244 123. 100 40. 50 ELI—155 5. 00Y 86. 500 33. 50 HG—203 46. SOD 5. 44182E—03 279. 200 81. 50 2. 0536000 0. 129651000 FA—::: 27 40D 1 40353E—04 11 900 : 00 1 7:9E500 E ‘E7:100000 NP—239 2. 35D 0. 00000E+00 277. 900 12. 10 2. 0682100 > E+37

Al = -17. 8747000000 A2 = 10. 38780000000 B’1 = 6. 486250000000 B2 = -3. 55073i00000 Cl = —0. 71066300000 0. 1:30455000000 EE:P = 276. 000 ENTCIL = 2. 000 HT I M = 30283200. 00000 SAM = 1. 000000000000

NOTE: The DECAY, %EFF and UC/US parameters are only computed for the prime line of each isotope, i.e., the first lihe entered in the library for the isotope. The upper and lower limits of computed values listed in the output report are iO and 7iO respectively. Values above or below these limits are listed as >E+37or

(

9-6 Peak Search Report Parameter Descriptions

Parameter Description

RUN # Current run number.

SRCHFRM/TO Energy in keV of left/right marker channels.

LT Current elapsed live time in seconds.

CT Current elapsed clock time in seconds.

HW(O) Average number of channels at the full width half maximum points of GeLi peaks or an estimate of the number of channels at the full width half maximumpoints of the Nat peaks at channel 0 (zero intercept of the variable FWHMcurve).

HW/E Rate of change in the number of channels at the full width half maximum points of Nal peaks with respect to the square root of energy (slope of the available FWHMcurve; equals 0 for GeLi peaks).

SENS Sensitivity level of peak extraction process with respect to background.

PN Sequential number of peak (from left to right) within marker defined area.

LEFT Channel location of the left limit of the peak.

PW Peak width in channels.

CENT Energy of peak centroid in keV.

FWHM Full width half maximumof peak in keV.

BKGND Background counts within peak area.

AREA Net area (total counts minus background counts) of peak.

%ER Percent error in area calculation determined by taking the square root of the area plus two times the background, divided by the area.

CTS/SEC Counts per second calculated by dividing the area by the current elapsed live time in seconds.

9-7

Parameter

DECAY

Isotope

%EFF HLIFE

%ABUND ISOTOPE

ENERGY

Identification

Report

Parameter

Calculated

where

where

HL C D

decay of

T

H

Description

or

K

detector

(Eff minutes

Energy Isotope

Percent Percent

listed

Half

i.e.,

equation

In

Eff

Eff

atoms billions

= Eff =

=

life

Descriptions

A/A 0 eA = = =

= =

A based

Eff (D)

=

A

line

identified.

efficiency

abundance (M),

+

9—8 remaining.

efficiency 2 curve.

+B

of is:

=

A is

+

Bx

of

decay

In

of

identified

at

Half Elapsed Number

Radioactive

Hold

H+C. Number

+B(ln on

=

as

(In

Bx

years

hours Eff

+

the

identified

eT

follows:

a

Cx x)

+

life

fit

time

and

of

end

x) of

+

of

(B)

(H),

Cx 2

)

clock

to

of

of

identified

The

of

+C(In

the

are

x

energy

isotope

in

from

of

the

radoactive

radioactive (In

=

identified

days

decay

seconds.

isotope

equation

detector

parabolas

the

In

or

x) 2

predetermined

The

Isotope

x) 2

x.

real

line (D),

total

in

constant

isotope

efficiency

The

from

seconds

time

from

years

at

for

isotope

collection

nuclei

nuclei

Library.

on

derivation

the

isotope

calculation

of

log

in isotope

=

(Y),

energy

(S),

the

acquisition

dual

ln2/HL

at

remaining

in

log

curves

seconds.

time

fraction

library.

time

scale,

parabola library.

of

line

of

the

(T):

to

in

0.

decay

seconds.

(

( (

SAM

HTIM

ENTOL

A2,

EBP

Al,

UC/US

B2,

B],

C2

Cl

on sample

Sample

and

Hold

Energy

curve

detector

Energy

Coefficients

(A2

calculate

V Y

NOTE: G

L

N

Ap

C where

H HL

K of

Calculated

per

the

activity

actual

+

unit

time

in

B2x

analysis

=

= =

=

=

= =

=

was

=

tolerance

=

size

break

9-9

keV.

efficiency.

If

of

in

activity

+

energy

collected

KC

in

sample

(oL)

C2

ApeK/LYNGV

activity

seconds of

Abundance

Sample

Conversion

Elapsed

Efficiency

Hold counts.

Radioactive

Half C

Elapsed

Net

point

units

<

sample

lo’er

x’)

A

io8,

(+)

area

Tisted

is

life

time

(o):

of

Ke

volume.

parabolas

of

as

size

in

between

of

live

and

clock

(Al

dual

of

was

volume.

of

follows:

K(C+H)/LYNGV

the

keY

in

(%

identified

factor

(%

in

identified

or

decay

the

peak

time

+

seconds.

performed.

parabola

the following

EFF/100)

or

volume

between

ABUND/lOO).

Bix

The

lime

the

used

real

of

(total

isotope =

factor

+

3.7

equation

acquisition

time

C1x 2 )

that

isotope

for

time

isotope

in

detector

the

of

counts

x

approximation

determining

units.

the

library.

data

io

detector

of

(e-1)

and

ln2/HL.

calculated

in

analysis

acquisition

for

in

disintegrations/sec/pC.

acquisition

minus

upper

efficiency

in

C

seconds.

calculation

seconds.

at

background

centroid

energy

is

in

used

seconds.

to energy.

BR—82

SE—75

FIS—?6

ZN—ES

CLI—SE

00—58

CO—SO

00—5?

FE—59

MN—SE ‘DR—Si

MN—54

K—42

Ec—4E K—40

IRR—41

CL—38

NA—24

BE—?

NFI—22

assigning

pushbutton

The LIST button

The

Fl

List

ISOTOPE The

pushbutton

printout

LIST

LIST

Isotope

TAB

or

TAB

TAB

1260011520.

the

function

for

array

Library

of

any

LIST

function

function

with

HLIFE

the

120.

244.

270.

314.

and

35.

26.

71.

“F”

44.

27.

9:

12.

3?.

15.

53.

TAB can

5. 5.

2.

the standard

I.

2.

Table

then

4L3H

40E:’

00c:’

40H parameter

IOM 26Y 30E:’

0€iE:’

EOE:’

8i3[:’

5?H 013[:’

40H

3Oc

83H

30I1 OOH

EOY

30D

be

is

can

function

line

Y

performed

terminated

Function

depressing

be

printer

isotope

1215. 1115.

1039. 1332.

1173.

1291.

2112.

1811.

1099.

1120.

1293.

1524. 1460.

216?.

1642.

1368.

2754.

1274.

776.

554. 279.

619. 264.

136.

559.

810. selected

136.

122.

192.

142.

846. 320.

834.

4??.

ENERGY

to

by

the

(LP)

entering

700

300 600 by

100 000

600 800

2013

400

200

500

200 000

400

jj313

200

500

500 6013

3013 200

600 1013

800 500

:oo

EJ30

700 500

700 library

400

100 500

600

600

the

at

depressing

Fl

for

assigned

any

ENTER

100.

9-10 1013. 100.

100

ioa

parameter

XFIE:UND

83.

72. 25.

43. 59.

55.

the

43.

50.

99.

99.

113. 85.

44.

15. 30.

56. 99.

17.

10.

99.

44.

32.

99.

ia

99.

table

5. time

9.

2.

0. its

9

Fl

00

00 00

‘30

60

10

00

00 60

00

00 90

40 60

60

00

80

50

80 00 00

00

9

130 130 oo

00

70 00

80 00

85 3—digit

95 30

pushbutton.

to

on

by

the

parameter

the

the depressing

(Status

corresponding

select

101

following

Page

parameter

by

code

the

depressing

4)

pages

STOP

(602)

and

“F”

(Status

depressing

pushbutton.

was

at

pushbutton.

the

the

obtained

Page

NXTV

operand

the

4).

push

The by

tLI

(

( ( KR—88 2. 80H 196. 100 37. 80 166. 000 6. 80 834. 700 13. 00 1529. 800 11. 30 RB—89 14. 90M 1030. 700 60. 00 658. 800 10. 70 948. 500 10. 00 1246. 400 46. 60 SR—85 64. 00D 514. 000 99. 30 SR—91 9. 70H 1024. 200 33. 00 653. 000 12. 00 749. 800 24. 00 Y—88 106. 70D 898. 000 93. 40 1836. 100 99. 40 ZR—95 ES. 00D 756. 900 54. 80 724. 200 43. 60 NB—94 20000. 25Y 871. 000 100. 00 702. 000 100. 00 N8—95 35. 10D 765. 800 99. 80 PU—103 39. EOD 496. 900 89. 00 610. 000 5. 40 RU—i06 367. OOD 621. 800 9. 80 AG—110M 260. OOD 657. 700 94. 40 763. 800 22. 60 884. 700 75. 10 937. 500 34. 40 1384. 200 26. 10 1505. 000 14. 00 CD—109 450. OOD 87. 800 100. 00 SN—113 115. 20E:’ 391. 700 100. 00 58—122 2. 80D 564. 000 63. 00 58—124 60. 40D 1691. 000 48. 30 602. 600 98. 20 58—125 2. 77Y 427. 950 29. 60 176. 290 6. 30 463. 510 10. 00 600. 770 18. 40 606. 820 5. 20 636. 150 11. 20 1—131 8. 04D 364. 500 82. 40 284. 300 5. 80 637. 000 6. 90 1—132 2. 30H 667. 700 99. 20 522. 600 16. 40 630. 200 14. 00 772. 600 75. 90 954. 500 17. 90 1—133 20. 30H 529. 500 89. 00 875. 300 4. 40 1—135 6. 70H 1131. 600 26. 80 526. 500 16. 40 1038. 800 10. 00 1260. 500 34. 90 1457. 600 10. 00 1678. 300 11. 80 9-11

:: CS—134

BA—133 I::5—j37 BA—140 LA—14@ CE—139 CE—141 EU—152 SH—153 CE—144

EU—154

HF—181 EU—155

W—187

HG—203 AU—198

BI—214

RA—226

1600.

140.

284.

30. 40. 12.

46. 32. 14.

42.

23. 46. 16.

2. 7.

7.

5.

2.

20Y IOY OOY 22H 79D OOc:. OOD 81.3H 40E:. OOY

:34y

00Y

SOD 90H EOD 7OD 02Y

02Y

1596.

1407.

1274. 1086. 1112.

1004.

1120. 1238. 1764.

1120.

1764.

604. 569. 661. 795. 537. 356. 486. 162. 303. 925. 815. 328. 304. 384. 276. 165. 145. 103. 133. 696.

344. 121. 964. 778.

123. 723. 873. 996.

105. 482. 133. 685. 345. 134. 479. 411. 279. 609.

609. 295. 352.

81.

86.

800 600 300 200 900 400 000 300 200 600 900 100 700 900 :30i3 600 100 500 800 200 500 900 500

800 000 200 800 000 000 800 100 300 800 200

300 300 200 500

200 700 200 300 700 800 300 400

200 000 000 400

400

700

100.

9—12

16. 86. :34. 98. 23. 14. 12. 80. 45. 95. 30. 55. 23. 21. 49. 28. 10. 24. 33. 31. 15. 16. 17.

33. 10. 40. 19. 17. 11. 10. 22. 83. ::. 41 32. 12. 10. 81. 26. 47. 95.

j7 17. 18. 35. 43. 14

16.

6. 4.

6. 1.

6.

10 00 00 20 60 00 00 00 60 80 60 00 90 0i 50 20 00 00 10 40 80 30 50

20 20 40 @0 30 40 60 30 50 10 60

40 70 00 50 00 00 00 10 50 50 60 00 00 00 00 00 00 00 00

60

An

_PAGE

versus

the

and operand NP—239

(Al, The pushbutton

Calcu

PFs—233

The

HT

CI

81

Al

ENE

ENS

EN4

EN3

EN2

ENI

ETOL

DGRP

example

COEFFS

COEFFS

upper

COEFFS

B],

late

efficiency

350.

pushbutton

—0.

6.

—17.

1173.

Cl,

(A2

Efficiency

661.

391.

279.

165.

or

486250

of

87.

function

function

function

5000D

71066

2.

for

A2,

+

8747

Status

600

200

700

200

900

800

000

B2x

(EF1—EF6)

any

27.

B2,

I

7

2.

array

+

Curve

Page

is

“F”

can

is

:o

35D

40D

C2)

C2

performed,

performed

and

parameter

SAM

C2

82

A2

EF5

EF6

EF4

EF3

EF2

EF1

EBP be

AGRP

7

x 2 )

parameters

parameters

Coefficients

showing

selected

then

228.

106.

103.

:

277.

311.

parabolas

99.

98.

0.

—3.

10.

276.

by depressing

it

100

400

700 500

100

by 900

400

900

180465

the

calculates depressing

for

1.

55073

38780 (Status

0.

0.

1.

2. 3.

4.

(Status

entering

0000

Function

9—13

entered

based

000

634

337

254

053

733

595

AID

the

22.

ii.

18.

12.

13.

38.

I

9.

6.

the

Fl

Page

Page

50

80

00

00

on

60

10

50

‘30

its

the

and

parameter

and

ENTER

values

7)

3—digit

7).

corresponding

displays

calculated

of

the

pushbutton.

entered

select

by

lower

the

depressing

values

values

for

code

(Al

“F”

the

and

pushbutton.

(603)

is

for

energy

the

as

B]

the

at

NXTV

follows:

x

coefficnt

the

(EN1-EN6)

+

Cl

When

x )

versus

256

of

or

data display

represents the to

pushbutton array

compression channel number

compression The Graph

For The

NOTE: is

plotted

which for

the

example,

“F”

channels

GRAPH

GRAPH

channels

and

any

efficiency

energy

Efficiency

and

from

pushbutton

spectrum

For

the

then

in

energy

“F”

array

the

an function

ratio function

ratio

the

1

GRAPH

of

entering

to

to parameter

depressing

versus

expanded

graph

the

first

be

and

4096

on

on of

Curve

is

(4096/16

is

spectral

used automatically

the

16:1

the

256

function

then

can

is

efficiency

not

display,

and

16

performed

vertical

Function

horizontal

for

by

display

data selected,

be

required.

selects

the

depressing represents

=

entering

display

display selected

256)

ENTER

is

channels

i.e.,

curve.

assigned.

(1,000,000

of

a

by

selected;

and

16:1

a

(each

the

with

of

The

the pushbutton.

entering

its

1

graph

the

for is

=

the

energy

starting

compression 3—digit

When

compression

adequate the

the

“F”

1:1,

ratio

point

9-14

graph

The

of

therefore,

counts

Fl

markers

pushbutton

2=2:1,

a

the

the

between

versus

equalling

compression

select

at

parameter

compression

of

dual

to

channel

GRAPH

vertical

the

ratio

ratio

and

provide

efficiency

code

entry

3

parabola

the

energy corresponding

=

depress

16

or

by

number

function

3:1,

1.

energy

ratio

(604)

ratio

times

of a

=

a depressing

256—point

versus

Each

good

a

44:4,

100%).

curve, detector

the

number

1

at

number

selects

the

scale

prior

is

point

the

graphic

XPND

efficiency

performed

energy

to

bracket

the

operand

to

of

etc.

graph

can

efficiency

the

the

at

displayed

data

depressing

pushbutton.

the

NXTV

representation

be

number

“F”

per

A

for

the

operand

with

spectrum

curve. any

pushbutton

1:1

channel)

parameter

a

pushbutton

first

curve

4096—

of

a (

which

Firmware firmware

Peak

NOTE: The

The

INSTALLATION

Automatic

Standard

Search

must

The

pairs)

be

be

Automatic

Package

installed

Isotope

installed

Isotope

which

Library

(47—0057)

on

must

Identification

Isotope

on

the

the

be

Firmware

consists

installed

Firmware

Identification

and

either

of

Package

Option

on

four

Option

9-15

the

the

512

Package

consists

board

Firmware

Standard

board

x

8

(70—2434).

EPROM’s

of

requires

(70—2434).

or

Option

six

Special

512

(two

that

board

x

8

Isotope

firmware

the

EPROM’s

(70—2434).

Automatic

Library

pairs) (three

The Package

AID ND600 to decay, table, five The output and graph automatic provides

entering Tr’H assigned each functions depressing selected an ISO S values set-up the pushbutton. ISO the display curve, Permits COEFFS LIST the units. Outputs GRAPH for 101 detector efficiency Calculates Lists Page Displays N I an LL, is auto

PEC energy the functions: Automatic energy automatic activity ND600 ID device. Function ID any of the energy TAB calculate 7). efficiency for paramters energy, the isotope function and energy Function analysis the entry for the its a to number Function efficiency isotope

Automatic a is Function peak defining curve report coefficients Function break the the tolerance, graph (47-0058) any select for I I acquire I MV’ assigned other Automatic that automatic line

F N and automatic isotope identification Isotope efficiency percent (600) corresponding versus coefficients each I extraction of can curve. sequence. ‘,rL...

CAT parameter in of library point identifying of (Status of code the functions (601) display a spectral curve an Al (604) group also channels (603) dual the peak to (602) “F” the efficiency identification Identification isotope of and Any Isotope abundance, peak (60X) a

Isotope table dual be isotope curve parabola Page the status particular based hold of process determined numbers,

Q six When of of by data performed report, can the search the dual from at parabola the and the energy “F” N I in time depressing 7). coefficients, Identification N the parameters the isotope, I isotope be identification parameters channels the

s functions any which dual parabola pushbutton. detector performed Included

Identification 1 list percent sequentially and report “F” report values 101 Package the isotope to versus one during isotope as detector parabola 4096. parameter, the device. identification run corresponds half-life, a the of 1-N and at entered efficiency can curve, are efficiency and sample step by efficiency number, (Status Package library. the provides the the by setup, NXTV where library The then the be in AID The which for of AID of require installation. efficiency curve. (EN, point DGRP, Al, RUN—Current parabola EBP—Energy EN1-EN6, c:’i3RP calculated parabolas (Al RUN days isotope sample identification ENI EN: SAM—Sample on ETOL—Energy EN5 ENS EN2 EN4 ftJ HT—Hold Cl E:I SAM ETOL six four NUCLEAR installation. the Automatic Bi, Status + Status EF) 512 Schaumburg, (D) at Telephone require 512 Blx analysis Golf the AGRP—Current was Cl, library which or on occurs. 117::. —‘3. x (EF1-EF6) used time EF1-EF6—Energy energy Firmware 155. 391. 279. 551. j7 x 8 + and years A2, Parameter collected the Parameter 87. 8 EPROM’s the report. Cl 7. 71065 1. 1. break Isotope The transition EPROM’s when sample Meacham size run in :3745 for tolerance (312) dual B2, DATA 0130 800 200 600 7013 200 9130 x2) ‘3130 ‘3013 Firmware Illinois (Y) seconds and Standard determing number. in 7 I C2—Coefficients point and values parabola Option between 884-3621 generating and units Identification the was (three 60196 display Roads Display Descriptions from (two iNC upper the (±) in actual (5), performed. Option of which A’3RP EE:F EF1 EF3 EF5 EF4 EF2 F12 EFS C2 82 HT board keV Isotope (EN1-EN6) time firmware firmware the in detector detector the volume. minutes (A2 and the keV which energy time lower that define (70-2434) board 350. + Package acquire isotope Library between 3513. —: 10. ‘3. of the B2x data (M), efficiency. efficiency pairs) pairs) defines to 180465 the versus listed (70-2434) six 4. 1. 2. 13 0. 3:37:313 551373 513130[:’ analysis upper + 00130 acquisitior hours group. consists lower points AID consists 595 254 ‘353 337 534 which for C2x2) the in the I the (H), Standard

N

Sales

Tel: United Atlanta, Boston, Tel:

617/535-5665

404/284-1747

and

States

Mass.

Georgia

Service

Isotope

E:E—7 NA—22 NA—24 cL—:.s K—40 AR—41 a K—42 ISOTOPE

C.F?—51 [*4—54 FE—C--’ HN—56 co—5? co—so I NUCLEAR ZN—ES cu—ss SE—75

BR—82 f\R—88 95—76

RE:—89 SR—S’S SR—91

ZR—9S and

RU—103 NE:—9S NE t—° FIJ—1ii- AG—lION

cc SN—1-13 58—124 :s—i

1—13:1

I—=•

—4’-

—44

—IM

Facilities

Canada

i.

Library

2’GOOIE+09Y

HLIFE

:14.

270.

244. 120.

1M’-

Tel: 5::. 3t.’’ 15. 250. :3.7. Tel: Cleveland, Tel: :1.2. 27. Denver, 49.1

1-15. 44 Los

25.

3.5.

14.

64.

55.

39. 35. 2.

•1.

:

2. 50.

i S.

S.

DATA 2.

9.

8.

OCH 0D

:33H :.o

40H 50Y

:33[ 57H O0[:’ Angeles, frl[ —‘ME 714/898-7760 COD :M[ ion 25Y 303/755-6607 000 400 40H 216/331-5145

40H

SOH

90N 00[:’ Table 70H

000

500 100 :

000

Mu[ ‘ni[.

400 200

04D

‘M[ -i,

M

Colorado

i268. ±274. 21E7. Ohio 254. 1460. 1292. 1642.

1120. 1524.

j:3j1. jji-’-- 2112.

129i. II?::. 1115. 13:3:2’. -1215. 1039.

1529.

103:0. 1245. 1024.

ENERGY 1:335,

477.

220. 1505. :346. :3::4. 13:34, i42. 1691. i92. I i::6.

559.

264. 1: 279. 775. 196. 619. 554. :334, 156. 65:3, 514. 94:3.

Calif. 749. 653..

756. 724. 495. 702’.

765. -‘‘-

i 610. 657. :3:34, 937, 763.

(47-0082) 9-4 3:91. INC 3.54. 284. 502. 22. 11.1 537,

“l —4 —

600 600 500 400 100 600 500 700 700 500 100 : 900 600 :uki 200 600 500 500 200 100 200 Mliii 400 400 500 :300 200 200 600 500 inn-i 700 100 3.00 700 000 100 800 500 :300 700 000 200 400 LiMO :300 000 900 100 200 000 900 800 11MM

000

700 500 800 700 iiii 200 000 i-n-ni 700 000 500 3.00 600 000

MM

Schaumburg, Tel:

San

Tel:

Tel:

New

AE:UND

100.

100. 1ni 100.

100.

10. 1MM 99. 100. :2. 99. 44. 99. i0 17’.

99.

:0. 1MM r- 15. 100. :35. iO. 44. 99. 50. 59. 43.

25. —‘ 83. -1::. 37. 43:. 72’.

11. 10. 50. 10. 3:3:, 99. 45. 0: -12’. 24. 54. 43, 99. 89. 99.

94. 34. 22. 75. 9. 14. 26. 0.

4:3, 98. 2’. :32. 9. 5. -:

Francisco, 5. -1 312/884-3600

415/483-9200

212/962-3666

5.

York,

5. 5.

:0 95 :30 00 :35 00 00 90 l:jkl 70 00 90 00 00 00 :30 Ull 50 60 :30 00 90 4ii 60 60 00 00 00 00 10 00 00

00 00 80 00 80 30 00 70 00 30 00 50 4u 00 00 80 40 50 00 00 :30 Mu

40

40 10 50 00 40 si 10 MM ni 30 00 20 40 80 90

ii

New

Illinois

Calif.

York

Tel:

Washington, Frankfurt, Tel: Europe

1—1:2’ CS—n4 1—135 i—i:.:. cs—i::?

BA—133

E:A—i40

LA—140

cE—139 cE—141

I SN—153

EU—iSa’

EU—154

EU—iSS HF—1:31

529952 U—i

AU—19:3 SI—14 H’3—2’03 301/345-6766

RA—2’2’5

-—.,::

E—144 NP—2’39 —

Germany

D.C. .

1500.

140.

3

a’o.

:0.

ia.

40.

32.

45

-14.

2

6.

2 Tel:

42. Tel: Uppsala, London, 7. —:

46. i

,.—

4

7.

S.

2’.

2’

::OH

FOH Specifications

10?

Printed

COY

20Y

790 2’2H

000 400 in-ic 80H

OOY

OH

:34y

OOY

SOc:

600 700 Id

4MH

02Y

22733,

4Mc

(018) 350

Sweden England

12’EO 1131. ±028 14’ 167:3

1596.

1407.

10:35.

1112’. 1274’.300 c:a 657 522. 975 529. 954 772 526

1004. 795 569 604 SEi. :56. 15-25-15 276

:0::. :84. 1120. 527 i62’. 1764. :ii4 12’3::3 32:3. 4:35 :315

11ri 1754 92’S 145. 155.

595 103 1::

121 344 778, 964.

in •i’’’

72’:: :373 995

lOS. 25357 4:32’.

3:45. 1:: 479 •j34 n-

279. -i- 411.

509.

295 3:52’. :ii

3:00. 2’??

105. 103:. 228’.

1

9:3,

99.

U.S.A.

200 600 500 600 600 500 200 700 500 900 500 :oo 500

:oo — 600 700 nhii 400 200

ice

100 900 600

600 800 :300 200 -MM 900 500 MlI 200 500

a’oo 900 :300

000 800 000 000

‘100

300 200 i.ii.i 300 :300 3:00 On-ni 200 700 too

200 ini 300 800

:i-ni 200

000 400 3:00

400 200 000 4MM 700 400 900 100 500 700 -n-ni

400 100

subject

100.

Other Schaumburg, throughout

your Please Representatives representative.

17 15. 14 99 26. 99 75 10 IM 15 ii.

:35

is 9:3

:34. - i2’

:0. 10/77 22 14

95

45 23. 21

:30.

49. lii 28

33 31. 24. 15 10. 17.

15 3:3

40. ‘j9 4 ii 10 4

22’. 17.

:33. 41 12’. : 25 95. 10

:31. 17. 4

5 17. 4 43.

14 1:3 15

: 5 12’ 13 1 11

22’. 18.

5

5.

9.

20 90 00 40 90 90 :3i 00 00 40 40 HM so

00

00 •1o 60

00

00 60 20 local 80 20 60 M

00 00 10

00 00 90

50 40

40 20 :0

00 20 3:0 40 Sales 50 50 10

70 to :0

50

40 write 00 00 00

50 MM 10 50

50 MM 00 00 00

00

LIM 00 MM 00 50

50 10 50 [I 00 00 :30 50

PS

change.

and

the

or

1037

Illinois

call

world.

Service

located

2.5

for

a a

(

(

(

of

depressing

300

selected

Select the any by digital

ratios denominator

code

ENTER report

monitoring

bracketed

DESCRIPTION

The net

The

lapping

the

positioning

other

areas,

one

Digital

ND600

of

functions

dgital

at

Code

pushbutton.

ratios

the

regions

of

function

an

digital

by

the

gross

the

live

selected

Digital

Ratios

optional

for

setup,

the

ratios

the

NXTV

digital

during

can

in

any

areas

ratios

left

is

display

any

Package

functions

Ratios

displayed

be

When

output

of

function

ND600

hardcopy

DIGITAL

pushbutton.

Mnemonic

and

or

ratios

data

memory

functions

the

assigned

combinations

right

cursor

Package

the

12

digital

provides

acquisition.

functions

DIGITAL

are

at

for

digital

ENTER

peripheral

group.

RATIOS

markers

to

Code

the

to

can

as

the

The

either

ratios

permits

the

follows:

operand

three

be

selected

ratios.

pushbutton

is

of

RATIOS

CHAPTER

3—digit

Either

desired

can

sequentially

assigned

list,

net

the

The

device.

10-1

firmware

denominator

one

markers of

of monitoring

Activates

markers

to

Function

be

pushbutton

and

Fl,

the

package

any

The

any

permit

and

“F”

select

specified

PACKAGE

or

“F”

X

is

gross

to

F2,

net

all

of ratios

region

freeze

parameter

as

to

depressed,

parameter,

controlled

a

the

specifying

selected

the

code

or

defined

F3

bracket

either

particular

up

also

areas

region

array

gross

are

as

or

12

bracketed

status

DIG

to

(47-0071)

and

permits

either

digital

F4

dynamically

12

the

in

(Status

area

for

and

the

operational

RATIO

ratios

the

parameter

of

mnemonic entering

digital

overlapping

update.

either

numerator

“F”

that

any

the

numerator

then

mnemonic of

generating

ratios,

by

Page

or

parameter,

any

status

numerator

ratio.

parameter

the

ratios

the

depressing

restoring

the

Any

computed

(Status

code

region

4).

functions:

net

deleting

left

or

display

or

3—digit

or

code

between

of

denominator

or

a

When

non—over

and

for

the

summary

or

by

each

Page

the

gross

the

each

of

for

right

any

select

(PAGE

digital

the

4)

of

area 7) Select Code Mnemonic Code Function ( 301 RATIO LIST Outputs the digital ratios list at the input/output device selected for the 101 parameter (Status Page 4).

302 FREEZE Permits visual monitoring of digital ratios during accumulation by freezing the periodic update of the status display.

INSTALLATION

The Digital Ratios Packages consists of four 512 x 8 EPROM’s(two firmware pairs) which must be installed on the Firmware Option board (70—2434).

OPERATION

DIGITAL RATIOSFunction

The DIGITAL RATIOSfunction is selected for the Fl parameter (Status Page 4) and performed as follows:

1. Select Status Page 4.

2. Set the display cursor to the Fl parameter using the CRSRpushbutton.

3. Enter 300 at the operand pushbutton array and depress the ENTERpushbutton. DIGITAL RATIOSis displayed for the Fl parameter.

4. Set the display cursor to the PAGE parameter using the CRSRpushbutton.

5. Enter 7 at the operand pushbutton array and depress the ENTERpushbutton. Status Page 7 is displayed.

6. Depress the SHIFTpushbutton to select the right (>>) direction and depress the F1/F2 pushbutton. The DIGITAL RATIOSparameters as shown and described below are displayed on Status Page 7.

(

10-2 DIGITAL RATIOS Status Parameter Display

- FA‘3E [‘IG PATh:’ NO PATIO LMFK NUll AREA LMF:K DEN AREA 1 0. :318 17:3N 221:17 178’3 270:1 2 0. 612 2L32N 3493 20213 57Il3 381 980G 71:32 :174513 973 4 0. 129 1745N :347 980N 6570 8 i. 325 98013 7182 1:N 11 7 0. 266 9806 ( 17813 27’31 :3 297 980N 6570 ±78N 22117 10 ‘:3.‘:336 174513 97 17813 2703± 1:1 0. 532 202N 3493 9:3’ZIN 6570 12 L3.325 98013 7182 ±78N 22117 Lt1RK PMF:K 2047 D‘3P P ±

DIGITAL RATIOS Status Parameter Descriptions

Parameter Description

NO Ratio number 1 — 12.

RATIO Ratio value in fixed decimal notation (0.000 to 99999).

LMRK Numerator region left marker channel number and N or G for net or gross area; respectively.

NUM AREA Numerator region area (1 to 108_i). A value of 108 will displace N or G character.

LMRK Denominator region left marker channel number and N or G for net or gross area, respectively.

DEN AREA Denominator region area (1 to 108_i). A value of io8 will displace N or G character.

10-3

d. the

the

4.

b.

c.

ratio. a.

ratio.

codes 5.

numerator array

parameter, depress

2.

MSPN

3.

NOTE: any

After

DIGITAL

DGRP

either

RMRK

Parameter

LMRK

1.

spectral

ratio.

overlapping

and

selecting

Enter

Enter at

Enter Define

Set

Enter

Bracket

Set

Enter

as

pushbutton;

the

The

the

the

RATIOS

depressing

the

the

or

entering

ENTER

ND

NN

GN

the

region.

GD

operand

markers

denominator

the

numerator

display

display

the

and

desired

(63)

(43)

(46)

(66)

or

net

desired

Set—up

or

pushbutton.

non—overlapping

entering

the

to

the

can

to

to

pushbutton

or

to

cursor by

cursor

Current

Current

Current

Description

define

display

define

define

define or

gross

respective

setting

ENTER

be

of

spectral

denominator

to

positioned

to

the

the

area

display

right

left

the

the

the

the

the

the

group

the

pushbutton

array, selected

DIGITAL

net

of

marker

region

gross

gross

desired

net

DGRP

left

marker

display

region

the

number

group

area

area

to

and

for

and

area

area

spectral

10-4

ratio

with

parameter

channel

bracket

RATIOS

ratio

any

channel

of

after

of

in

then

right

number.

cursor

of

of

at

the

any

the

the

by

of

the

the

NO

the

depressing

each

channel

region

spectral

entering the

any

spectral

number.

group

markers.

first

function

number.

spectral

spectral

operand

using

parameter

12

spectral

marker

to

bracketed

can

ratios

number

the

the

region

one

region

the

as

region

region

pushbutton

be

channel

CRSR

LMRK

described

region

as

of

using

ENTER

selected

as

at

as

the follows:

by

as

as

pushbutton.

the

the

the

and

the

following

using

the

the

the

number

pushbutton.

array

denominator

operand

numerator

above,

CRSR

then

and

denominator

numerator

markers

the

and

entered

entry. the

pushbutton.

MPOS

two—letter

pushbutton

RMRK

as

of

of

of

the

the

and

of

the (

summary

the

parameter

and

NOTE: The

In

However, b.

The

The

a. operand desired

RATiO

9. depressing

used

7.

and

parameter,

8. array,

group,

as 6.

performed

the

NOTE:

regions regions

this

the

summary

performed

following

RATIO

RATIO right

then

to

Enter

Enter

Restore

Delete

Delete

Repeat

example,

gross

and

LIST

repeat

ratio

define

of

to

When

pushbutton

report

if

depressing

marker

due

(Status

one

each

in

the

the

then

LIST

LIST

depressing

RD

RN

Function numerator

report

NO

any

all

any

steps

the

is

to the

by steps

the

minus spectral

will

channel

(73)

(76)

ratio

depressing

function

an function

the

in

the

defined

depressing

order

Page

parameter,

markers

defined

101

numerator

is

3,

example

the

array,

be

to

the

1

to

RATIO

number

(—)

displayed

desired.

and

4

the

restore

4)

(GN)

in parameter

restore

regions

width,

adlacent desired.

ENTER

and

pushbutton

ratios

can

is

an for

to

2

ratio

minus

and

the

performed

whenever

LIST

the

of

5

bracket

overlapped of

or

or

output

entering

be

the

the to

then

i.e.,

the

to

ENTER

by

following pushbutton.

Up

by

characters

gross

denominator

Fl

terminated

(—)

channel.

function

define

Peak

(Status

be

markers

markers

setting

setting

to

summary

and

depressing

of

pushbutton pushbutton

the

defined

denominator

by

12

a

by

either

pushbutton.

ratios

the

entering

change

setting

the

and

ratios

spectral

Page

10-5

depressing

the

the

was the

to

per

to

RATIO

However,

report

at

net

of

staggered

bracket

of can

are

bracket

last

display

display

4)

assigned

line

any

the

can

any

with

and

the

the

in

or

A

located be

is

region

line

(GD)

LIST

display

generated

gross

ENTER

time

limitation

be

blanked

(2)

following

ratio

left

entering

the obtained

line

the

the

cursor

cursor

these

defined

of

at

array.

summary

to

of

marker

by

corresponding

areas

in

denominator

by

within

the

printer

the

numerator

the

pushbutton.

group

a

any

depressing

to

setting regions

to

to

ratio.

R

current

by

operand

of

by

two—letter

Fl

of

and

select

(7)

any

the

at

group

the

report. more

the

setting

(LP) is

numerator

parameter

the

at

the

desired.

desired

ratio

the

region

must

CRT

RATiO

status

the

the

assigned

which

than

region

peak

pushbutton

the

definitions

“F”

display

the

display, codes

operand

NO

be

CRT

STOP

one

ratio

pushbutton.

of

page.

and

channel

LIST

(Status

defined

was

markers

of

parameter,

the

display,

to

at

memory

cursor

the

denominator

pushbutton.

NO

originally

function.

the

array,

pushbutton

the

ratio.

the

can

Page

ratio.

and

to

either

101

to

be

select

4) the Summary Report (

DIGITAL RATI’:’s NLIMERAT CiP C’EN i:iN I NAT OR NC RATIO GRP LMRK MN PEAK N/G AREA GRP LNRK [IN PEAK N/G AREA I 0. 131 2 42 14 51. 000N 53:E 2 42 14 51. 000G 40995 2 Ci. g:3j 2 59 12 ES. OOCIN 2295 2 59 12 65. ØOiJi3 o : Ln:n:IN : i: I.Illij j-4_ : E1 to i: 5 t::.i i :EE46 4 0 57’S 4 10 10 15 UIION 4 iii in i LIn0I 5 0 E.9E i i :‘i ,.1uI’IN 4::4 i :‘‘ ,.uni,, 5017’ 6 ü :s 17’ ..t : OflflN 17’ 16 ‘.i’.iu’ 7n ni-InN 7w Liw1Ii 57’E1 ‘ o .3tE :1 5 i i ‘ .1 LI i.iwIN 14 E i2 :1 .i i.i 4. ‘I . 2: uS i :2 IE :n uwwi- wI7’ 1 wi-InN :10 3S. 37 3 50 13 57. OUUU 14.’E; 31 59 21 70. 01-JON 5293 t 2 59 65. 030G 28323 Ii 0. 204 31 59 2:1 70. 0006 5781 12 :12 0. 001 2 59 12 65 Oi-JON 2295 :1 1.2046 185. 00i-3G 2126195

Summary Report Parameter Descriptions

Parameter Description (

NO Ratio number 1 — 12.

RATIOS Ratio value in fixed decimal notation (0.000 - 99999).

N UMERATOR/G RP Numerator region group number.

NUMERATOR/LMRK Numerator region left marker channel number.

NUMERATOR/MW Numerator region marker channel width in number of channels.

NUMERATOR/PEAK Numerator region peak channel location in fixed decimal notation (0.001 — 9999.999).

NUMERATOR N/G Numerator region net (N) or gross (G) area indicator.

NUMERATOR AREA Numerator region area (1 to 1o—1). A value of 10 will displace N or G indicator. (

10—6 Parameter Description

DENOMINATOR/GRP Denominator region group number.

DENOMINATOR/LMRK Denominator region left marker channel number.

DENOMINATOR/Mw Denominator region marker channel width in number of channels.

DENOMINATOR/PEAK Denominator region peak channel location in fixed decimal notation (0.001 - 9999.999.)

DENOMINATOR N/G Denominator region net (N) or gross (G) area indicator.

DENOMINATOR AREA Denominator region area (1 to iO—i). A value of io will displace N or G indicator.

FREEZEFunction

The FREEZEFunction is performed by depressing the corresponding “F” pushbutton. when the FREEZEfunction is activated, it locks out the periodic update of the status display to permit live monitoring of the digital ratios during data acquisition.

CAUTION: Since the FREEZEfunction locks out the periodic update of the status display, care must be exercised in its use as various parameter values and system functional displays may not reflect their true current state.

The FREEZEfunction can be positively terminated by depressing the STOP pushbutton. If the SHIFTpushbutton is not depressed to change the direction after the FREEZEfunction is activated, depressing the corresponding “F” pushbutton a second time will also terminate the FREEZEfunction.

10-7

N UC LEAR DATA INC TFCHNICAL Golf and Meacham Roads Schaumburg, Illinois 60196 :: SPEC IFICATI0 NS Telephone (312) 884-3621

ND600 Digital Ratios Package (47-0071) The ND600 Digital Ratios Package permits monitoring Digital Ratios Status Parameter Display up to 12 digital ratios between net areas, gross areas or combinations of net and gross areas in overlapping 7 ::: DIG RATIO or non-overlapping regions in any memory group. NO RAT I L[IRK NUN AREA Lr1Ri< DEN AREA Either the net or gross area of any region bracketed 1 9. :j:3 178N 221:17 1786 279:I by the left and right markers can be specified as 2 0 612 292N 3:493 2926 5793 either the numerator or denominator for any of the 3 7. 3:31 98913 7182 :17456 973 12 digital ratios. The ratios are dynamically computed 4 9. 129 1745N 847 989N 6579 for monitoring live during data acquistion. The 6 9. 325 9:39i3 7182 178N 22117 package also permits generating a summary report at 7 9. 266 9:396 7182 17813 279::t an optional hardcopy peripheral device. :3 9. 297 989N 6579 178N 22117 JO 0. 936 17456 973 1786 27931 The Digital Ratios Package provides three functions: 11 0. 532 292N 3493 989N 6579 digital ratios setup, output digital ratios list, and 12 6. 325 98013 7182 178N 221J 7 freeze status update. Any of the digital ratios functions LlIRK I p’jp: can be assigned to any of the “F” status parameters D’3RP I by entering its select code (30X) and performed by depressing the corresponding “F” pushbutton. When Digital Ratios Status Parameter Descriptions any one of the functions is assigned to a particular “F” parameter, each of the other functions can be NO—Ratio number 1-12. sequentially selected for that parameter by depressing RATIO—Ratio value in fixed decimal notation (0.000 the NXTV pushbutton. to 99999). DIG RATIO Function (300) LMRK—Numerator region left marker channel number and N or G for net or respectively. Activates the DIG RATIO Status Display (PAGE 7) gross area, to permit specifying either the net or gross area of NUM AREA—Numerator region area (1 to 1081). A Q8 any region bracketed by the left and right markers as value of 1 will displace N or G character. either the numerator or denominator of any of the LMRK—Denominator region left marker 12 digital ratios, deleting any one or all defined ratios channel or restoring the markers to bracket the numerator or number and N or G for net or gross area, respectively. denominator region of any ratio. DEN AREA—Denominator region area (1 to 1081). Q8 RATIO LIST Function (301) A value of 1 will displace N or G character. LMRK—Current left marker channel number. Outputs the digital ratios summary report at the 101 device. RMRK—Current right number channel number. FREEZE Function (302) DGRP—Current display group number. Permits visual monitoring of the digital ratios during data acquisition by freezing the periodic update of the status display. The Digital Ratios Package consists of four 512 x 8 EPROM’s (two firmware pairs) which require the Firmware Option Board (70-2434) for installation. Digital Descriptions Digital

I\D NO—Ratio channel channel RATIOS—Ratio channel (0.000-99999). number. gross NUMERATOR/KMRK—Numerator (0.00 NUMERATOR/MW—Numerator NUMERATOR/GRP—Numerator NUMERATOR/PEAK—Numerator NUMERATOR NUMERATOR Tel: Sales Atlanta, Boston, Tel: United 1 DIGITAL NO 11 1121 12 O-1). 2 1 3: 4 9 6 5 7’ E 617/535-5665 404/284-1747 and RAT ‘2’. g. 0. 0. ü o 0 g. 0. 22. 0. 35. States 1 (G) Mass. Georgia -9999.999). Ratios Service Ratios A 131 :318 081 835 896 i: 31 57’S 204 001 width location number. 37 05 I value area

NUCLEAR and i: number RATIOS Facilities Canada I3RF’ in AREA—Numerator N/G—Numerator Summary indicator. Summary of 28 16 :1 16 :i 31 value in 2 3: 2 number 4 3: 2 1 fixed Q9 1-12. LrJRK in will Tel: Tel: cleveland, 42 Tel: 5’2i 59 22 11 17 Denver, 5 59 22 Los 59 fixed decimal DATA of Report Angeles, displace Report 714/898-7760 303/755-607 216/331-5145 channels. tiN NI_Ir1ERFjTOR 14 13: 12 lfl 18 ..i 16 Colorado i 13: 18 12 21 decimal Ohio Calif. region notation region region

INC Parameter region region N region F’EAI< 65. 51. 57. i.i l 25. 3:0 57. 3:0. 70. ES. or mi notation Tel: Schaumburg, Tel: San Tel: G New net marker group 0 O’2iON 3,2’N ‘.niw I.11-1I.IN 0’2-II2IN MI-IkIN O121ON 0 012106 121i2’I21N 00013 area peak indicator. left Francisco, 312/884-3600 415/483-9200 212/962-3666 York, (N) N/G marker (1 or New to Illinois Calif. 153:3:21 187426 York 453:3:4 50617 ‘1 AREA 2295 53::36 5695 _.‘ 5781 2295 channel number. marker DENOMINATOR/GRP—Deñominator DENOMINATOR/LMR or channel DENOMINATOR/MW— (0.001-9999.999). DENOMINATOR/PEAK—Denominator indicator. DENOMINATOR (ito DENOMINATOR Tel: Frankfurt, Washington, Tel: Europe gross 529952 ‘3RF 301/345-6766 1O-1). 28 16 3:1 channel width 2 2 3: 4 location .1 2 2 1 (G) Germany LtIRI< D.C. area A 42 59 i’4 5’2i 17 in 4.. 22 59 59 59 value number. 12046 in number AREA—Denominator N/C—Denominator indicator. Tel: Tel: Uppsala, London, fixed DEN’JN MN 12 14 1’-’ 13: 18 Specifications .J.. 14 16 12 12 Printed 21 of 22733, (018) K—Denominator 1O Denominator decimal of Sweden England 15-25-15 185. in 25357 will channels. F’EAK 51. 57. 65. 3:0. i 7”.i 25. 65. 65. 1 I 70. NFITOR U.S.A. displace 000’3 000’3 0006 HmiIj 0121013 ‘.nio’ 0003 MMMIj 0’210N 00013 01210,3 000N notation subject throughout Other your Schaumburg, representative. Please Representatives 10/77 N/13 region region region local region region region Sales write to N 2126195 PS change. or :L87425 and the or net 40995 :46 4M335 506:17 1038 group marker Illinois G FIRER area 7’ 6823 call peak 2295 529:3 left world. Service located (N) El 2.5 for

(

\

printer printer

Data Data

from

DESCRIPTION

of the

between opHonal

Receive The

serial size

which device on controller

Model

a

The

Printer

All

serial

all

a

ND600

interface

basic

ND600

board

50

output

half—width

input

status

input/output

must

33ASR

and/or

keyboard

or

is

to

data

Type

the

ND600

ordered

Digital

ND600

interface

9600

connector

can

System

be

Serial

is

page

ND600

communicator/controller

circuitry D

Automatic

to

magnetic

installed

be

discipline.

baud

printed

Firmware

and/or

the

ND600

with

System

information

Equipment

from

Input/Output

and

devices.

to

System

Teletype

slots

(depending

permit

the

for

any

the

on

circuit

tape

magnetic

Send/Receive

SERIAL

contains

Packages.

any

in

system,

the

one

Teletype

and

Corporation

the

cassette

If

data,

and

printer

one

Firmware

board

of

more

another

Interface

front

INPUT/OUTPUT

upon

tape

any

the

the

or

of

control

keyboard

than

which

these

with

if

(733

The

firmware

following

of

board CHAPTER

device)

channel,

cassette

Set,

the

system.

Option

the

Model

permits

11—1

one

interface

or

ASR),

input/output

and

serial

Texas

plugs

housing

various

without

and/or

serial

via

required

(733

status

LA36

one

board

input/output

XI

or

Input/output

serial

INTERFACE

input/output into

Instruments

EIA

also

the

additional ASR),

tables

of

input/output

punching

paper

Writer.

transfer

any

(70—2434).

RS-232—C

the

DEC

input/output

for

serves

peripheral

of

or

and

ND600

supporting

tape

writer.

peripheral

the

the

Model

between

(70-2437)

transfer

It

as

firmware

paper

interface

reports

reader,

also

Data

eight

DEC

a

interface

Electronics

devices

serial

743

data

tape,

permits

writer

any

rates

Terminal generated

ND600

available

devices:

pair

the

is

or

data

transfer

one

to

the

and

is

733

are

TI

keyboard.

is

serial

be

contained

Enclosure.

Systems

communicator/

of

required

TI terminal

peripheral

selectable

Transmt/

Terminal

used

by

half—

Teletype

the

terminal

between

output

as or TECHNICAL SPECIFICATIONS ( BCDlnput Output Code: 8—bitBCDcoded ASCII in a standard 8—level, 10—unit(11—unitfor Teletype) serial time code format (one start bit, an 8—bitASCII character, one or two stop bits) via EtA RS—232—CData Terminal Transmit/Receive Type D discipline.

Binary Input/Output Code: Standard 10 or li—unit serial time code (one start bit, an 8—bit word and one or two stop bits) via EIA RS—232—CData Terminal Transmit/Receive Type D discipline.

Input/Output Rates: Teletype — 110 baud. Termnal Printer/Keyboard —300 baud.

Magnetic Tape Cassette (733ASR) — 300 baud. DEC Writer — 300 baud. Serial Data Communicator/Controller — Selectable from 50 to 2400 baud (or up to 9600 baud with hardware “handshake” discipl ne).

BCDData Format: Eight characters per channel - Six BCDcoded digits of data, one space character, and one rubout (delete for Teletype) character; every tenth space and rubout are replaced by carriage return and line feed. Carriage return and line feed also follow the last channel readout. Printout of non—significant zeroes is suppressed (i.e., replaced by space).

Binary Data Format: Four six—bitbinary bytes per channel with each byte transferred in the serial time code as the six least significant bits of the 8—bitword. Bit 8 of the 8—bit word is always logic 1 during transfer of the least significant binary byte.

BCD Identification of Channels Containing over One Million Counts: The character ‘SM” is encoded in the first data digit and the remainder of the count over one million in the next five digits.

BCDReadout Format for All Channels in the Current Display Group: Consists of the current elapsed acquisition live time, carriage return/line feed, first channel address, carriage return/line feed, first channel content and the content of each channel and the address of every 100th channel within the current display group. A carriage return/line feed occurs after output of the content of each channel whose address ends in nine and after output of every 100th channel address. Channel addresses are preceded by the character “@“ to distinguish them from channel contents.

BCD Readout Format for Channels in Marker Defined or Intensified Regions: Consists of the current elapsed acquisition live lime, carriage return/line feed, start channel address, carriage return/line feed, start channel content, the content of each channel and the address of every 100th channel up to the stop channel, Stop channel address, and carriage return/line feed for the marker defined or each intensified region within the current display group. A carriage return/line feed occurs after output of the content of each channel whose address ends in nine and after output of every 100th channel address. Channel addresses are preceded by the character “@“ to distinguish them from channel contents. (

11—2

rear 3.

4.

2.

ND600 5.

panel,

(or

ment

damage saving

NOTE: apparent,

Board

representative

connectors

installedas

Prior

1.

lotion

INSTALLATION

Dimensions:

Part

Power

encoded Communicator

keyboard

respectively), the

region

BCD

live

the

of

Remove

Locate

If

region

Remove

Carefully

Number:

to

time,

to

to

Readout

(if

a procedure

the

the

Requirements:

top

cabinet

Electronics

within

ensure

after

distinguish

installing

The

included

to

command,

notify

shipping

ND600

and

in

(two

carriage

the

follows:

command

ac

delivering

the

its

the

Standard Format

full—size

the

or

unpack

reimbursement

70-2437.

rear Control

in

power

serial

stop

front

6—digit

removal

the

for

the

which

ND600

the

with current

Electronics

Encloi

them

cartons

covers

return/line

optional

channel

keyboard

delivering

Nuclear

for

panel, data

input/output

from

+5

Serial

the

Word

carrier

the

half—size

board

words

the

from

from

Vdc

Intensified

Electronics

display

from

acquisition,

the

Serial

shipment)

for

ND600

Input/Output

such

top

address

Format:

system

for

connector

region

the

Enclosure

Data

@

containing

enable/disable

must

possible

ND600

the

feed,

carrier

any

and

board

0.5A.

Input/Output

shippng group.

that

device(s)

home

be

ND600

Electronics

Region

component

totals.

and

damage

Enclosure.

rear

and

start

Bits

the

System

notified

reshipment.

(8.5—in.

data

and

to

slot

carriage

office.

the

the

11—3

Channel

cover

1

was

component

+12

Interface,

cartons.

OFF.

channel

Electronics

Totals:

then

through

from

adjacent

input/output,

six

incurred

serial

by

or

Vdc

included

within

boards

Enclosure

Interface

retaining

I.

display

most

notify

setting

The

the

return/line

addresses

x

@

Consists

address,

input/output

7

Thoroughly

If

5.2—in.

top

refer

Serial

side

to

and

during

50

of

24

and

damage

Enclosure.

the

in

the

the

on/off.

the

board(s),

of

mA.

hours

screws

is

six

of

the

the

to

status

nearest

the

Input/Output

installed).

of

POWER

ND600 the

are

8—bt

the

transit.

Chapter

feed

w.)

least

shipment,

location

the

incurred

after

front

inspect

preceded

total

-12

and

board peiTFrai

input/output,

for

control

current

the

significant

Nuclear

Electronics

OFF/ON

receipt

Vdc

remove

board

number

II,

each

Firmware

is

of

during

the

insert

at

noting

interface by

@

the

word

elapsed

housing

device(s),

equipment

intensified

Data

the

of

the

the

of

25

board

digits,

switch

transit

the

it

any

Enclosure

are

top.

counts

Option

front

the

mA.

character

into

acquisition

equip

in is

other

instal—

on

is

the

the

for

in the

Teletype 9.

board

Electronics

10.

Teletype

ND600

Electronics used b.

NOTE:

male opening

harness of

a.

DEC rear

as

System, on

7.

output

8.

NOTE:

Serial

6.

NOTE: component

that connector

570—2419

location

the

follows:

one

Lead

panel

such

WRITER

Connect

Interconnect

the

Insert

connector

and

Connect

Insert

Remove

ND600

Input/Output

interface

System,

end

across

If

the

(from

If

into

Serial

To

Interconnection the

(lowest

that

the

the

(ND—MMF)

and

slot

the

Enclosure.

the

Enclosure

side

and

the

ensure

internal

or

interface

the

the

rear

the

the

the

Electronic

the

the Serial

Serial

label

Serial

in

on

Input/Output

2 5-pin

RS-232).

connect

an

of

device

available

25-pin

internal

the

top

the

inside,

ac

cover

color

panel

the

the

proper

interface

the

Interface

cable

Input/Output

from

Input/Output

line

front

Input/Output

of

Serial

in

board

rear

board

male

mark by

from

the

the

female of

connector

the

Enclosure,

connector

propagation

cable

cord

the

board

harness

option

of

performing

the

internal

ND600

connector

Input/Output

board

female

System

is

the

on

Interface

the

board

front.

from

at

ND600

connector

harness

the

inside

housing

Serial

the

number)

is

female

according

Interface

Interface

Interface

the

mating

Electronics

pins

and

insert

Diagram

ribbon

cable

installed

top.

of

the

on

Electronics

board

of

Teletype

(contains

Input/Output

the

facing

11-4

the

of

the

mating

designated

following

one

the

Interface

in

harness

cable

connector

the

board

rear

board daisy—chained

Section.

accordance

Board

is

to

ribbon

2 5—pin

prior

of

enclosure

inserted

toward

ND600

the

to

panel

the

a

is

connector

and

between

Enclosure

and

2 5—pin

(70—2437)

to

a

at

device

board

steps,

cable

five

TTY female

on

conveniently

Interface shipment

the

Teletype

the

device

of

Electronics

into

the

with

and

connector the

on

to

right

which

female

extending rear),

being

the

interrupt

on

as

other

the

the

chassis

the

into

ND600

insert

the

are

the

described

Seral

from

when

board

are

first

appropriate

rear

are

used

fasten

diagram

chassis

ordered

any

end

other

Enclosure

located

ordered

the

openings

mount

the

signals,

available

applicable.

from

viewing

panel Electronics

for

Input/Output

(TTY,

of

available

connector

the

factory.

end)

in

mount

the

the

the

with

shown

connector

ac

of

step

separate

connector

serial

Tl743

such

device

ascertain

internal

or

between

the

rear

outlet.

the

option

the

connector

the

8.

board

on

Enclosure

ND600

that

into

ND600

of

input/

or

ND600

Interface

rear

being

from

into

the

cable 733,

to

the

the

the

panel the

the the ( V

device

between

the

Electronics from outlet.

Enclosure

Serial

Controller

located LA—36

NOTE:

ND600

15.

NOTE:

14. 13.

line

Interface

on

of b.

25—pin ordered

12.

on

a. other

Enclosure. TI

in

Electronics

Input/Output

NOTE:

11.

the

step

743

the

one

DEC

receptacle

the

Insert end)

Connect

Insert

Connect

Communicator/Controller

Insert Connect

Insert

interface

DEC

into

rear

or

female

end

8.

Electronics

ac

separate

If

the

If

Writer If

ND600

board

as

733

the

is

the

the

outlet.

between

Enclosure.

the

Writer of

and

Enclosure

the

the

described

the

Serial the

ordered

Terminal

the

Interface

Serial

Serial

Serial

the

the

connector

the

2 5-pin

and

on

into

2 5-pin

2 5-pin

either

ribbon

25—pin

System,

iS—pin

from

TI

ac

ac

the

Interconnection

Input/Output

Enclosure.

Terminal

the

the

the

separate

743

Input/Output

Input/Output

Input/Output

line

as

line

the

in

a

rear

female

male

male

cable

Printer

female

rear

male board

TI

2 5-pin

follows:

l5—pin

connect

step

or designated

ND600

743

cord

cord

of

733

panel

Printer

connector

connector

connector

into

from

8.

and

the

connector

or

Interconnection

connector

extending female

supplied

female

Terminal

Interconnection

Interface

the

733

TI

System,

the

the

of

the

Interface Interface

Interface

interface

743

TI

the

internal

Terminal

rear

1 5—pin

connector

ND600

on

on

743

connector

on

with

designated

or

ND600

or

Printer,

from

the

the

11—5

board

connect

one

panel

733 or

the

board

board

board

the

male

ribbon

cable

RS—232

ribbon

733

System,

the

end

Printer

Terminal

female

and

of

Electronics

designated

TI

or

respectively.

on

strapped

and

bottom

connector and

the

of

the

harness

RS-232

743

a

cable

the

cable

the

interunit

the

female

and

internal

connect

DEC

TI

card

ND600

or

rear

Printer

rear

interface

743

rear

the

(contains

733

extending

on

for

between

Writer

edge

DEC Enclosure

or

panel

card

or

panel

rear

of

the

use

cable

Terminal

cable

Electronics

the

the

to

733

WRITER

the

connector

rear

edge

as

are

a

panel

internal

ribbon

of

male

of

a

the

conveniently Terminal

from

DEC

harness

the

from

25—pin

the

as

ordered

the

panel

connector

Serial

Printer

described

card

of

on

Serial

the

Writer

ND600

cable

the

ND600

Enclosure

cable

the

on

the

of

between

male

controlling edge

Printer

bottom

separate

Input/Output

the

from

ND600

the

Communicator/

rear

into

to

harness

Electronics

on

Electronics

located

connector

other

in

connector

a

ND600

the

as

panel

the

the

are

step

rear

conveniently

the

described

ac

end

Serial

of

8. ac

of the

fanfold

Data

on

in that

NOTE:

The

corresponding

1. 25—pin of

device(s). covers

corresponding

input/output system.

OPERATI

rear

Male

NOTE

CAUTION:

16.

installed

17.

the

the

the

following

Set

the

of

Return

Readout

Connector

After

instruction

25—pin

on

respective

the

or

(EIA

the

Prior

user

ON

4

The

20 7

2

6

5

3

as

1

the

roll

ND600

ac

These

completing

respective this

RS—232—C

Do

peripheral

has

signals

to

Procedure

ND600 male

serial

serial

are

stock

power

will

performing

not

Pin.

referred

manual

device(s).

procedures

typical

Electronics

connector

printer operate

input/output

input/output

(in

hamper

to

Electronics

No.

device

Compatible)

interconnection

device(s)

the

compliance

on

to

procedures

paper the

ND600

the

the

the

operation

assume

on

on—line

Enclosure

following

operating

respective

ND600

the

Enclosure.

peripheral

peripherial

and

and

System

with

the

communicator

for

data

paper

as

of

of

System

Serial

data

to

follows:

the

EIA

procedure,

instructions

11-6

the

device.

by

read-in

ON.

tape

device(s)

Clear

Data Transmitted

Data

Signal

Signal

Request Received Protect

device(s),

cooling

readout

RS—232—C

setting

Serial

Input/Output

without

(if

Terminal

Set

to

to

interface

Ground

device

Ground

to

Input/Output

load

the

fans

from

the

Send

contained

have

Ready

Data

the

Send

replace

specifications)

Data

POWER

ND600

the and

the

front

been

Ready

s

cable

Interface

a

appropriate

may

ND600

Teletype)

the

in

panel,

properly

OFF/ON

System

Interface

result

is

the

front

as

System

board(s)

instruction

available

follows:

top

from

panel,

in

installed

device

as

switch

damage

and

board(s)

described

to

the

and

rear

the

top

at

with

appropriate

manual

on

and

the

the

to

serial

and

covers

to

the

the

the

pins

rear (

2.

k.

3.

NOTE: h. of,

select

300

d.

LA36

b. 743

Printer c.

j. Refer NOTE: f.

i. 733 punch.

e. Teletype

a.

NOTE: Teletype

g.

the

key.

Terminal

Terminal

Select Select

Select

Select

Select Set

Select SeIect3OCPS(300

Depress Set

Set

Set

Set

DEC

to

the

for

printer.

the

the

If

733

the

the

If

If

internal

punch

printer

102

selection

Writer the

BCD

the

Status

LINE

Full

300

Full

LA36 operating

743

Teletype

Terminal the

Printer

Printer

733

is

input/output

baud

formatted

Duplex mechanism

Duplex

Terminal

ON

by

SPEED

desired,

by

Page DEC

Terminal

releasing

of,

setting

by

LiNE

LINE/OFF/LOCAL

Printer

instructions

Writer

4.

by

by

switch

releasing

and

baud)

Printer punched

substitute

releasing

releasing

key. by

the

Printer

device,

readout

POWER

the

PRINTER

depressing

by

to

PRINTER

POWER

releasing

the

LINE

HI

in

paper

includes

the

102

to,

the

mode

the

(300

switch

BAUD

rocker

LOC

FDX a

HALF

instruction

for

the

tape

switch

switch

switch

baud)

magnetic

11-7

and

the

RATE/i

a

to

101

key.

ON

HDX

switch

is

magnetic

DUPLEX

data

LOW

ON

and

located to

desired

to

in

pushbutton

key.

the

LINE.

10

the

for and

tape

manual

DUPLEX

SPEED

to

key

rear.

101

key.

following

tape

ON.

ON

in

on

cassette

addition

and

the

on

key.

as

of

LINE/OFF

cassette

switch

follows:

the

depressing

switch

the

in

steps.

733

Teletype

to

to

addition

system

panel

hard

ASR

FULL.

switch

the

copy,

Terminal

to

(ASR

paper

to,

BAUD

to

LINE.

or

ON

version),

engage

tape

instead

RATE/

LINE. the __

4. Set the display cursor to the 101 parameter using the CRSRpushbutton and depress the NXTVpushbutton to select TTY. (

NOTE: If only one serial input/output interface and peripheral device is included in the system, that device is always assigned as the TTYdevice. If more than one interface and device is included, the second device is assigned as the SU] device. The serial data communicator/controller channel is assigned as the SU2 device.

5. Set the display cursor to the 10 1/MODE parameter using the CRSRpushbutton and depress the NXTV pushbutton to select BCDO (BCDformatted output).

6. Set the display cursor to the lOl/bATA parameter using the CRSRpushbutton and depress the NXTV pushbutton to select ALL (all channels in the current display group), MRKR(the channels between the markers), ROl (the channels in the intensified regions of interest), TOT (the intensified region of interest totals) or STAT(the information in the current status page).

NOTE: Only data records which are punched on paper tape or written on cassette where all channels (ALL)is selected can be properly read back into the ND600.

7. Depress the 101 pushbutton. Readout of the selected data to the selected device will now begin. Readout will continue until the selected data is completely readout, at whch time, readout is automatically terminated. Readout can be terminated at any time by depressing the STOP pushbutton.

NOTE: During readout of spectral data, a marker is displayed at the channel currently being read out.

8. To generate a trailer (sprocket punches only) after punching a data record on paper tape at the Teletype, set the LINE/OFF/LOCAL switch to LOCAL and depress and hold the HEREIS key for a few seconds.

s J- 4-” •iA-i‘ ‘. 1412)

• C

11—8

W Sample Data Printout 37 @0 0 2907 393 25147 15551 1381 1412 1508 1523 1749 2002 1847 1699159’S” 1444 1478 1521 15/1 1542 1489 1506 1548 1580 1583 1569 1668 1608 1655 1888 1903 1997 2122 2082 2121 2155 2099 1997 133 1809 1850 1746 1670 1613 1544 1616 1461 1421 1499 1462 11462 1332 1517 1451 1397 1436 1436 1392 13514 1464 1366 • 11434 1461 1382 1368 1412 1395 14214 1440 11451 1430 1466 1371 1318 1361 1356 1229 1220 107? 106/ 982 9.2 927 901 911 906 934 887 909 853 10 86,5 853 849 851 808 786 795 803 834 @iOO 8314 893 1007 1186 1477 1896 2460 2991 3400 3/08 3808 3645 3145 2761 2207 1818 1479 1215 1093 9/3 731 712 767 ‘169 888 814 771 724789 734 757 738 794 78 801 804 828 789 823 833 810 855 853 849 841 8514 870 903 852 838 822 877 838 791 831 775 746 736 665 5/ 632 633 606 549 513 521 570 534 5144 556 536 519 504 513 568 554 513 502 465 403 429 429 432 422 483 51 720 889 1093 1259 1513 1618 1786 121 1679 1688 1459 12149 1020 841 @200 652 510 382 305 266 217 18/’ 211 2J1 22/ 296 387 5114 629 838 1015 1204 1241 1430 1380 1388 1282 1137 952 792 689 527 408 325 262 191 169 138 101 105 83 85 49 63 62

44 35 . 44 , 50 36 141 35 39 29 26 28 35 25 36 27 35 Sample Region Printout 37 ‘@182

_1432 , - 422 1483 51 720 889 1093 1259k’

1513 ‘ 1618 1186 1821 1679 1688 1459 1249 1020 841 ‘@200 652 .510 382 305 266 217 187 211 211 227

296 387 514 629 838 1015 ‘ 1204 1241 1430 1380 1388 1282 1137 952 792 689 527 408 325 262 191 @231

Sample Totalization Printout 37 @1 0 12615 @6 (h;) @99 0 45303 @123 @1 82 0 ?2885 @206 @208 0 17494 @232

11—9 Data Read—inProcedure

NOTE: If the serial input/output peripheral device interconnected to the ND600 System is either a Teletype or a 733 ASRTerminal Printer, a data record previously punched on paper tape at the Teletype punch or written on a magnetic tape at the 733 ASRTerminal Printer from all channels can be read into the ND600.

1. To read—ina data record punched on paper tape from the Teletype, set the START/FREE/ STOP switch to FREE, load the paper tape containing the data record into the Teletype reader with the leader (sprocket punches only) above the read head, and set the START/FREE/ STOP switch to START.

2. To read—ina data record written on a magnetic tape cassette from the 733 ASRTerminal printer, refer to the operating instructions in the instruction manual on the 733 ASRTerminal Printer for selection of, and read—infrom a magnetic tape cassette.

3. Select Status Page 4.

4. Set the display cursor to the 101 (or 102, if desired) parameter using the CRSRpush button and depress the NXTV pushbutton to select TTY.

NOTE: If read—inof a data record written on a magnetic tape cassette is desired and the 733 ASRTerminal Printer is not assigned as the TTYdevice, depress the NXTV pushbutton to select the SU1 device.

5. Set the display cursor to the 101 (or 102)/MODE parameter using the CRSRpushbutton and depress the NXTV pushbutton to select BCDI (BCDformatted input).

6. Set the display cursor to the 101 (or l02)/1DATA parameter using the CRSRpushbutton and depress the NXTV pushbutton to select ALL.

7. Depress the 101 (or 102) pushbutton. Data read-in from the selected device will now begin. If the number of channels in the data record being read is equal to the number of channels in the current display group, data read—inwill continue until the data record is completely read, at which time, read—inis automatically terminated. If the number of channels in the data record being read is greater than the number of channels in the current display group, data read—inautomatically terminates when the selected channels are filled. Read—incan be terminated at any time by depressing the STOP pushbutton.

(

11-10

The

status

readout at

has

when

character

flashing device

NOTE:

return/line this

line,

display 6.

colon

4.

last

5.

and

and

device,

3.

button 2.

NOTE:

data

is

Veyboard peripheral of

identify

up

The

1.

Keyboard

any

assigned.

the

been

to,

information

mode

line

depress

depress

Select

Set

Set

keyboard

Set

Select

the

which

carriage

information

(:)

time

eight

may

and

from

to

The

colon

ssjQj(or

the

depress

the

of

performed

the

or

If

being

excess

ljni

of

any

of

an

Read—in

the

device,

feed

depress

alphanumeric

by

the

be

label

the

Status

the

can

display

information the

display

the

display

a

available

X—Y

sequence

return/line

(:)

of

depressing

peripheral

of

entered

peripheral

flashed

Status

entered

NXTV

NXTV

characters be

line. to

the

keyboard

a

a

moves

up

is

plotter,

Page

select

serial

as

Procedure

the

defined

particular

such

terminated,

cursor

cursor

NXTV

cursor

to

this

Page

pushbutton

When

pushbutton status

on

and

NXTV

of

4.

in

to

entered

102)

as

data’contained

input/output

the

device

the

device

feed

will the

of

the

characters

the to

to

avoid to

will

displayed

pushbutton

on

a

using

bagjrs

[QE.

the

the

pages.

date,

the the

next

the

experiment.

display

pushbutton.

pushbutton

status

which

next

require

is

overlap

and

i.e.

selected

last

depressing is

from

entered.

the

101

101

101

to

to

line.

as

pushbutton.

time,

character

select

display

displayed

select

information

ASCII

line

The each

using available

any

in

follows:

(or

which

(or

(or

to

peripheral

re—entry

those

the

on

As

select

to

information

11—11

102)/MODE

peripheral

102)/DATA

further

on

title,

102,

of

the

BCDI

This

STAT

The

If

the

character

the

select

characters

first

can

read—in

the

user

previously

more

location

can

space

at

of

if

procedure

selected

the

selects

STOP

or

also

selected

If

(BCD

character

entered

character

(status

device

desired)

selected

the

the

TTY.

other

the

be

than

SU1,

device.

is

be key

entered

parameter

keyboard keys

pushbutton

information

removed

to

read—in parameter

information

are

desired

the

display).

36

readout

entered

status

information

can

is

the

where

SU2or

status

for

parameter

entered

available

alphanumeric

location

entries

BCD

characters

to

be

right

entry

can

This

be

mode).

page.

from

is

of

page

desired

used

read—in

using

to

starting

SU3

using

not

displayed.

until

be

into

the

mode

are

or

is

and

the

of

of

the

the

using

on

any

to

to assigned

to

is

device

the

are

selected

After

information

ignored.

the

the the

the

peripheral

displayed,

filled,

and

enter

be

current

the

the

is

mode

user

with

information

special

CRSR

entered

status

plot

line the

indicated

CRSR

retained

next carriage

entry

keyboard

to

desires

and

the

as

to

CRSR

entry

peripheral

operation below

which

status

pushbutton

pushbutton

the

display.

the

line

parameter

first

device

display

into

in

from

the

for

push

to

by status

TTY

of

any

on

the

of

page

it

the

a

any the

I

j

will

depressing the

4.

7.

between

point 6.

numerical a

5. and device,

marker

and assigned.

2.

last pushbutton of by

3. for

peripheral

NOTE: peripheral entry

The

information

BCDO

1.

s

colon

to

information

assigning

inputting

next

depress

depress

line

keyboard

remain

Depress

Sequentially

Select

Set

Set

Set

Select

be

in

of

mode

channel,

entered.

(:)

the

the

the

depress

the

of

If information

the

line.

entries

thej.QE.pushbutton.

the

device.

device,

being

and

alphanumeric

Status

Status

until

display

the

the

into

display

channel

display

from

the

markers

it

numerical

of

peripheral

into

as

The

depress

NXTV

NXTV

the

101

any

a

entering

the

flashed

STAT,

from

enter

the

Page

Page

serial

the

and

values

cursor

cursor

cursor

NXTV

by

from

in

data

ERASE

(or

101

the

pushbutton

pushbutton

the

status

which

the

4.

depress

depressing

1 information

or

102)

input/output

on

data

and

device

the

a

channel

to

device

display.

are to

to

pushbutton

vice

NXTV

numerical

space

pushbuttons

the

the

the

the

display

set

keyboard

they

pushbutton.

displayed

contained

the

display

versa.

from

101

the

101

101

in

This to

to

after

pushbutton

or

the

are

102

from

However,

the

select

select

left

any

from

(or

value

which

(or

peripheral

(or

to

removes

entered.

each of

in

pushbutton

Then,

are

BCDI

the

on

in

select

102)/MODE

Liend

sequential

marker

lO2)ATA

11—12

102,

the

the

the

This

the MRKR. BCDI.

simultaneously

the

for

read—in

keyboard

value

to

peripheral

keyboard

mode

first

depress

the

the

if

current

each the

selects

select

line

of

to

device

This

desired)

values

flashing

and

character

to

transmission)

the

SU1,

to

group

as

is

data

mode

parameter

readout

parameter

of

the

TTY.

STAT

desired

status

entered

the

first

carriage

of

can

device.

a

StJ2or

entered

channel

parameter

101

of

the

peripheral

depressed.

BCD

colon

can

channel

also

and

location

data

page.

the

peripheral

is

pushbutton

and

be

return/line

read—in

using

key

using

SU3

as

not

be

into

(:)

status

This

channels.

starting

exited

the

also

used

into

using

at

and

assigned

device

device

of

the

the

the

mode

the

102

information

as

mode

the

the

which

to device,

at

CRSR

to

data

CRSR

the

with

a

keyboard

feed

device

enter

any

to

line

is

permit

display

line(s)

is

The

as

to

CRSR

indicated

channels

which

as

the

pushbutton

information

pushbutton

the

time

to the

below

procedure

terminate

numerical

follows:

select

in

left

of

entry

to

TTY

channels

of

by

it

the

the

the

the

is

by

(

C ( Serial Data Communicator/Controller Channel

When the Serial Input/Output Interface board is strapped for use as a data terminal, it provides a serial data communicator/controller channel for an external device or computer to control sending and receiving of both data and commands between the controlling device and the ND600 Systems.

External control of the ND600 by an external controlling device requires generation of a program which uses commands in the same manner as an operator uses the pushbuttons to select and initiate operations at the ND600 System. As an aid in writing this controlling program, descriptions of the command codes and their use in simulating the actions of the ND600 pushbutton are included in the following paragraphs.

NOTE: The data and control word formats are described in the Technical Specifications (Page 11—3).

General Information

When the ND600 receives an external command, it sends an icknowIedge code (OO6) back to the controller to signify that it has accepted this command and is ready to accept the next command. Since the time between receipt of the external command and sending of the acknowledge code varies depending on the specific command or on what the ND600 is processing at the time of the command, the external controller must wait till it receives the acknowledge code before it sends the next command. To signal completion of I/O, the < ND600 sends code 074 However, certain commands can stop I/O before it is completed. These include the ST command and any command that reconfigures the system, such as group size or number of groups. In this case, the ND600 sends e075 signal t at as een stoppe a norma y. 8o

NOTE: Codes 0 are ignored completely as commands, i .e., they are never — acknowledged by code 0068.

When the ND600 is required to change certain parameters (PAGE, DGRP, LMRK, RMRK, LE, RE, OGRP, GSIZ or GRPS), the external controller must wait an additional 100 msec after receipt of the acknowledge signal before issuing any new commands. This additional time is needed for the ND600 to complete its assignment and to insure that the new commands will be properly executed. NOTE: If desired, theJpdate command (l718)can be issuedjfjheOQrisecdeay. Full RS—232control is supported by SU1 and SU2. If this is not desired, the Serial lnput/ Output Interface board strapping or cabling must pull signal CTS (Clear To Send) high (ND600 strapped for use as a Data Terminal) or signal RTS(Request fo Send) high (ND600 strapped for use as a Data Set). If this protocol s used 2and signal RTS(or CTS) eminating from the ND600 is lost, e.g., by accidentally sending faultyc serial data to the ND600, recovery may be accomplished using one of the following methods:

11-13 ______

1. Send a legal external command, i.e., SHIFT(0748 or or

2. Set 101 (or 102) to SU2; its DATA as undefined (enter 0) and then depress 2 and the 101 (or 102) pushbutton. (

NOTE: Since signal RTS(or CTS) is only asserted during data transfers when the TTYor SU1 device is selected, it is unlikely to be lost. However, if it is, recovery is accomplished by re—initializing I/O.

The NEXT VALUEcommand should be used with caution as the external controller will encounter difficulty in determining the present value of a variable or parameter.

Special Routines

The following special routines insure that the desired action occurs irrespective of the current status of the ND600.

Operation Pushbutton Sequence Octal Codes Sequence

1. Stop Acquisition -,ACQ, -,ACQ 043, 100, 043, 100 w A 4 2. Start Acquisition -,44 ACQ, -,rf4ACQ, ACQ 043, 100, 043, 100, 100 3. Select a Status Page —,CRSR, Page #, ENTER 043, 072, XXX, 076 NOTE: XXX s the octal code of the desired page — ) number (refer to Table 11—1).

4. De-expand the Display MOTION LEFT, a EXPAND 117,064 Setup For External Verification

The Serial Data Communicator/Controller facility, which is accessed via the SU2 designation (Special Unit 2) for an I/O device (101 or 102 parameter, Status Page 4), provides a means of verifying proper receipt of external commands. This may be achieved by having the ND600 transmit the status page to the external controller for verification after entries have been modified. The following setup should be performed on Status Page 4 to enable the feedback. It may be performed either at the ND600 keyboard or via the external controller.

1. Set either 101 or 102 to SU2.

2. Set the MODE toBCDO.

3. Set the DATAto STAT.

4. Send the appropriate status page(s) to the external controller after each command (. or series of commands. This is performed by externally commanding 101 or 102. Thus, the status pages may be verified for the proper changes. 11-14

c.

b.

a.

3.

b.

NOTE:

a.

2.

any

This

1. using

and ND600

The

Setup

meter

Set

meter

Set

wait

select Home

Setup

issue

Stop or

Stop

the currently following

currently

by

Terminate

Disable

modification keyboard

Operation

example

the

For

operational

102/MODE

local

102/bATA

for

This

commands

acquisition

100

auto-lob,

Update

to

to auto—lob

cursor

102

Remote

Status

returning

BCDO

STAT. double

(Enable)

msec

operator.

demonstrates

operating

in to

example

to

operations

and

process.

prevent

command.

Page

send

of

Operations

or

required

function.

capability

para—

para—

sequence

I/O

commands

Status

4,

Status

illustrates

functions

the

Page

to

Page

6,

buffWarray.

ensures

as(23)t6erand

NOT,)CDO CRSR

aray). to

NOTE:

7,

CRSRUP

set

—,

—,

8at STOP

this

commands

No Pushbutton

actually

ENTER

information

8,

CRSR,

ACQ,

of

the

up

4

pushbutton

function.

UP

2,

the

to

the

acquisition

external

operand

(6

(twice),

the

8,

fI)is

4,

ND600,

11-15

-,

ND600

by

times),

control

Sequence

ENTER

external

ENTER

ACQ

which

for

is

exists

entered

pushbutton

command

entered

2,

verification

in

push—

is

the

acquisition,

an

2,

a

stopped

for

controller

typical

commands

external

3,

as

features

regardless

054,

072,

by

auto

072,

055,

043,

043,

100

106

Octal

processing

175

for

controller

necessary

the

of

msec

verification.

analysis

076

072,

(174)

056,

072,

072,

100,

the

external

Code

of

delay

ND600

050,

050, 072, 052,

043,

its

and

is

to

Sequence

experiment

able

current

setup

controller

050,

or

056, 072, i/O

076,

100

System.

171

to

functions.

the

051,

076 072,

stop

state.

072, (

f.

g.

e. d.

c. b.

4.

a.

e.

d.

auto

to preparation

Erase

to

issue

Set auto

preparation to

issue Set

or

Set to

issue memory matically

Erase

GRPS

Set

verification.

Setup

Home

external

wait

select Send

SU2. Set

issue

Operation

40,

3, 2,

issue

1024,

LMKR

DGRP

DGRP

GSIZ

102

job.

lob.

Update

Update

Update

group

wait

100

wait

group

Status

Update

parameter

cursor

Status

wait

Status

size.

Update

parameter

controller

wait

msec

calculated

parameter

parameter

parameter

parameter

100

100

for

3

for

2

100

Page

and

command. Page

command.

command.

command.

Page

in

in

100

msec

or

msec

command.

msec

is

4

1.

msec

auto

1,

to

for

to

or

or

for

or

CRSR

ERASE

3,

CRSR

ERASE

ENTER

CRSR

1,

—,

782

Pushbutton

array.

NOTE:

102 ENTER

CRSR

ENTER

0,

CRSR,

at

DOWN,

DOWN

DOWN

2,

UP

operand

4,

SU2

11-16

(twice),

1,

Sequence

ENTER

ENTER

(3 is

(5

4,

pushbutton

entered

times),

times),

0,

7,

ENTER

8,

2,

as

2,

073,

051,

or

076, 073,

047, 073,

100

102

102

100

043,

Octal

076

100

072,

124

171

msec

msec

msec

052,

076,

073,

046,

073,

100

072,

072,

Code

delay

delay

msec

delay

046,

073,

050, 073,

100

047,

055,

Seguence

delay

msec

or

or

076,

050,

073,

052,

or

076,

056,

171

171

171

delay

or

076, 073,

050, 171

— —_-E-p Operation Pushbutton Sequence Octal Code Sequence h. Set RMKRparameter CRSRDOWN, 1, 0, 2 073, 047, 046, 050, 051 to 1023, wait 100 msec 3, ENTER 076, 100 msec delay or issue Update command or 171 i. Send Status Page ito 102 124 external controller for verification.

5. Setup Status Page 2 for desired acquisition parameters. a. Home cursor and —, CRSR, 2, ENTER 043, 072, 050, 076, select Status Page 2, 100 msec delay or 171 wait 100 msec or issue Update command. b. Set MODE parameter CRSRDOWN, 7, 4, 2, 073, 055, 052, 050, to PHAC. 2, ENTER 050, 076 NOTE: PHAC is entered as 7422 at operand push button array. c. Set AGRP parameter CRSRDOWN (twice), 073, 073, 050, 076 2, ENTER. d. Set TBASEparameter CRSRDOWN (twice), 1, 073, 073, 047, to 1. ENTER 076 e. Set TMULTparameter CRSRDOWN, 1, 7, 073, 047, 055 to 15. ENTER 076 NOTE: iS is entered as 17 at operand pushbutton array. f. Set PTIMparameter CRSRDOWN, 1, 0, 0, 073, 047, 046, 046, to 100 seconds. ENTER. 076 g. Set PTOT parameter CRSRDOWN (twice), 2, 0 073, 073, 050, 046, to 200,000 counts. 0, 0, 0, 0, ENTER 046, 046, 046, 046, 076 h. Set PLEVparameter CRSRDOWN (twice), 3, 5, 073, 073, 051, 053, to 35,200 counts. 2, 0, 0, ENTER 050, 046, 046, 076 i. Set DOFF parameter CRSRDOWN (twice), 5, 1, 073, 073, 053, 047, to 512 channels. 2, ENTER 050, 076 NOTE: ADC CONV GAIN may be set to 2K,4Kor8K. 11—17 Operation Pushbutton Sequence Octal Code Sequence j. Send Status Page 2 to 102 124 external controller for verification.

6. Setup Status Page 3 for desired data manipulation parameters. a. Home cursor and —, CRSR, 3, ENTER 043, 072, 051, 076, select Status Page 3, 100 msec delay or 171 wait 100 msec or issue Update command. b. Set E/CH parameter to CRSRDOWN, 1, ., 2, 073, 047, 044, 050, 1.25 keV/channel. 5, ENTER 053, 076 c. Set E(0) parameter to CRSRDOWN, 6, 4, 0, 073, 054, 052, 046, 640 keV. ENTER 076 NOTE: Since DOFF =

512 and E/CH = 1.25, E(0) = l.25x 512 640 d. Set SF parameter CRSRUP (4 times), 4, •, 072, 072, 072, 072 to 4.35. 3, 5, ENTER 052, 044, 051, 053, 076 e. Send Status Page 3 102 124 to external controller for verification.

7. Setup Status Page 4 for desired auto—jobsequence. a. Home cursor and —, CRSR, 4, ENTER 043, 073, 052, 076, select Status Page 4, 100 msec delay or 171 wait 100 msec or issue Update command. b. Set CYCLESpara— CRSRDOWN, 2, 5, 0, 073, 050, 053, 046, meter to 250. ENTER 076 c. Set Fl parameter CRSRDOWN, 2, 0, 4, 073, 050, 046, 052 to SMOOTH ENTER 076 NOTE: SMOOTH is entered as 204 at operand pushbutton array. d. Set F2 parameter CRSRDOWN (twice), 2, 0, 073, 073, 050, 046, to SQRT. 5, ENTER 053, 076 NOTE: SQRT is entered as 205 at operand pushbutton array

11—18

k.

j.

g.

I. f.

h.

e.

selected

of

Set external

meter Set

meter

meter NOTE:

Set Set

Set

meter

meter

Set meter

Operation

Set

the

STEP

STEP

STEP

10

STEP

101

STEP

to

to

to

to

to

to

spectrum

1/MODE

to

101

for

controller,

F2.

BINO.

101,

Fl. ACR.

STRP.

4

5

3 2

1

para—

para—

SU2. para—

para—

para—

transfer

is

to

para-

the

CRSR

NOTE: CRSR 6,

pushbutton NOTE: pushbutton

pushbutton as CRSR CRSR

32 as NOTE: as

ENTER pushbutton NOTE:

pushbutton

ENTER as

ENTER NOTE: CRSR 7,

pushbutton NOTE: CRSR

as

ENTER pushbutton

as NOTE:

CRSR

ENTER

Pushbutton

461

2466

782

7877

227

31

at

ENTER 7,

operand

DOWN, DOWN,

DOWN,

DOWN,

DOWN

at DOWN

DOWN,

ENTER

at

at

at

F2

at

at

operand

SU2

BINO

Fl STRP

101 ACR

operand

operand

operand

11—19

array.

operand

is operand

array.

array. array.

array.

array.

array.

Sequence

is

entered

is

is

Is

entered

(twice), is

(twice),

4,

2,

7,

3,

is

2,

entered

entered

entered

entered

entered

4,

2,

6,

8,

2,

6,

as 2,

7,

1,

7,

3,

8,

1,

073, 073,

076 054,

076

073, 076

073,

073,

076

055, 073,

076 073,

Octal

051,

050,

076

052,

055,

073,

055,

073,

050,

Code

050,

052,

054,

056,

051,

076

055,

050,

Sequence

054,

047,

050,

047,

056, 055,

8.

r. q.

p. o.

n.

m.

I.

250

will sequence.

auto—job NOTE:

to

for

Send

meter

Set

meter

Initiate Set meter

Set

Set

meter

meter Set parameter

Set

Operation

external

verification.

WGRP

STRIP AUTG

times.

STEP

STEP

IO1/bATA

be

Status

to to

to

to

to

performed

auto—lob

The

0.1.

2.

—3.

sequence ERASE.

101.

7

6

para—

para—

to

para-

para-

para—

controller

Page

entered

ALL.

4

AUTO

CRSR CRSR

2,

102 CRSR

ENTER ENTER

pushbutton as

NOTE: 2,

CRSR

pushbutton

CRSR

NOTE:

as

pushbutton

NOTE:

ENTER as CRSR

ENTER

Pushbutton

461

37273

255

7,3,

ENTER

DOWN

DOWN, DOWN

DOWN

DOWN,

DOWN,

at

at

ERASE

ENTER

ALL

101

at

operand

operand

11-20

array.

array.

array.

Sequence

operand

is

is

(twice),

(4

(twice),

0,

4,

2,

is

entered

entered

times),

entered

6,

., 5,

1,

5, 1,

-,

3,

3, 7,

076

073,

076

073, 050,

073,

050,

073,

104

124

076 073,

076

073,

Octal

073,

046, 073,

076

055,

073,

052,

050,

Code

043,

044,

073,

051,

051,

054,

053,

Sequence

051

047,

073,

076

055,

047,

053,

( (

?‘.. 14

.$ e

)___ t)

..-

E

f

C,!

/J

device.

/

using

Pushbutton/Command

Table

1/i

ERASE

2

A

r 4

-

AUTO

AUTO

ERASE

ACQ

ACQ

ENTER CRSR CRSR

ENTER SHIFT

SHIFT ADV

CFS

CFS

XPND

RST XPND

MPOS

MSPN

MSPAN

MPOS

ND600

Pushbutton

commercial

fl—i

/

7

6 4

9

8(TUV)

5 0

2

3

(>>) &

+

1 *

Down

Up

These

(<<)

Down

Up

(WXY)

(PRS)

(MN

(J

(GHI)

(DEE)

(ABC)

Left

Right

Table

Left

Right Right

fists

KL)

(>>)

Left

(>>)

0)

(<<)

(<<)

codes

(<<)

(<<)

the

(>>)

(>>)

(>>)

(<<)

11—1.

communication

codes

.

exclude

Code

ND600

which

Cross

the

Pushbutton/Command

permit

equipment

077

076

074

075 073

072

071

070 Reference

067 066

065

064

063 061

062

057

060

100 055

101 056 054

102 053

104

105 103 052

051

050 046

047

045 043

042

044 041

040

Code

first

Octal

32

6

6

4

6

t

43t

L’

£6

the

ç%

11-21

4

‘4 3

°,

%

‘4

4

2

C

33

‘4

‘-t”i

Q

2

SC

states

2.

-t

3

S

3

user

such

01

01

01

00

01 01 01000011 00

00 00

00

00

00

00 00

00

00

00

00110011 00

00 00

00

00

00 00

00

00

00

00

00 00

00

00 00100011

00 00

00

(Note in

Code

Binary

to

as

000

000 000

000

000

order

111

1

111

111 111

111

1 1

110

110 110

110

110

110010

101

1

101

101

101 101

101 101

100

101 100

100

100

control

100010

100 100

1

Modems.

1

1

10

1

1

1

Code

000

001

010

010

011 001

000

001

000

1)

100 01

101 111 010

100 001

101

100

000

111

110

101

100 001

000

1

101

110

100

110

111

100

101

11

to

1

the

prevent

Cross

ND600

Character

ASCII

Corresponding

Reference.

A

complications

C

D 4

=

E

B 7

9 6

5

> 8 2 0

/

3

)

?

— +

*

1 %

( & $

# Space

U

via

an

external when Table 11—1. ND600 Pushbutton/Command Code Cross Reference (Cont’d). Binary Corresponding ND600 Octal Code ASCII ( Pushbutton Code (Note 1) Character

p STOP 106 70 01 000 110 F (Note 2) STOP 107 ‘ 01 000 111 G(Note 2) SCRL 110 01001000 H c SCRL 111 01001001 I r tNT (>>) 112 tj 01001010 J U DEL (<<) 113 ? 01001011 K V NXTV Up (>>) 114 1-4 01 00] 100 L w NXTV Down (<<) 115 01 001 101 M MOTN Right (>>) 116 7 01 001 110 N “1 MOTN Left (<<) 117 3 01 001 111 0 WIDTHExpand (>>) 120 01 010 000 P WIDTHContract (<<) 121 cf4 01 010 001 Q 101 122 f? 01 010 010 R 101 123 3 01010011 5 ‘ 102 124 ( 01 010 100 T 102 125 ‘ç 01010101 U STRP(>>) 126 ‘G 01010110 V PLOT (<<) 127 d 01010111 W Fl (>>) 134 92. 01 011 100 \ F2 (<<) 135 ‘ 01 011 101 F3 (>>) 136 01 011 110 A ( F4 (<() 137 01 011 111 AREABGND 142 01 100010 b AREABGND 143 01 100011 c ECAL 144 4’ 01 100 100 d ECAL 145 •91 01 100 101 e

Keyboard Enable 174 12Ji 01 111 100 Keyboard Disable 175 Z 01 111 101 ) Display Off 172 •4’Z 01 111 010 z Display On 42 173 01 111 011 { Update 171 124 01 111 001 Suppress external control 177 ‘17 01 111 111 RUBOUT(Note 3) until ACQ or AUTO is complete

NOTES

1. Parity is ignored; codes 0 are neither acted upon nor acknowledged. —

2. Before attempting input into the ND600, ascertain that the STOP pushbutton is clear by depressing the SHIFTpushbutton if the STOP pushbutton was depressed last.

3. Do not issue the Suppress External Control command if the keyboard is disabled as the. STOP command can not restore control under the e circumstances (i.e., if ACQ or AUTO is unending) 11—22

r

I

LIST

MCS

PHAL Mnemonic

PHAC

EXT

1M Mnemonic

1005 is 1MS

los

lOOMS

1OMS

100US

1OUS

ACR

NXTG

STRP

PLOT ERASE

F3 Fl

101 F4 F2 Mnemonic

102

Table

Table

Table

11—2.

11—4.

7425 7422

627

5478

Equivalent Numeric

11—3.

462 461

7568

6984 7877

227

Numeric

37273 31

32

34 Equivalent

33

Equivalent

1007 Numeric

17 10067

107

167

16 1067 1087

10087

398

Acquire

Auto

Time

11-23

Analysis

Multiplier

Mode

Sequential Multichannel

Description

PHA PHA

Step

Parameters.

Next

Acquire Description

Strip Fl

F3 F2

Plot Erase 102 F4

101

Description

External 100

isec

10

1mm 100

10 10

100

Parameters.

Function

Function Function Function

sec

msec

psec

Clock

Live

Parameters.

sec

Operation

Operation Operation

msec

psec

Operation

Operation

Group

Operation

Time

List

Time

Operation

Scaling

Control Control

j [

ALL

STAT

TOT

MRKR 10

ROl

BINO

BCDO SU3

BI BCD

SU1 LP

TTY SU2

10

PT MAGT

Mnemonic

101/102

NI

1/102

1/102

I

DATA

MODE

Device

Table

6757 7828 764

255

2466

868

2464 2234

2236 783

78

782

781

889

6248

57

Equivalent

Numeric

11—5.

11-24

101/102

Content

Content Current Content

Output

Input Output

Intensified

Special

Special

Teletype Special Paper

Line

Input Description

Magnetic

Parameters

Printer

Binary BCD

Tape

Binary

BCD

status

of

of Unit

of Unit

Unit

Tape

Data

all

channels region

channels

Reader/Punch

Data

Data

2

3

1

page

channels

Data

count

and/or

between

in

intensified

in

totals

Status

group

markers

Pages

regions

(

( ( Table 11—6. Data Manipulation Functions (47—0054). Mnemonic Numeric Entry Description L

ADD 200 Add a constant to each channel in the current display group. INTEG 201 Integrate area between the markers in current display group. DIFE 202 Differentiate area between the markers in current display group. XFER 203 Transfer the data spectrum from specified group to current display group. SMOOTH 204 Perform a five—point coefficient smooth on the data spectrum in the current display group. SQRT 205 Calculate the square root of the data spectrum in the current display group. RELERR 206 Calculate the relative counting error of the data spectrum in the current display group. COMPRESS 207 Compress the data spectrum in the current display group by a factor of two.

Table 11—7.Intensified Region Peak Extraction Function (47—0055). [ Numeric j Mnemonic Entry Description

XTRCT 100 Output intensified region peak extraction report at 101 device.

Table 11—8.Intensified Region Isotope Identification Functions (47—0056). F Numeric Mnemonic Entry Description

SETUPID 400 Permits entry of an energy tolerance (+) between the calculated energy, and the actual energy listed in the isotope library table.

ID 401 Output intensified region peak extraction and intensified region isotope identifi cation reports at 101 device.

LISTTAB 402 List isotope library table at 101 device.

11—25 SETPS Mnemonic PSRCH

PSINT

VFWHM

AID

Mnemonic

ISO LIST COEFFS

GRAPH

Table

ID

TAB

Table

11—10.

11—9.

Automatic

Automatic

Numeric

500 Entry

501

502

503

Numeric

600 Entry 601

602

603

604

Isotope

Peak

Identification

11—26

Search

Functions

set—up Description

Permits report Output peak search Calculate width Intensify entered

FWHM

Description

Permits Output identification

101 device. List isotope

Calculate

based parabola versus

Display detector

Functions

isotope

device.

and

parameters.

at

parameters.

on

report

efficiency

curve

entry

automatic

entry

for automatic

identification

graph

spectral

101

output

efficiency

detector values

(47—0057)

coefficients

coefficients

energy

library

of

based at

device.

(47—0058).

of

set—up

of

the

101

the automatic

entered

display

dual

peak

parameters.

peak

efficiency

versus

on

table

peak

curve. isotope

device.

parameters.

reports

values of parabola

of

search

search

for

search

of

variable

at half—

dual

peak

each

energy 101

curve

at

and

C ( (

FREEZE

DIGITAL

RATIO

Mnemonic

LIST

RATIOS

Table

11—11.

302

301

300

Entry

Numeric

Digital

11—27

Ratios

Functions(47—0071).

the

freezing

device.

ratios set—up

Permits Output

Permits

Description

status

during

parameters.

visually

digital

entry

the

display.

periodic

accumulation

of

ratios

monitoring

the

digital

list

update

at

by

digital

ratios

101 of

ELI

( C _

I..) ‘_,Il

r C’-;

‘3

‘-9 .1’ L.) U ci)

— C—) —‘ Lt— ‘CT— c - - ‘- t ‘- uJ

-j -J EL 1 1_ C) U-; — “J ,.‘ j C’) ‘:‘ U C-) CD CD CD -ç NZ J CD r aD h e ±

I— CD U U U U C-i i— a_ I”-iJ ‘0

4

C-) j

‘- — LJ —

-‘---(‘4* (f)’- D—’’--- O_Q_-_Dr’j.-.

- C’) L—1 0 I---’

w’ I rr I O()OOuOu C -j _ ,.‘ r-; .- — L 0 C)

r—’— -0’ — ;_ aD

0 0 D a -J

I- z

- r’j ( IJ__ M:__ I I I C-)

aD C’, 0 o — ;

7: 0 ca 0 i La aD J— — C-) aC 0 Lj LJJLJJ 0 0 aD 0 C C-; •J : 3: ::

bJ (J U o: z J LJ 0 0 Ui C-) C) i I tC \‘ ‘-‘-) . II __j II aD aD ‘Jt aD aD C J aD J aD ! ,— 0 0 — - — 0 0 a-

1%. p 0 0 0 ‘F) aD’-’ Li aD U-; W —0 ‘JC aD c-; -III aD aD aD aD aD - aD aD aD (-I 0 0 C-’ 0’ aD 0 0 n 0 -J -J - — aD ‘r p----’ —

a- — aD aD aD a- aD a- a- aD aD aD “ IC cf

1 0 aDaD i aD aD — J-’J )“4 , .- r’4 4-I ‘4 ‘F U-;

r’- ‘-‘4 a- w I- W z z * a-” aD r’4-DaD “4 ‘F) aD rN0 aD 0’ ftaD - — .— aDaD J - 0 0 Z (_‘) (_) C) C) 0 Y Y 0 a- ‘- — a- r’J ‘F -“ .— a- a- - LU z

0 J_F) - — a- ‘a a- 0 ‘i a- 0 a- C)

;c x x C a- a- a- — 4 _J aD

J,, _J z , t I i I z .— a- ‘Cl A

B

BDALØL

I1B1

I

5øOu

[1P4]

T’ SO VECT* S2I.

[431 SiI’* [141 [14I [1 [14I

I

oI

N

÷5V

100

.- .

RI

C4

A

I

KIL . .‘ -,- —.

2

2

IRQ

lACK [P21 [P31

FEN [441

11)

INTERRUPT

8

ENABLE

LOGIC

80

CO

I

KH

lACK

(B2)

FRAMING

BAl

BI

by

ERROR P

APi

QL

HALT

(381)

BDALV7

BDALV6 [‘B’] BDALØ5 [1811 BDALO4 [1B1 BDPL03 S2IN* BDPLP2 [11 [lAl SIN* BDALR1 [‘P4] [1B1 PD CLK [3P2) [lAl [ipi

[3B2] S6OUT’

[1A41

AL 3

I

I 00 I

I

I

BIAICOL

MODE

+12VQ_—._——< BDMGOL

BOMOIL

SELECT

Q—<<--— Q—<<

B ______

(SEE 452 AR2 •

P1

C&

TABLES) ______•

EPE — +

SBS

22uf

22

4 U

f

WLS,WLS2

(TO

(To

IC1B

1C18

DR .

P3N

PIN

I

1)

14)O—<———-—

RD7 RD6

P05 (184)

(1B4) R RD3 (184) R

RD1 (184) (lB4)

RDO (184) (184)

(1B4)

04

32

AC2

AJI AM1

AT1 8C2

BJ

BMI BT1

1

BREAK4

[132]

NU-TYM

DRPN

NO.

STOP

PPRITY: NOTE:

I

MODE

BY:

OF =

BITS:

AP2

BA2 By’

INSTRLLED

BITS:

SELECT

THJ

NO EVEN ODD

4-5

I

ND600/660

1 2

b

7 5

8

4

NB1

LOGIC

4

I R R I

CHCKED5Y:SHEET2FS

R X

SERIAL

NB2

NUCLEAH

DIAGRAM I

I R R

REMOVED DON’T

PR

(1B2) (iLl) 2SB

INTERFACE

I P

DY

V4

CARE

PEV

x

R

DATA

I

NP SO-2437-Q2. J L _J z

Q> R c_ =‘ >< Ui

EC+ Q:z —

>-,_ z )- , : .

z - —

: ( J

:

REVISIONS -wzQ_

w > :

: _J = W ‘ —: I- w

w

w 0 — V) w c >- ‘ ‘- - u_J /)

c — — D >- X L,J bJ

A

Z Li

IN

Li

0 LI

LI

I

I-

ci IN

0

H”

cr I-

LJV)

0ww

L)

, -

z

0 -

w;.j

w L -J

i;

I

L

+

-J

Li

L!U •L

Li Li

ci ci

0 0

‘ci; I— I-

0 L1

4

w

Li

z

z

ci c w w

-

c

—I

Li

.- rj IJI .

I.

UJ ()V)QUvU)

I I I

I I I

o r’4 IJ

0

ci

_.J ci

c

CD

C

_)

,__

I ) I I

w

tr r4 ‘

-J 0

w

C •

c

c

-

•.Ia

J131DflN JO A13dDd

JAISfl1JXJ SI ]t4J. U, 1N3WDO

5tH!

a]NII1NOD

NOIiWllOiNi

3F1L AW èJON ‘a]DflGOHd3H ION 3U

AW CNV

ld]DX] ]NNW

Q3Sfl NI AN 3 WONd]N]H1 ]1AI3 èlO NI]H]H1

AJV1iPidOJd

H1

‘v1a ]1DflN 10 NOISS)W]d N3!IUiM

AY

—Nfl iO ]11N]1Vd

V

dO ‘NOIiW1OdNl

]HI 01

S1OIU

C? (D

•j_o N3DflN

O1GJAH]S

A1SS3idX3 3H 3flIVN (‘J 31IN]IUd

!j1 p

1

U

I,

a,

.-—f-ir,a’a-

>

:, .-C-iC)0ri

a,

at

-0 0

a,

Li -

U)C--C)U)0000LiQ0Li0 Li

LU

a’ Li 0 0 if)

0

0

0 0 0 Li C) C) C a,

00000 00000

0CC

to

a’

0000

—::-3 C)

00000

C- lx

a’ a’

C’i

to

C-

C)

_J LU

LU a: LU a, a, a,

C

a’ C-

a’ C--

-0 1) Cl) C)_

C

to

C

Ci o_

(_D

-J

:3

0 0-

LU

lx lx

0

0’ LU

lx

0 LU

0 C-

—I

-8

C

Li -

a-

a’

a,

C

00000

C)

C-

LU

:3-

z Z Z C-J Li 0- C-i 0-

o—0

GIS IN3NOdWOD

: o C_i 0-

00000

00000

l1 0000

a’

lx

-a’

Ci

a -0 it CC C—

0000 a,

C-

Li

u-i

lx

lx

a:

-

-C

0-

00000 cO

.- — .- C- lx

a’

-a’

U)

to u_

C

C

_J C)

u-i lx

C-i

ii

C) .-

C)-

C 0

C—C

C) C-)

C-

C_, C) -

C-

C-

to

C)) U,

-J

C-i u-i

u-i

C- 0

C1

C) C- Li

a-

(_) —

0 Li

Q_ - a, a,

0

C

a C- J

C

a— 0

00000

C)

I-

0 u-i ci

C1

:3-

Li -C

C

a_ U) Li

301S IN3NOdWOD

C- C)) Cl)

00000 00000

)IO000

C)

lx 0000

00000

0-

Q

.- .-

0 If) U)

-0 -0 C—

C

C a, C),

C-i

Li

C-)

0

0 ‘—4 C-i

(‘4

a,

— cD r—

- u

Li-i C-

I-

Li C/)

c

C/, b-i

C-

to 0—C---,

_J

C-I

u-i

C)

_3 I—

-a C

C-,

z u-i

C)

Ci

C-

z C- u-i

C) -J

-0 I C- -0 I—

) -a,

02

0

-J

0 u-i

0

00000

C)

C-

0

u-i 0

:3-

Li -J

0

-o - .o

-J

-0 C) C)

ais IN]NOdWO 3

00000 00000

00000

0000 Li

..1

00000

0000

C 0

C

C C

8

Li -

z

0 u-i

Li

0 —

0 C))

:3- 0

-

U)

_J :Z

z

_) Li

C-

CCJ

C- u-ar--

=: LC

Cl U) 0

C)

C- -

C ow

C-

z

0 0

0

00000 a_ cz aCLa :

w 0

0

:ix

0

-J

0

0—i z I-

: C’

Li ._i

7.:

C--C

C- U)

a, 3015 IN3NOdWOD

LO—6OL-OcJAi—ON

c:

c

-JO

CD 1 z

Li

C),

_J CD

-

cD LO

c (:3

0_ -4

D

c_) 0 C/)

LU

0

cD 7: fl

-3 .

w

j c:i

i3

— 2.:

: r

F—

LU Li

u_

L)

Li-i

U)

•1UQ

b11:J(P o A1bdOdd ]AISu1])X 3H1 S! INI,fl]OU SIHI

1NOJ ci

i v IUdfl NO

IHI iN .Jfl]3dd3d ‘1 dIN 3 IG4 INV kU

Id JXI

RNN1 I AN’J O]Sfl 11 ‘Od]ilH1 ‘II ]1AIb33

C-)

AèU 3 I

Hdfl1d

I ]H1 a

O ‘fl uT1Dfl .i]d SS 1 I Nfl I 11 N I

9

HO

19U1N1Jd

—NH JO NOIItdOjH JlSThOi 01 SIHOIèJ

•j1Ua

H11flN 01 G3AH1S

A1SSJdd3 ]J 1U1N]Ltd 3flj _ A B — DRiER DIN DY.-iC FR’ING CHIRACTER IQDRI/R PERIPHERAL EASCCONFIOIJRATION BAUD DRIVER FIGURE 4P ERR N32 FR3 2SB F431 PE’_i A3 ,‘7 là b ;3 ER EH 7 1 4 RATE ADDRESS RECTOR CONTROL ERROR FW FORMAT HALT 177— — PN .__L t- -ii- - 12 6 3 7 2 9 8 —.-— . 1011 — N.A. I/R TTY CL 110 5&0 EI\IN OATR REQ EIOUT PROT. CARRIER SI6NIL CLR SIGNAL R 1 R R R R B R I R 60 I I I R TO TOD SET GND [3r2J SNO OND [3B4] TI7XX

[3B41 1001 RDY TTY 300 R&D iES 2 2 R R R R I RI R B I 60 381 I [J___- I I B [3B] I I

LI TI7XX 1001 1200

_L_ OS TIP SLO YES 2 I R B R R R R I R R I 60 i: I I R RCS CONN. LA36 1Q01 560 YES CL 300 hR B I R R R R 60 I I I I I I B 1 I R R R PIN .!! ••_ - ! 2 22 15 14 20 9 SIGNAL SEROUT— SERIN— RDREN- SERIr DRTR RU9EN+ SEROUT+ 50CC 1001 2400 SU2 DT 570 YES 3 R R I R R R I R R R I 70 I R R R I TERr 3i] {33] 3E3J E31] [3A3] [3j3j ROY 50CC 1001 9600 SU2 DT 570 3 I R R I I R I R I B B 70 I R I R NO R R [3B1 I RS232 IODl SU1 DS 300 660 2 B R I R R I R B R B 60 I I I I I NO R R 2 - .--- ;.T ;; —---- ._!i_ ._L- i_!_ .±.L

!!L .._L!_ AFI ._L !E.L ASI AEI BBI E3NI 8K1 BLI E3JI BTI -;--; G M MSPL1R P BI-IRLIL BREFL OND OND BDMRL S B B S B S BOCOK

H spox SIGNAL H S EXT END PSPRRE BSRCI(L GND BEVIITL B P N N SPIIRE D SPRRE SPYRE SPARE S SP1RE S S SPRRE SPIRE SPRRE S SPRRE SPRRE SPRRE D S PAR P PRR P F RR CLK B I

I H R B R E E E E E H E E E E283 1 3 B 4 B 2 3 3 1 2 1 6 5 4 7 [2B3] B 4 6 B [3B1] 2 I — ••• --- ..i! !! !.! !i !!

! AV2 A AF2 AE2 8K2 8L2 BN2 6P2 BT2 BRZ PIN AZ +5V BDALB1L —12V ON BORLB2L BDILØ6L BDRLØ5L BDRLB3L BDXLØL BDRLB7L BDRLIIL BDRL9L SIGNAL BDAL1 BDXL1ØL BD BDBL1 BDRL13L BOAL B BDRLØBL BDMGOL BBS7L BDMGIL BIRKOL B 6 BIRKIL BIT BRPLYL — BIROL # BDINL BDOUTL I S ND 5 1 1 2V D I NI Y 2 V 2V L08L BT NCL V TL 1 5L 4L 2L L 3 [ [1R21 [283) 1 [2B31

I [2B3] {2B3] [ [2R2] [1R2] 2B3] [1B1] [181] [1B1I [IB1] [181 [1B1) [1B1] [ {IR1) [1R1] [111] Ri [1 [1 1 [1B1] 1 1 B A

3 Al Al 3 1_i_.____

I i

]

] 1 I ) .—--- . SPARES — -“ Eii ..2_L .__L ..E_L E_!_ C .a_!_ CEI a_!__ CFI EL______csl DEi PIN DBI Di DHI DA DNI DLI OKI DFj DRI DM1 OH DUt ‘( A I I - SIGNAL C2,C3,A3,D7,08

I _ -I

—1 - — — . .2.E! 0A2 CE2 CFZ I PIN 0)2 DC2 0HZ DEZ 0P2 DK2 DA2 DL2 CV2 DR2( DU2 )F 0T2 ______NO600/6G0 ::z:;- --- DATE NO-TYM - SIGNAL : -. TFJ” ‘23/77 • LOGIC 4 ______IPPYCED QIAGRAM 3UCLA SERIAL I INTERFACE

E1 b— - — .. S0_2LL37_O ::E z Q- — — c>- v, x . ______x c z 7: ct_ Z c_ j I Q I r L) o >- • Q Q - D — - W ‘

I

I

1—Hil

p

-1”

L I

CN

C1

—I

L_

C,, :

/‘\

/1I

f1

v1va JO H11)flN

A1Ii)dOHd SI JAISfl1DXI 3111 IN]Wfl]OO 51111

a3NI1No) NOIIVWNOiNI

:1111 AVW a3flOOHd]W ON 3 ION AVW ONY

I4JJEJ WINNVW ANV NI asn i wo]]HL 31gVAI3Q HO NI]3HL

AHViJIHdOd

JU1

•VIVQ iO U)1)flN NOISSwd)d NJi1 A

HO

-Nfl

J1UNJ14 V iO NOIIVWNOiNI OIVS1OJV 01 iHI S1HOI

oiaici •v1vQ

lv1-I:rnN A1S53dE3 3HV 3dfl1N 3lgvlNflvd

I1 MIO __ I

I >

‘4—i

k)

C) ()

II_

4 ,.

THIS DOCUkNT 5 THE EZCLUSIHE PTOPHTY O NU[LEH DATA. AN MAY NOT HE REPRODUCED, NOP MAY THE NFORATION CONTAINED THEREIN UN UERIVABL.E THEN[FROM 1 USED IN ANT NANNER. EXCEPT a’ NNITTFN P1RISSION OF NUCLEAR DATA. THE PROPRIETARY RIGHTS TO THE AFOR(SAID INFOR4ATIUN. Of A PATENTARLE OR UN- NATURE . RI TO NULLI AR DATA. LI PATENTARLE ARE EXPRESSLY SIRVED -> PENDING [CN______fl I 0 Li l)J ONION1d

•VIU(1 NV IliflN q ai is iixi iv mnit 111911d —‘III H’) flIN i1V .10 • NO I 1UL’.JO I’ll 1 S 1U J ‘-t iI SIHJI ANUI IthiONd 1HI •U1UO dUJlDfUi iD FlOISSI.d 4J1iI’ Id .)X I •HJNNUW AN NI aisn •flH iH -41 jiqi fl •ji tl I’IlNOJ NIH IHO Ml 11 UJL. HflN (1 .)flOO41H N 19’l iW ]NJ •)lU1) I•1fll Jf) A j4 l,)e,f ;I’-,n1 )E HA 1 IN h,fl]O SIHI 4 4 0 x z 4 w _J I -J U

:iaic IN3NOdWOJ LO- t6oL-ocwAL-ON ,

fl 0-’ a C 0

C C CrXI k1 9

•! V 0 •1 — ,‘,Dr— 1 Z

g a 8 C 0 0

a C

fl’0nn 0000 !:;

0r0r Cnnno

301 S IN3NOdWOJ

0

0 C

0 a 09000 0

—I

a I- LJ a

9 0 C I noon -: k,n[,0 ‘bMd’ coma 00009

3GS LNJNOdWOJ LO- 6C L-OS WA i-QN

0

0 0

a 0 0 0

(N (N

— 0 0

C 0 C,,

anna

&xim ‘ojM1 00000 00000

S

o—o’D 0-

00090 a

8 0

— 0 uJ 00f 0 0 0 0--, § 9 .- -, -C

00000 0000 —;:?b z

00000 00000

0 -C 0 0 0 0 0 0 0 0 0 0

I 1 ______

I I 2 3 4

cs CONN. SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL

PARE 1 : —I—PROT. GNC !_ SEROtJT—[3A31 -. 5V :: C82 .—— EIAOUT [B41 !_ SEROUT• t3A3] ABI HPAHE 2 AB2 -12v

.i.—TiAIN (3C2) SERIN. 31 PAR 3 .! J_. E ONO EE.!_ .E_E! C? 4 REQ TO SED [381j RDREN+ 13A3j ARE 4 2o CD2 •.i_ ..2i_ .._ • C S5PARE I :: CLR TO ShO [3B4 RDREN— .±._!_ BDOUTL11021 £.!_ — SPARE 2 DATASET ROY 13B41 .1! SERIN- DAli AFI BRPLYL 12831 E.!_ 5’PARE 3 cH .7 SIGNAL OD !2 DATA TERN ROY 13B1 ._!_ .±.! BDINL [1A21 CARRIER [3B4 .- -- 8SYNCL I1Al I AK I MPARE A BWTBTL

,PARE A BIROL AC A 7- ALl [2831 E_!_ — .S.! T_____ ? ±! BIAKIL [2421 EL : BD4.HL BIAKOL 2B31 .E_!_ - .±_L

BHiI‘ T 2 3 L I B 1 BBS7L I 1A1 ] .r__ ±.t! .Et_!_. .Er! BRFPL ±i!_ BDMGIL[2B3 1 .S...L .S! PS4RE 3 .!.!_ BONGOLI2B3i

BINITL 153 .±.i.!______1 .Ei.

1 PARE BDALØL [101 j

BDALl L I1B1 1 PERIPHERAL TTY TI7XX TI700 LA3A SDCC 50CC HS232 .±._!_ S._!_ .S.! OR H i2B3j _5V .2±.L DBZ x_ IODT 1001 SBI H • 882 -12v DBI IODRVR FW 1001 JOOl lOOT IODl IOD1 BIK DRIVER TTT ITT TTY TTY 512 SU2 Sul DCI DC2 ...i. PARE 4 !..!. GND ARE 5 — !2.!. • BASIC CONFIGURATION CL OS OS CL DT DT OS SPAHE 6 !i BDALA2L E1B1 I 2._L 2.! F IGURE 2 SF1 S PARE 7 SF2 BDALØ3LI1B1 I DF 0F2

BHI EH CLP 3Bl I 8HZ BOALA4LIIB1 I DII I 0142 !! 2400 9600 300 BAUDRATE 110 300 1200 300 ! H H 8.21 ON) 8J2 BDGL5L [TAll OJI DJZ FR3 H H FR2 H R H N PARE B BX2 SDDL6L [TB1I £!.!_

H H FRi 1 1 PARE H BDGL7L [ 8 ) 2..!_ H H FRB 1 I ON? GNu !M2 BDALB8L [ Al I ON ! DNI DN2 C ASICEL !!! BDAL9L I i o ] CHARACTERFORKAT 0P2 PARE b ADAL1ØL [I Al ] DPI P,. H BRI BE NTL BDGLI1L [141 ] DRI DR2 2S8 BR2 H DSI 052 NB2 H PPARE 4 ::: BOAL12L [lot ] STI GNU BIAL1 3L OT I NBI 8T2 f.i! PEA H H H H Out E PPARE 2 BDAL14L B BOAL1SL [1 Al I 570 570 660 E! DRIVER ADDRESS177— 560 560 560 560 ‘ ! B7

46 H H SPARES H 43 I : DRIVER VECTOR 60 60 60 60 70 70 60 r—1

A? I I I I I I I v6 I I I I I I I

V3 I I H H I

DYNAMICCONTROL N.A. : YES YES YES NO NO J14 I/H i I I H H

ECH DATE FRAMING_ERRORHALT REAtSINI

H H FEll H R H H H

: NLJCLIAR DATA xl

LOGIC OIAA C6OO/6 RIAL U1EA

S Si- CHECEED IV: SET DATEDAW:6/23J77 I APPIOVEDii:Ø4 I S1O—2%37-OO 3 I 2 I I I 2 I 3 4

RCI—4 RCI—13

A A

B B

ECN DATE

REV S IONS

NOTES: 5 — THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ONTHE DIAGRAMAND/OR PRINTED CIRCUIT BOARDASSEMBLY. ADC SIGNAL NAME CONNECTOR [4A2] —SIGNAL SOURCE DRAWING LOCATION, OR CONNECTOR PIN IC INTEGRATEDCIRCUIT SAT -— SELECT AT TEST —— — GERMANIUMDIODE NUCLEAR DATA INC 1 — ALL DIODES ARE G964 OR EQUIVALENT, EXCEPT AS NOTED. (4A2) — SIGNAL LOADDRAWINGLOCATION PIN POSTOFICEBOX451.PALATINE ILLINOIS 60067 — SILICON DIODE LOCATION TRANSISTOR (P1) PRECISION RESISTORS 100PPM —+1—-— TZONE ,—P C BOARD NAME 2 — ALL RESISTORS ARE 1/4W, ±5%, EXCEPT AS NOTED. 1/8W, ±1% METALFILM SHEET NUMBER BOARD IC PIN ....pf..ZENER DIODE C PIN .C. NAME ( ) — DESIGNATION CHEMATIC DIAGRAM 3 — ALL CAPACITORSARE pf, EXCEPT AS NOTED. DC COMMON 12 CONNECTORDESIGNATION , TUNNELDIODE ND-600 KEYBOARD 4 — I .C. VOLTAGES, EXCEPT AS NOTED: CONNECTOR NC - NO CONNECTION . FERRITE BEAD SELENIUMDIODE (ND—KBM) 14 PIN DIP, PIN (7) GND: PIN (14) +5V LOCATION I.C. DRAWNBY: ,JSP CHECKEDBY: I SHEET I OF PIN DIP, PIN GND: PIN +511 - . W 16 (8) (16) CONNECTOR—./’7”\..I .C. LOCATION ON P.C. RD. TYPE 24 PIN DIP, PIN (12) GND: PIN (24) +5V I C TYPE ON P.C. RD I.C. DATE DRAWN:2-25—771APPROVEDBY:V4fr IS70—2436—OO

I I I ______

I I 2 I 3 4

xYD—1o 2Y MP M3-5 GEOM XYD—6 Ti82O1 P31 C x AMP4____—_--______-___-_-—

(6 (12 (lo

F IL—1

F IL—3 HVI (MOLEXTO HVS) A A M2—8 68K -24F < (/)- _L!± SIONKL

GND

INT 8C 50 KHZ

4

—2.5 KV GND

Ml HVO (MOLEXTO CNT) w PIN SIGNKL .o L_ CVTHODE Q_ - —2.5KV C Z Z INTENSITY z>-c.J a= FOCUS z 2M 4 o • 5 mL.J .wI-LlI- LU M4—3 lOOK 470 )- — Q.w I- )- C, AC 50KHZ w w (I) — ‘ L 0 €1)

L.)WWb LI M3 CTO (M0LEX TO CRT) ‘C 0 2M PIN SIGNKL w 0 W 0 V) 1/2w = _j — FOCUS LJ V C 8CCELER8TION — —:

LINEARITY xo = C W 0 3.9M >-- U, — — I- ASTIGMATISM bi I- B —f.— (d W GEOMETRY = )- — INT 8DJ —— I- I-

3.9M

+ 3uf 3.9M — - 15OV !L KYO — (To XYZ) SIGNAL SIGNAL

—— GND 3.9M ___]_ LINEARITY MA-i ._L 2 IN .1_. GND GND 3 ACCELERATION 8 —24F M3-6 INTENSITY ADJUST .—— INTENSITY GEOMETRY —— ASTIGMATISM _9_ ECN DATE REVISIONS

NUCLEAR DATA

CRTCONTROL z.. C (L88-0598)

DRAWNBY:SFG CHECKEDBY: SHEET1 OFI

DATE DRAWN:5-13-76 APPROVEDBYY 2 3 S70-2387-OD I I ND3 ONION3d

F.- ‘tHfl1N 311N3Jd F’; c-I DNI1LUO d]1flN OIGJAd]S3d A1S]NdX3 3IU It, —Nfl O ]aUiN]Id U JO NOI1WHOdNI GIS]dO ]H1 01 1H!H It, C%J AN1L3INdOJd ]HI DNI 111O 33flN JO NOISSIW]d N311IM A c’J WOdd3H3NI 31AI3O O NI33HI a, 1d3X3 N3NNW AN NI O3Sfl 3 C., a]NILNOD NOIIW8OJNI 3H1 AW ON ‘a3JnaoNd3 38 JON AW ON F’- C’J I- AJèl3dOdd 3AISfl1DX3 3HI SI 1N3WflDO SIHJ. a, 0 C., 3N1 ‘1UO H31DflN JO It It, bJ I— < z C,, j-

< H” V—: : III

H” ‘-z- C Ii’

:.— H”

r) C)

c’1 CI

+1 0 w I- 0 z

I,

L V ‘It I’’

— I’’ HI’ 0 0 a, a, Cl, Cl, 0 0 C” Cl,

. w >< C

C) U CD ______

I I I 2 - 3- - 4

xYP (M0LEX TO CPS)

PIN SIONL

1 +24 C)

2 DC OND -

3 —24

4 DC OND

5 + 200

A — xYD (TO CRT DEF PL4TES) A J!:( SIGN4L SIGN4L x2 I xi L I -- 4 9 :: 1

— xYO (TO CRT CONTFJL) T PIN SI 6N4L PIN SIGN4L

LINE4RITY —--- GND

ZOUT OND —s.— .!_ 3 AcCELER4TION 8 —24F D:) 4 INTENSITY 9 INTENSITY 4DJUST o ISTIGMITISM -—- GEOMETRY

a- : i-- >- C w : : v — _, Q w POS (TO R.P. POS CONTROLS) _J SIGNRL SIGNRL j_( w C W C fl YPOS— --- YPOS .1_ — —: 2 7 2_ 24F —. 8 —24F :o w

LJ - I v, =W B — .!_ 12_

ECN DATE

REV1SIONS ::: NUCLEAR DATA

xYz BOARD

(L88-0598) (CONNECTORTABLES) DRAWNBY: SF0. CHECKEDBY: SHEET2 0F2 DATE DRAWN:5-1)-76 APPROVEDBY S70-239’4-03 2 3 I I I I 2 I 3 4

Mi PON (MOLEXTO NPs)

SIGNOL 10 MO—S

1 SC OND i_. DC 188 OC 18 8 —-.

DC OND —f—

5 +24V

A 6 —24V A

— PIN (MOLEXTO TRONSFORMER) J!: SIGNOL

AC OND

_L AC OND

AC OND

AC OND AC34A Ew. 0C34B

AC OND a; o_ _ OC18A z —- c_J AC18B >- Q_

10 DC GND °E . 270 A __i_ AC 0>- jz - I- )- w w X — l () 0 W

C)LJUJL UJ

PHV (r1oLEx TO HVS) w 0 W _J —0 Ui PIN SIGNAL Ui / 0 Ui — —: +24V UNREG .1__ z Ui 2 AC GND D:o Z C Ui Ui - B Cd = - —

MO xyp (r.IOLEXTO XYZ)

P IN SIGNAL

1 ÷28V

_2_ DC OND 3 —24V

—f- DC OND

5 +200V

ECN DOTE

REVIS IONS

NUCLEAR DATA 21

cpsBOARD

(L88-0598)

DROWNBY: S.F.C. CHECKEDBY: SHEETI OF 1

DOTE DROWN:5-10-76 OPPROVEDBY’ . S70-2399-po 2 3 I I I >

k)

\!/

CA)

c : :

:

U, -J F’ a)-J

-a C,) a)

I,, PROPERTY OF NUCLEAR DATI. I,, THIS DOCUMENT IS THE EXCLUSIVE -I AND MM NOT BE REPRODUCED, NOR MAY THE INFORMATION CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF NUCLEAR DATA, THE PROPRIETARY RIGHTS TO THE AFORESAID INFORMATION, OF A PATENTABLE ON UN— -1 PATENTABLE NATURE. ARE EXPRESSLY RESERVEDTO NUCLEAR DATA’, > PENDING ECN______c 0 C) A

B

: :L !i_ f!_

!L --- !! i !!_ !!.

!_ I

:: I i: .yi_ .:!L 12 !!_ !!_ !! — i!_ 14 4 —

— — : —_ — GND GND GND NC NC NC NC NC NC BDMRL BREFL BHALTL GND GND NC ‘ ______SIGNAL J2-32 J2-33 SIGNAL J2-34 (NOTBUSED) (NOT (NOT CONNECTOR BUSED) BUSED) CONNECTOR - - - _L ------

! 2 !! :

:!: : -- -- L2 -- 32 ------R2 P2 N2 ¶_ i- 34BDMRL BHALTL BREFL BDALIL BDOUTL BDINL BtRQL BSYNCL BWTBTL BBS7L BDMGIL BDMGOL J2 BRPLYL BIAKIL BAKOL BINITL BDALOL BDALIL BBSTL BDINL BIAKIL BDALØL BDMGIL BIAKOL BRPLYL BINITL BDMGOL BIROL BWTBTL BSYNCL A BDOUTL +5V GND NC N C SIGNAL SIGNAL J2-18 J2-2O J2-22 J2-24 J2-25 J2-23 J2-28 J2-26 J2-3O J2-27 J2-21 J2-19 J2-29 J2-31 ARI API ANI AJ2 AE2 AR2 AF2 4H2 AU2 AV2 AK2 AL2 AM2 AS2 AT2 AN2 4P2 (NOT (NOT BUSED)

L BUSED) I

PIN

:i ------i -ii- K 12 VI UI 14 TI IT II NI MI 3 6 4 LI P1 Fl 8 7 2 RI HI JI El 5 3 5 — — GND GND GND NC NC NC NC NC NC BSACKL GND N BDCOKH BEVNTL GND +5V 4 I C SIGNAL SIGNAL J3-32 i3-33 J3-34 (NOTBUSED) (NOTBUSED) (NOT CONNECTOR CONNECTOR BUSED) PIN 27 28 - 23 22 30 29 25 24 21 20 52 PIN 32 V2 31 2 U2 T2 N2 M2 34 R2 H2 (.2 F2 Pa A2 C2 ia 8 9 2 BDAL4L BDALI5L BDAL5L BDAL6L BDAL7L BSACKL BDAL9L BDALIØL BEVNTL BDALBL BDALIIL BDALI2L BDCOKH BDAL3L BDALI4L BDAL2L BDALI3L J3 B BDALI5L BDALI4L BDAL8L BDAL6L BDAL5L BDAL4L BDAL3L BDALI2L BDALIIL BDAL7L BDALI3L BDALIØL BDAL9L N BDAL2L NC +5V GND C SIGNAL SIGNAL J3-18 J3I9 J3-22 J3-23 J3-24 J3-25 J3-26 J3-29 J3-27 J3-28 J3-30 i3-21 J3-2O J3-3I BH2 BJ2 BE2 BN2 BT2 BP2 BS2 BM2 BU2 (NOT (NOT BUSED) BUSED) — -i-i- -a-i- -ii- PIN i UI TI RI Fl SI P1 El NI HI KI JI

MI LI I GND XIRQ2* GND XIRQ3’ XIRA4* XrRA3 XBYAD* XWAD XSPARE3 XADDR GND XIRQ4* XSPARE XSPARE XIRA2 XIRQI’ XIRAI

+5V I 3 4 3 2 5 I I 2 I SIGNAL CONNECTOR ANALOG —I5V CONNECTOR +5V GND +I5V +5V GND GND SIGNAL SIGNAL GND CONNECTOR P2 P1 PIN C2 F2 M2 A2 1(2 02 jJ N2 J2 5 P2 L2 T2 R2 V2 3 PSPARE GND C PSPARE +5V XINIT XRPLY XDOUT’ XDALØS XDIN XSPARE XSPARE XSPARE4 XDALI XSPARE XBS7L XWTBT* XSYNC* 3 XSPARE7 6 5 8 SIGNAL I 1P21 IPI ND-MMB I I ‘ IPOWER 39-7Q09 J6 CI PIN BI Al DI El NI MI LI VI Fl RI P1 HI SI TI SUPPLYI XDMGI XDMG4’ XTMOUT XDMG3 XDMG2 .4 t J XDMR2* ANALOG GND GND XDATIO* XDMR4 XDMR3 XSPARE XCLK XDATO XDMRI*

+5V L I PSPARE XSPARE(BUS I I 72-1375 USED 9 GND (SPARE)- SIGNAL CUSTOMER FOR (XSPARES ON NUCLEAR SPARE)-NOT

I I I I . NOT CONNECTOR ARE (ND-MMB) USAGE DATE DRAWN ASSIGNED, DATA BUSED) DRAWN: BY ASSIGNED, NOT : USE.

I I I I I PIN B2 N2 M2 A2 J P2 R2 1(2 H2 C2 V2 52 U2 T2 R RECOMMENDED. 3-2-77 NOT D M FOR XDALI4 XDALI3b XDAL4’ XDALT XDALI5 XDAL8 XDAL3 XDALI2 XDALI XDAL6 XDAL5 XDAL9 XDALII XDALa G GND +5V +15V CONNECTOR - 15V BUSED, RESERVED BACKPLANE, 4 APPROVED CHECKED SIGNAL NUCLEAR TABLES BY BY: : REAR p4V DATA S7O—2424-OI SHEET ECN )- — Ui v, REV : =W w I I S W I OF DATE ONS : — I u, z A I w I

a- .

-

-

r—) a-

. m

a- a- ‘ 0 a- a- a- rJ

---- —. — n a- _o -

>< >< >< >< )< >< >< )< )< c, a- c a- a- a a a- — 9

-. — a- -J -a -

:

z 0 —

—a m 11111 :r, r’ z -1 ‘Ii- r’) t C

= r,

— :!::: c— “1

!‘

: C))

a- :

C) a-

‘ j—, : C-, F.)

C,) —I -I —I

C_)c, I-

I,, G) 9 lz,

-I I,, C,) C,, ‘1 C) m a- a- -I 1%) 1%) w PENDING ECN______C n ______

I I I . UO-hZ-OLS f(4:) OD1100ddIl LL-fiI- :llJJ 31110 C [1106] I 0 [11II6]Do01D D11O1 [St)NIg9D hdO Z 1HS 033D]HD .•HI :10 N1IlIl0 []g00dS 0 [ZO11uL000dS 0 ZaIldS[Z0li] H : [11011] [111161 [S] L0dS 0 [11O6]00011dS 0 SØ0IldS[ZO11] LA3O DIl1S I I I (V-frSJV-ON) (t) (6) [5011] [5011] [9p]gø0dS p ‘-, ,—‘ 51) 11L) (51) (1) I (L)I 0IDD ØZIlO 3DVdI3!NI V’lO 11O1NOD NOIIISIflDDV 013 113 11 0 3 a (L)(SL)(tiL) St) [sot] li4VVIO DIIO1 C Oh 11 0 3 0 (9) Ø0À (O)j 3D 0 (lit) 06 IS [0] (t )(11) [hIlL] (SL) 60t56t 3D (110)00 3110—- —0 ØD11 -- 0 — V.LVG V31flN T-5- (5) Os M ) (51) 5LLS1liL 1011111 (5) [tOt] j — lit 1111 LA )— — —QOØ1110X (5) I to (z) LØA (EL) (51) I (11t) 115 [0] (Ii) [LOt] [t71 (5Ilt)(tiO)(l1)009 LA tO j (I) SNOIS 1130 <— L0DI1 —0 LODO 511 511 1111 110 > 0 toioax (5) -T-5- 1k (5) (6) 55—11111 691S111 9 (9) [ LOLl 3100 ND3 (XI1L)(11O)(ZIl)Lø0( 1111 110 (L) hiS - 1111 110 SA sa ) — Zø10X - (SI) [0] OA (.9) (01) [tOt] (ZOL)(6O)(0Il)Zø0 (SLS —p50111011 .(— SA 50 cs) LA 111 k 110 [so] L5—!WU 6 9) (11) 110DO() Lt) 009 (11Ilt)(11O)(11)søO K (LL 11k 110 L [so] (1) (S (LI) 5øA L9 05-11111 )_ hiS [0] 1000— o 8 [O6] (ZO)S0D11o—--- —0 søDli [SO] () 00011dS (ZL) —0 liD 1100 (OL) [8li] [5O][5O][5O] [SO] — (6) [0] () Ll —0 L0011dS 1100 ØO 900 tOO 500 0— (tL) [06] (5116) (11) S0A1111D0— aNo < [SO] —0 000IldS 1100 so (ft) [06] [51111] (- [50] 0 50011d5 NIhOD ( c:i —0 z—J.w 500 0—;- [5011] [5011] 90 (t) (1) (t) SL) lit) SL) < [SO] ( ti [° 171DD VZ0O (lit) 013 113 03 z—1wj 900 )j) (9)j) 11 0 3 0 10 ( L)(st)(17t)(SL) (1 (_ [SO) C *li• to 3D — 109 0 0 3 0 (VL (9) go Oh Is [110] 170A (11) (110)60300— (SL) (hi) 60 1561. - — 3D b6 LII 110311 Lz— 95 (St SILSihI 59115161 19H61 (5) [LOt] (n mmz K )— 115 110 611 611 LA LO —OliglOaX — - o iwi (5) (5) E71i OS 115 St) (11) [ tot] (111) Is (11IlL)(ti0)(Il)11ø< LA tO J 503110--- O 65 (t) XII 50311- —050111011 (5) —0 511 511 (CL) 1111 110 r’l 6 L—1W T•5- (5) ._ (6) (1) [tOt] (Ilt)(VO)(0Il)SøO 601S111 (9) K -____ _--_ 1111 110 *1111 —p9ØlllaX -o 09 SO 1111 1111 SA 50 9 B—1WI1 - (St) 9011 (9) (5) (6) (at) [LOt] :— — 011 [110] (11I1t)(liO)(11)9øE 511 1111 (St) (6) :----i- — 9030 TZ) 511 90D11(5) LA LII 1711 60 —0 L01110X I L—1W1 (11) [IlL]1INI (Zt) aNo (0Ilt)(liO)(Il)L0O K - (IL) :tit5 — hO (110) (IL) 10A ILL) (5) 01 - [110] 9 L—1W1 911—IWO 1030 (6) (01) p... lIt 1111 IODO -vzzm. (11) Zi5° 63 SO][SO][ SO] [O] (, m m 1100 500 9110 1.00 i (5Ilh)(SO6) 1011003 DN [5011] N1803 * pwax o—<----——O [5011] [5011] sr ( 1)1 (6 (1) 1—0 9133 91100 (L) SI) VL)(SL) C *uwG j 013 113 03 11 3 11 -v V )( S I ( tIh7 to (Iç 3D m (lit) 06 (9) 1 (o 1’l Z 3G Lr (1111) (SL) [1101 O0A :------00311 0 (hi) III 691S111 * L4OX O—<.------O (51) 611 (5)—0 90311 *1-I - taa 651151111 591151171. 119 [ LOt] r I OHlit 110 OØ1OaX — 59 LA to —0 [110171 IIS 59 (SI) (5) (Ii) [LOt] (111) 11WOS (LIIL)(tO)000 K — OS (1) )— ] 69 110 (50 60311 511 110 —0 601110X 511 (I) 9—111111 (6 (0t (9) [tIlL] 691561 611 (tIlt)(LIl)600 K 1111 1111 (1) - SO 1111 (6) 5A SO —0 0L1110X 1—11111 99 (9) (5L) [11111 OLA (9 (5) (01) [j (5) [Lot] (tOI)(LII)0I0 011 < SA (9I 0— (51) 511 LA LII 110 1L1110X —0 —0 9—IWO (6) OLDII (1) (11) LL) 1 (11L) ( t11t)( 10)110< :1-- 170 ( Lt) (111) (5)L(* (LL) ttA S—IWO 0 01 [1111] VS (11Il)LID11 (11) (Ot) LLDO °—-i5 61 till (jy.O liD [SIl][511) [501(511] 000 600 010 LLO (6)

[5011] [5011] (t) j(6 (L) 9133 OZ0O (1) SL) Vt) St) 013 113 OD (L)SLjhtj5t) 0 0 3 0 SLLS1VL V *33 (lit 9) V (1111) Oh Is [1111] > 4011 (SI) (17) (t 69 IS111 11LDIIO LDO 111 89 *I1 7 1911111. (5) [LIlt] 05 pL1Il0X VA 110 LA 10 ) SI) (5) (Ii) * hibOIx o—4-- 0 OS 69 [tot] (tIIL)(tI1)11IO< b (OL) (1) 05130 51111011 LHD str (6) 511 511 OA 110 ) p (5) OL 5) 01) (1.) (9) * SOIlIX 0-- [tIlt] (LOL)(I11)SL LdD 1111 6OIS6I 110 < (1) SA SO ) O11L100X SOS] S—IWO 51) liLA (9) o * 11001X -0 111 011_ 011 55 [1111] [tIlL] o <<-- IN111NI (tIlL)(L11)litO< 511 (51) — L33 SIr (6) SO VLD110 b 511 : VA 110 -(ZL) OSL1IIOX 11—IWO Vt) (5) * tbOIX (3 —4:-——-—0 7 : (L11L)(I11)5LO 1111 ha D(zt) C Ot 110 103 9L (IL) — LI) I—IWO ___j (5) at 115 [1111] SLA CV) (01) (ZV)StDIl 0— 61 1111 (1 s LDII (11) 11L) 11tO SLO litO SLO (6) [SIll [511] [511] [50] (5116) C SIAOODc)—-—

.1 z I I I ______43

2 I 3 I 4

p PST07 (4B1) p PSTØ6 (4B1) +5V p PSTØ5 (j(12)(13)I (4B1) C, PSTØ4 (12 (13) CRY BRU r— (9) 0 4B1) CRY BRW (9) QD (7) Q8 0 SYCLR*O______D QO 7 ‘14) (7) — (10) B0 HIBYT [B4] OS Q7 C QC (6) (14) [243: (4B2) [44]TOTF* O______C QC 6 ?15) 44 (1) (2) E0 Q6 (6) RMT—41 (1) 17 (2) (2) )—O PFLO. (13) BQB T000F’ QB 5 (B1) <- . 74LS 193 Q5 (5) — — (15) Q4() RMT-42 (3) (12) B DMRDDR SPECF* (15) Q 4 42 (11) [1831 • (4) :14) ( CLR NC (11) (14) (11) —C LO 45 YNC PRF1 O—( LD CLR 41 [1421 16 Q3 (3) [411 (10) C446 A 74148 A 40 (2) [4411 A (5) (4) Q2 A +5V0 6331 Q1 (13 1: AMT—40 MSCHO* < p PSTØ3 (4B1) (1 2)(1 3) p PSTØ2 RMT—43 CRY BRU (9 (4B1) QD (7) (13) CTF* D p PSTØ1 XDRLØ2 (NC) ( (4B1) RMT—44 (10 (12) (141) LTF < C QC 2 —0 psiøø 02 3) 4MT—45 23 (11) (4B1) B QB (2) (9) CRY BRW DRDYF*‘ C Q8 74LS193 01 (9) (7) 4MI-46 D 90 (15 (io) (7) XDOTRF’< 4 QA (14) Q7 (10) (6) (11 44 (6) C QC T0TF (14) Q6 (41 ) PRF1 O—( LD CLR (5) (1) (2) (13) QB . bJ [81] 43 (5) B Q5 . 74LS1 93 ‘(13) AA (12) (15) 94 (3) () 42 4 I (4) V Q4 (11) PTOT (11) 14) 41 V [B3] +5V0 (3) ----C LD CLR 93 RSTØ1 (10 [482] 40 (2) Q_ Q2 (5) j(4)- >- 10 Q (1) 6331 91 +5V : .5 (15) PRF3 p : [B11 Q- >- C, 47 I- AMT—1S w w C,, 74LS1 74 : — CC 0 W AMOD0< z AMT—14 10 19 INTREN XDRL14 —0 —,< AMOD1 _J (141) (4 (243)(244) 20 2Q (5) AMT—38 ,< (_) = 0 RMT—13 (1) XDAL12P— —0 PTOT bJP- —LCJ LIMOD2 7414 (141) (43) MCLR* < (6 3Q (7) XDRLØ6 3D (4B1) p__— —0 RESET w C, w (1 B1) 0 (11 (10) (B3) — XDIILØ5p.._...... _.. 40 49 —0 f/S W Ui (1B1 ) I- L (13 (12) (442) SYCLR* 50 59 — (443) (Al) w :Q z C LCJ C (14 (15) 6D 69 w i U) B V __ V A >- — +5V 1(9) I- I- PLFG (1) [42] SYCLK LDC* INIT* [1431 (10) [143] [1B4] [1421 (12) (1) P 7410 CONTF (12) [444] (2) 78 09 CONTST* [442]

(11)

PCLK* (442) [442]C 843 (444) (4B1) [442]CB02 PRF3 0 ECN DRTE [41 1 7408 REVIS IONS [442 ]CBØ1 ORNOF’ 0 [143) [442]C 804 r\D NUCLEAR DATA 21

LOGICDIAGRAM ACQUISITIONCONTROLLER& DMAINTERFACE c.. (ND-ACM-A)

DRAWNBY: T.H.J. I CHECKEDBY: ut/il I SHEET3 OF 4

ORTE DRAWN:2-15-77 APPROVEDBY:pj)/ V I I 7O-2422-OO 2 3 I If I ______

I I 2 3 4

SPARES 1 •0 CB06

5V J1 (13)

(9) r— 04 ‘(4) (10) ______CARY07 E1 18 03 [2821 (6301) (11) 168 IT* (3) OFLOF (14) 02 (E2*)48 6306 (83) CARY15 01 0CB04 TSTOFL [242) C805 (12)(LiL 41 42 43 44 45 46 47 (43) 74O2() 40 (43) (B3) (5) (6) (7) (4) (3) (2) (1 )(15) NC 6

A CLRLNK* A

LINK CBR2 (82) [84] c1 (381) c*(h1) CARY07 oi)7 [2821 (9) +5v 04 —0 C803 (83) LINKF * (10) (83) El 03 I (381 30 824 24 7442 (11) (2) (2B2) (14) (E2*)A8 (6301) 02 , 1 )—o LDAC* 6306 C (12) (3) (43)(253) CONTF 01 2 ) OSTAC* (381 40 Al 42 43 44 45 46 47 (4) (2B3) NC LOOFL* (5 (6) (T iT ci- (14 3 )—0 ( CB1 I B (5) (43) (82) 4 )—C CONTST* LINK (3B1 ) (6) (44)(3B1) [841 (15 5 )—0 5D144 CONTST* CBØ 0 (7) (243) [A2] (B2) 6 IRCLK* LBIT* )—0 1 (381 (9) (243) [42) .4) (12 7)- CR05 PCLK* Q_._____( E* (10) [41] >- AMT—9 [384] 8)- CBAIN CR04 (9) (111 (282) [Al I 04 SPADØ3LL13](281)(2B3)(2B3) NK* > 9)- L I (10) AMT—1ø (82) [B41 DRNDF 0i_ E1* 6 [143) (6301) SP4D02(82) [143] (2B1)(283) A/S 0>- (11) 4MT—11 (283) [383] 0 - (14) 6306 02 SP4DØ1(82) [143] (281)(2B3)(2B3) : ‘ (E2* > )A8 w C: w : v, AMT—12 —. J (12) I_, C W 01 > SP4DØ0(B2) [143] (281)(2B3) 0 )cLL__.CDEVA* 40 41 42 A3 A4 A5 46 47 (2B3) (183) ).c!_____ (5) (6) (7) (4 (3) (2) (1)(15) EL DRNDF 0 (B3)(2B3) [143) 2 )P____o DEV2* _J — LU (B3) (13) )c± (284) HIBYT — —D C [344) z 4 C807 LU [Al I (141 5 C806 B > [All LU - v, LU 6 AMT—34 LINK = = )- — (9) DEV7 (A3) - 04 > XDATO(1A3) (15 7 4/S (43) A [383 (13) E1* AMT—35 12 03 8 )-I CB0S —L—-----c EVC (6301) 36 [Al I (14) 02 0•— (E2*)A8 6306 MT-36 7442 9 LINKF AMOD2 [A3 I [3B2] 01 (124 > lAVA +5V 40 Al A2 43 A4 AS A6 A7

(5) (6) (t 5) (2) (l)(15) LINK* 0 )_cJi__ (A3) PSTØØ0 0 (2) (3B4) [33] )—0 RST01 PSTØ1 EL 0 7432 (3) (343) [343] PCLK* C800 PSTØ2 C [3841 [Al I [343] (13) I PSTØ3 C SPAD02 0— (5) 1 [343] [B2] 4 ___ I— _ _ __ —.1 ECN DATE PSTØ4 C

[343] REVI IONS (14) S PST45 ‘‘ SPADA1 0— B [343) [B2) 6 P5106 0- [3431 7 [All NUCLEAR DATA PSTØ7 0- SP4OØØ 0— A :21 [3431 [82) S 35 LOGICDIAGRAM (11) ACOIJISITIONCONTROLLER& DMAINTERFACE 7442 9 (ND-ACM-A)

DRAWNBY: T.H.J. CHECKEDBY: pd/i SHEET4 OFL( DATE DRAWN:2_1L(_77 APPROVEDBY:Ui/ 2 3 S7O-2422-OO I I I I 2 I 3 I 4

D4BUØ (A3)(BI) C, 27 (I3)(l2) 7442 D4BUI 2 7404 (B2) SPAD2O C3A4) 3 — 4 (14) D4BU2H SPADØI0 B E3A4] 5 (A4)

6 (15) SPA0000 A CAI)[A21 A C3B] 7 A (B4)

ADCII D4 BU2T (B3) AMT-5 ADCIO* AMT-9 SPADO3• ADCØ9* (A3) BUOCLK 808 (BI) [AI]EA2]

D4BU2F-I tA3]

(10) AMT-26 > 807 [BLI[B2) AMT-27 C II) 806 [BI][B2] DXT-17 AMT28> E (12) DXT-18 > B05 [Bfl[B2] AMT-29 < (13) c DXT-19 ,> 804 [BI][B2) <- DXT-20 < DCI DXT-21 < . RB DXT-22 >22 < CC2 DXT-23 GNbO- < AJI cJl B DXT-24 ->--o B <- AMI CMI DXT-25 —>>--o < ATI CTI AMT-30 DXT-13 —>-o 1 < BC2 DC2 f5V’ DXT-38 o—<4-- —>---o BJI —>--oDii BM1 DM1

BTI DTI GN O—<-——

LDCLK D4BU2L [3A2] [A3)

LA3) ECN DATE

REVIS IOHS

—— I DC* NOTES: 5 — THE FOLLOWINGSYMBOLS/NOTATIONSRE USED ON THE DIDGRDMDND/OR PRINTED CIRCUIT BORRDDSSEMBLY. SIGNRL NAME CONECTOR [4R2] — SIGNALSOURCE DRDWINGLOCDTION, OR PIN IC — INTEGRATEDCIRCUIT SIlT — SELECT lIT TEST —— - GERMXNIUMDIODE NUCLEAR DATA 1 — ALL DIODES RE G964 OR EQUIVRLENT, EXCEPT XS NOTED. (4A2) — SIGNXL LOADDRXWINGLOCATION I’\fl LOCATION VCONNECTOR .C. PIN TRANSISTOR (P1) — PRECISION RESISTORS 100PPM —RI-—— SILICON DIODE TI ZONE ç--—P.C. BOARDNAME 2 — ALL RESISTORS ARE 1MW, ±5%, EXCEPT AS NOTED. NUMBER 1/SW, ±1% METALFILM LSHEET NAME ( ) - IC PIN DESIGNATION ZENER DIODE I C PIN __I 3 — ALL CAPACITORSARE pf, EXCEPT AS NOTED. LOGIC DIAGRAM DC COMMON .—>>—— CONNECTORDESIGNATION TUNNELDIODE S26 -01 INTERFACE TOACQUISITION MODULES 4 —I.C. VOLTAGES. EXCEPT AS NOTED: CONNECTOR (3) C NC - NO CONNECTION FERRITE BEAD - SELENIUMDIODE (ND—ACT) 14 PIN DIP, PIN (7) GND: PIN (14) +50 I .C. LOCATION ‘I RESISTOR PACK DRAUNBY: T.H.J. CHECKEDBY: UCIIi SHEET I OF 3 PIN DIP, PIN GND: PIN +50 - RESISTOR PACK CONNECTOR 16 (8) (16) ] 2.21< TO +5V 680 TO 5V I .C. LOCAT ON P.C. RD. 24 PIN DIP, PIN (12) GND: PIN (24) +50 .C• TYPE ON P.C. BO. I.C. TYPE DATE DRAWN:2-25-771 APPROVEDBY: S702458-OO

I I ______—-______

I I I 00 -8QtZ—0L S IIP : g 3AOdd LL8 : NM ]1a :),9 NMG 2 dO .L33HS I (f(1 O3D3HD (iDv-ON) [t82] EtiV%] s31naoii N0LLISlfl3v cii. 33Vd]!NI 8.1.1 *0is 8OS1W. (21) NVe19VIG 31901 [2V] 8Lt’NI (II) 1VHd (28) OL (I) (DI) [182] ‘ ilNi AI-O 4 >>OA9I- WiNO 3 * N3A30 o—_—O—- A22 9a Lt’L IèlD >13% L1 318VS10)LMS O—O_—O—-l 3N 9) (9) 92 , (03

SNOISI (31SVN3 3V)9MSO—Q.._-O----i >>—c.LINIX LS1W. (9) L8] (2V) 31O ND3 I2i aI-3 92 80s1W_ 6 813 (>13013 SAS)cMSQ—O_-G----- W82)(IV2) (p8) W82)(8) 0t’L (9) 9t7 DVHd (7avH3 1X3)t’MS o—o.—o—-- d0901 0 (01) 82] (%)(%V) NW. (9) d0901 (9) (18%) —cN3A3a ZI-1NøIO >11DX It’-.LVV d (1±S-SN) £MSOQ—O—-C

øg1v( ,v >>—q0O1vaX t8] A9+ (V) WKL22(%I) [!i nD [8] 1INIO— iwlvax MS *81a1< ¶ [%V] (I) (6) St—.LNV LL-iNV (I) 0t7L BOS1W. Od3V (6)1 ø1vaX -13 >113 èJlD V (01) 91 A3 (9) 9 (V) (9) 0911 c9 a9 (%v2) 18.1. 09 øi’ax 4) 089 - N) a9 j Dc a9 (2V%)E81O- 09 (2l) ()çL% 1 >>—Q01VGX — -< D17 a (%V2)t910— tlt, L_J zmx - n, C,, COD (II) [EV] [%](iT°* t2 aç —OLO1VOX (%V2)881Q— l$ Q2)_ (9) NfleLL3 [18] I OW. C.,, 8 Z A9+ tz —o0lvaX (%V2)ILLo— E (E) Z=-o W) [IV] E AQ+ 0 — a1 —o%I1VGX (%V2)EIUo—) 82 ..... :— I 09 (2) I a1 m o’ -) t’LISiW. (28) I LIS1L ZHWOI (W) 1(1) [EV] 13dNflr * —qoivax O3iiV.LSNI (1’) (9) lAid AO13Vd(Ir) L_J W. 8) 8N1 NVH3 .o._J (El) ($1) (El) 9V I 13L_j aib—o Ø1vax (II) 913 91’ t’-3d (Nh I —1 C,, rn m : (01) 9 oivax -< -4 w lSlW.h .1X3 Ø >113S % 2. (lI) (*V2) fiE) 6 9 6 9 >>—c9o1vaX -———— °7r°WT) 8b 9Ø1VGX (8).26) 0 o, UV2190iS 9PWL)ja0 LJ -D EOh4V 9E9 øiax -< I (g r—I 2l-J.NV (I)) TED (SI)L___c?__I(El) OW. .(282) I r—>I0OiV 3 LW%] TN3!D—1 I W8) (9) 91i (I) enD >413 (%V2)W8)BLN (;v) ±0001 (182) (28) 3N— Ip >ID I 09 a9 i-o SD g- [ES] *o_____cLw(9 000I L23 tg Og (j)_-__OOOX (2) tiLSitL (2) (El) )>—q8e1vax 128) (%8)lVHdo-_--? lv WV%) (2) 02 (11) !__J DVHdO — b j—°I0ivax [18] 1130— (ill E (01) (W2) (01) UI) (El) 0% I . _ L 02 [29] E130— dii):L(I) dli (9) CE) (91 ‘° (1) E30V1 (1) OW. £ (W2) aE Ct’) NoDavo—) —oe0ivax W.3 601 VOX (Z) t,v N33aV (9) 0E LtV2] (t7V%) (lV2) (EV) a1 [IV] (t’vS) a1 ,101SèI N311 09D0V0— 0L O3v 9 -—---09liVGX 813 ‘pt’ CE)l I 1229 I W.lSiW. : AQ+ (162) 89 W.IS1W. N3DSVOj E9 >>—o0nvax (2l) oiivax (RI) 6t Li dC ON >1DjiTFeJ OW. nvax II1VOX a 9% [2 92) 09 V JEelf - d1D< Eu (6) dID (6) (El) *N3DV (El)0<..9(9) 3N0W. 9l 2>0EIi VaX L(6) • -J.NV OE [E9] 9-1db (8)K...6(6) 2t oc:::::::1 d CE) ¶ (El) CE) (8) O9MS I_J L__ (0l)[J I1 (22)(28) I (21) dODV (E6) Ag+ 0W. (0l) 0 r—>*dI LI1VOXO - (9) (%l)1 6%-flNV —5--—] 0181W. 3N—- >13i-n___OODV <__.___ 6t 29 AQ+ DN () EflO (9) J LS1tL øI-Dd 0% - —(0 9r 9-Dde a—> dlX(> --—--—-

d1SV 1 (9) 29 (II) Ll 9MS I-Dd 9>4 (01) E I ______

I 2 I 3 I OLTB (2B3) p4*(AI) (A2)

AMT-16 lB BDC-17 (II) ADCGO . - ACQ’ [2A3] I ADC-17 BDC- 9 AMT-49 ‘l2 AMT-7 L- E* C -> P4(Al) DRNDF< C ADC-I (A2) AMT-lB LTB

K- - (B2) (2A4) AMT-35 AMT-19 ADC-2 (13) 2 +5V DEVC< ADC-3 24 3 AMT-20 BDC—9 )(5) CLADC* AMT-36 7442 4 ODEV4’ ADC-4 14 AMT-21 < DEVB< B (1A3) ADC-5 5 AMT-22 AMT-23 ADC-6 AMT-37 (15) 6 <- DEVA—. A )(9) ADC-7 7 ODEV7* AMT-24 A (83) A BDC-B AMT-25 ATR* [A2]

MCLR* [82 J

p4* [A2]

BDC-20 r--i MS*< I I

)—ORSTØ4 (2A4)

DXT-15 DEVEI 0

DE

B

MSINP

J2 MS-START

S1RES SPARES AMT-42 -()-—.- SWI NOT çSPECF > (I) USED AMT-34 (7) 12 (3) 25 XDATOO (2) L —-(4) —‘ 9 \(6) 7 C; (5) 74LS00)> (4) 974S14 (5)

2 - 3 I I ______

I I -I 1 2 3 4 8L2 +5V T0R*ut)> ——)>-—()BIRQL IRQ TRfl I (12) (5)(12) 0 Q 0L!.L.IAKF [81 1 IRKF

7438 BIA KOL 37 (12) 0—- ) (13) LIRQø 74LS74 CRY 8RW [5B2) CD1 (7) (8) /7 i-;;-i D QO — >CK XIRQ1 ODIN0 [2831 (14) C

CE1 C2B3) (10) 7 OS )- (13) ,, C QC XIRQ2* Q____... F1 (15) (2) (3) (3) 1Q INIT* 6 ED 10 >- [B21 CF1 46 (5) (1) (2) ii 2D 2Q I---1 B QB XIRQ3* Q_.____ \,,_--t_) XIRA1 \\ 47 (7) J2k 0 0 74LS1 93 4 3D 3Q L?7 ii ) IRR1* CH1 74148 )(2) (3) (11) (10) (13) A A 7, (15) (13) 3 6) 40 4Q C XIRQ4 O A Q8 82 (3) 1882* 4 ) (12) ‘“ 81882* (11) 7) (13) (12) (4) 1883* (5d76) ‘F 0 (14) 81 5D 59 B 3 - ) LIR* LO CLR 48 1884* (5B2) 4 )_(5) upDNA -9) (14) 60 69 (15) CR1 (2) 0 80 - A 5 )—-D 1R85* XIRA3* 74LS1 74 >>-0 LIRQ5* (5) (5B1)(483) [5B2] 6 )_LZ.b1886* (5!— LIRQ6* (9) (582) +5V [5B2] (2) )— (1 XIRR4* . >>—0 LIRQ7 +5V 8 [5B2] 49 7442 9 (11) 18 KE IAKF 0— BDMGOL (83) VECTOR*(3B1)(83) [5 B2] DM600— [B2IDMR VECTO .... 8M2 J/ 54(10)BIAKI BIAKIL 0— 116 MASTER BDMRL 680 [2B3) MCLR*(2B3)(5B3) (8) T.

BN1

BSACKL (12) (13) DMAA*Q(AJ_.( 7 OS )(14 DD1 (2B1)(3B2)(3B2) CRY BRW [84] (15) F-1 (7) () 6 E0 XDMR1 .i2) (B4)(2A1) OR1 (- )- MASTER DMG0* (2) (l3)6(l2) BREFL DEl I >)0 C QC DM60 j)J 4 54 74148 53 (1) (9) DF1 (1) ;! D 0 ) I QB — B 6) (13) XI NIT 2 82 C 1 74LS193 DM1 (14) 1 Al XDMR4*O W! A QA 22 (15) >—0 XDMG1 0 80 A 3 OMAD0— LD CLR (14) EQ CLAIM0—--— [5B4] XADDR [5821 MO4* AUP DNA B B +5V >—0 XDMO2* +5V 0 (4) CLAIM*0 — 36 (6) [583] 8T2 6 (5) 7417 >—0 XDMG3* RQRF0— BINITL D 8) [281] 3)58121c11 732 55 (11) ( (5) 7442 0 9 DS1 (12) ))o XDMO4* -=- BINIT 37 74LS74

9* (6) (4) CK DMAA* p DM8 B2) (83) C (382) D.MASTP (582) (1) 1R3] DM68* (83) ECN DOTE +5V REVIS IONS

ADC* NOTES: 5 —THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ON THE DIAGRAMAND/OR PRINTED CIRCUIT BOARDASSEMBLY. SIGNAL NAME CONNECTOR [4821 —SIGNAL SOURCEDRAWINGLOCATION, OR CONNECTORPIN IC —INTEGRATEDCIRCUIT SAT —SELECT AT TEST ——-—GERMANIUMDIODE NUCLEAR DATA 1 —ALL DIODES ARE 6964 OR EQUIVALENT, EXCEPT AS NOTED. (4A2) —SIGNAL LOADDRAWINGLOCATION PIN TRANSISTOR (P1) —PRECISION RESISTORS 100PPM —-——SILICON DIODE ZONE LOCATION C BOARDNAME 2 —ALL RESISTORS ARE 1/4W, ±5%, EXCEPT AS NOTED. 1/8W, ±1% METALFILM TLSHEET NUMBER ri_C. BOARDNAME 1 I C .C_ ZENER PIN ( ) —IC PIN DESIGNATION DIODE LOGICDIAGRAM 3 —ALL CAPACITORSARE pf. EXCEPT AS NOTED. OC COMMON 12 DMACONTROLLER& KEYBOARDINTERFACE —>>—-—CONNECTORDESIGNATION TUNNELDIODE -01 4 —I.C. VOLTAGES, EXCEPT AS NOTED: CONNECTOR NC - NO CONNECTION FERRITE BEAD SELENIUMDIODE (ND-DMA-A) 14 PIN DIP, PIN (7) GND: PIN (14) +5V 94& RESISTOR PACK I .C. LOCATION RESISTOR PACK - DRAWNBY: R.F.Y. CHECKEDBY: SHEET 1 OF 5 16 PIN DIP, PIN GND: PIN +58 - CONNECTOR (8) (16) 680T0 +5V I80T0 +5V .1 LOCATION ONP.C. 80. I TYPE I TYPE -C. APPROVEDBY: 24 PIN DIP, PIN (12) GND: PIN (24) +SV 390 TO GND .C. ONP.C. 80 DATE DRAWN:3-10-77 /4— S7O-2420-OI

I I ______

I I I I - 2 3 4

RPLY1 (1)1 43 (4) (2) 7400 DMRSTP* OMRRWRT (152) (B21 (2 (5) 0 Q C 72 (14) 74LS74 __I:— 1I YJd12) —-_ BDOUTO (10 -U3) (B3) (3) lY ---OXWRT (13) 52 (3 (6) 4B 4 - 74LS51 Q* P XDT 16 (B3) RMWF*Q— (12 OR 745 (B2) 63 (42) (1 D Q (1) S 2i\ OR 745 CLR DMGØ* 7LS157 - _c.i [1B4 2Y (1) 72 _c.1 2B L 74LS74 +5v (9) 3Y — SRPLY(A2) (10) 3B (11 Q*(R) (14 >. — RPLY1 A C A CF2 c_i__)____ (14) LR E4 57 11) (13 4 (12) 4B -- XRPLY*O< 75154 ) (13) 4Y —Q PRPLY (13) 4B [B31 (1 s • 74LS157 (1) 74LS157 +5V S (4) I(5) (6) (7) (15) G 051 S/L S B C D (11) (10) = M1STER SRPL >>—o XCLK [5B31 [521 65 I U 7419S * 10MHZ BRPLY 4(82) CJ2 01(1 1Q WRTF(B1) BSYNC° CLR QA QB QC QD 1 7406 >XSYNC* 54C12x05T0 xDRTO 10 :3) [B3] 10* >—NC 4) I(13)

RLY2 CK2 DL1 2Q (1) !2___RMWF(51) MP1 8WTBTQ XWT8T (4)(13) 20 >>—o 16) [583] 4 )—o RMWF* (s2) F—-- CH2

(2), I (9) 8DRTDQ CK1 (12) 3Q L_ 6(8) XDIN 10 WDDF(NOT 4 [E1 3D 0 [353] XWLID*O_<< 3Q* 11) USED) -NC 0M5DO WTBT >- *- 42 [5B4] 3 5P2 58 z 74LS1 75 I (10) (15) BYTF 88S7L )CP2 xBS7 CL1 )3B2) (551 ‘/ IE1 (6 ) (13 40 XBY5D*O 52 02 NC (5) 74LS51 OR 7451 a_ : - C2 0 BRPLYL 0 ) CE2 w Z w € XDDTO : XBYDD [1541(553) — 70O.- 4 z *, 0 w (352) -J i4)54(13) 8RP’CY [—:-:-—--————;1.(4)(351) MP3 XWRT0— DMRWRT(52)B3) (582) [s2J [5B31 XDRT + 5v 0 0 RQRF 58 (6) (6) 2 183 1CO s1?(3B1BDIN 74LS04 ENOUT _J — I SF2 PRPLY0— imr—\ \[7 w *, 0 Li (5) id 18 59 (52) BRPLYL — 74L574 0— = C4 MCLR 1C2 25 4 [1531 (1) Li 2Y DMDIN Q* (6) (3) DMRRD 71 (3) :o 39KHZ 1C3 ii 2B MDSTER 0— 78 (7) 74LS08 4[583] [83] _ (1 (11 w I- 16 I : 35 In : B -::I4E:--(9) MP4* ci) 13 E 5J2 (9) DMDWRT (10 —0 BDRTR MP30— I- - C- DM00 [584] 26 2Y 38 [583] 83 74LS1 57 D15 >BSYNCL 79 [1841 •(1O 8SYNC0— +5V 2dO (14 45 +5V —C-- (4) (552) (53) -C- 74LS1 53 DMDOUT w_ 12 13] 71 (6) fl2) 7 2C1 \j WRTDLY0— (5) 74LSO8 82 )>OBDINL (10 52 I [583] (1 BDINO — (10) 2C2 +5v MDSTER0— S (552)(153) (B2) (5 74LS1i 5E2 (13) [583] Ii 9 () 2d3 (15) 4) RMWFcD (6) 81 >BDOUTL (52) BDOUT 51 A B 0— (11) 15) (1) [(10) (52)(5B2) (9) (2) I0 5K2 ]?TT1T)) (12) — (1) 74LS74 WRTF RMJF 1OMHZ* 80 F:::*up CRY (3) >—BTBTL (52) (81] (‘33) SO 22 26S1 2 1HZ (5B5) I 84 (8) ON 74LS193 RPLY2 4b: 74LS193 [53] . CLII QA 08 QC QD QA B I C 00 BWTBT ((13) [i4) () (2) (6) 114) ) (2) (6) (7) I 39KHZ* MP10— Ri (Bi) ECN DDTE [5831 220 REVIS IONS ç5) 85 + RESET (182) —. 74H04 4 (3) (4) (5)

A C D NUCLEAR DATA DU1 I L:::--— - (15) CO (5)54(i2) I >XTMOUT* (11é DIAGRAM 74161 LOGIC o) DMACONTROLLER& KEYBOARDINTERFACE QC QD C 05 QB 7 (ND-DMA-A) - (14) (13) (11) I2) DRSWNBY: R.F.Y. I CHECKEDBY: -1O SHEET2 OF5 DSTE DRSWN:3_))-77 SPPROVEDBY: y(frj 2 3 I S70-2420-OI I I ______

I 2 I 3 4 (3) DM80 [584) 66 (6) XDIL15 BDDTD DV2 (3) [283] 742O XDRL15*0 [--1 BO XDAL14 << VECTOR 1 c..2__o c I0 BD4L15 XDAL13 [i82] 18 0U2 (6) XDAL12 (4) (14) E2 El 1Y (15) BV2 XDRL14*p Bi RDDB15 (3) 18 << Ii 83>- ___>____0 BDAL15L BD8L14 (13) Z3 (5) BDAL150— — (10) 28 (81) DT2 r (7) (11) 8U2 (12) C4 2Y 12 (12) XDAL13*0 I A71 B2 (11 84 (6) << C (11) (10) 8DD814 2B W \\ BDAL14L 80 12 E4 r (10) 82> 7— -0 0804L1 3 BDAL14 22 26512 A3] 112 84 (11) 0— — 052 (13) 38 (9) (Al) 3Y Ii (4) XDRL12*0 I—1 83 B3 (10) << C15 (13) ADDB13 38 81)- w -0 BOAL13L 13 BDAL12 E3 r (6) 7, Lib (14 82 0— 21 83] 83 (14) BDAL13 — ) 48 (12) (Al) 45 10 (1) 63 8S2 (2) 82 (13) 800812 48 80)- A E2 (1) r ‘F BDAL12L A 81 74LS1 57 BDAL120— 20 XBYRD0-- 82 XWAD (1) 32 DR2 XDAL11 74LS (Al) (581) (1) 20 [2B11 (6 283 26S1 2 XDRL11*0 << +5V0— B1 IC El (4) (15) BOAL11 Al (6) [A3] 0P2 — XDRL1O*0 [--1 81 6) << 7408 -I7) El BR2 13 Ii iQ BDAL1O 15) \: 83 \/ [831 13) -7,————0BDAL11L DN2 02 (10) BDALL1icy- — 23 12) XDAL1A (2) XDRL9 0 - -7_-———0BDAL10L DM2 (13) XDAL8 23 BDAL1Bo— 22 XDAL8* 83 (Al )(581 ) p r-i 13 80081 1 2A << (14) 25 (7) Ii E2 El BDALO8 (6) [831 11 28 81>- w -0 BDALO9L I— (2) (6) 77 w lA BDAL09 0— — 21 15 38 (Al) (581) (9) 8M2 lB 10 1) 76 80 Li2_38 :i— BOALO8L 0L2 (3) (5) 2A 20 (1) XDAL7 SELl (1) 74LS157 BDALO80— — XDRL7*0 i;—i S _<< —C 80 (82) 74LS1 57 (Al )(5A1 ) 26512 (6) 28 0 (_) IO BDAL07 z>- -z [B3] 25 K2 (1) 0 XDAL6 S 1(15) XDAL6*0 i-;-i 81 (82) 0 << Ii (5) -0 BDALO6 (15) - [B3] DJ2 02 (10) — 0)- (12) XDAL5 — i-•;—i 82 LJ - XDRL5 << -C (82) XWAD0- - : O 12 w w v 4 67 -0 BDAL05 [2811 : 2651 2 — cJ 0 Ui 0H2 (13) [B31 U (15) 03 XDAL4 i-;;-i B3 (B2) (14 E1 BL2 XD8L40( -C iA . > C-) 0 I3 (1)(l2)(i3) XDAL7 0- (Li) 13 (15 W BDAL04 15 83 7 w- [Al] (3) )- >>—0 BDAL07L Ui Ui U) [B31 CRY BRW 28 --- (U 23 x —Ui (9) BDALO7 0— [484] i J=(9) 1A (Al )(56l ) —0 QDI RFA6 (11 12 BK2 — XDAL6 0- -2A [82] lY (12 \7 —: [81] 2Y 18 82 BDAL06L I— Ui Ui Ui QCL (6) (10 )- >>—0 z OF2 C 28 BDALØ6 0— — 22 [484] [583] bit- I- w (1) 20 XDAL3 r-•;-i -0 RFA5 28 (Bl )(5Al ) z Ui 2Y (7) XDAL30—<< —(80 (2) (B2) —--- B QB .cL2. Ii ‘c:7 BJ2 ID RFA6 XDAL5 0- 3A (82] (6) (4) o)-- 0 (9) 81 -0 BOAL03 [81] 28 BOA Ui I- 69 (82)(4A3) (10 (6 )— >>—0 L05L V) B [B3) (3) 3B BDAL05 21 [484] —Ui CDI 0E2 1 Q— — A LJ_ A QA RFA5 = = ).- — XDAL2 —a RFA4 3A (Bl )(5A1 ) I- I- XDAL2 ri B1 74LSi93 (82) (9) (B2) 3Y I0 0—<< Il (11) (14) XDAL4 0- 48 (12) 2] (10) (1) \37 8H2 BDALO2 LO CLR 38 80 I—C [811 )- >>—0 BDAL04L (10) [83] (13 70 00 CV2 (12) 22 4B BDALO4 0— - 27 [484] F•EL —V ADALi 74LS1 57 (Bl)(581) XDAL1O—<< -( 82 (11) (82) Aup ADN (1 68 01160*Ji) S 26Sl 2 12 6 60 BOAL01 (5) (4) 74L51 57 [lB3l 26512 (13) [B3] 6 CU2 Z3 (15) XDAL0 F—E;1 83 —a (15) (B2) XDALO0—<< —C 13 (14) 0 SCCLK E2 El B0ALØR (4A1) [B3] (9) (12) (1 3) CRY BRLJ RFA3 18 (4) (14 BF2 _i2.) o QD •Z2.QRFA4 XDAL3 18 [B2] 15 El 0- (4) (3 13 (15) (82) (484) [81] (3) 15 lB B , W BDAL03L ) 18 23 BDIILO3 [4841 XDATA C QC .c.i RFLI3 0 RFA2 28 (B1)(58l) [2811 (82) 28 (7) (11 12 BE2 (1) XDAL2 0- _) [82] 2Y (12) cy VECTOR 2Y (7) (6) B QB [Bl] 2B 82 808 L02L — RFA2 (6) ) >>—0 ECN DATE [1821 (82) 28 806L02 22 [484] 62 RFA1 38 (B1)(50l) REVISIONS A QA !!i, (9) 0V2 RFA1 XDAL1 0- 138 [82] 35 Il (4) ‘c::i (B2) (9) 74LS193 [81] 35 (10) 38 81 BDAL01 XWAD (11) (10) 63 ) >>—0 L LO CLR 38 Al [484] [281 -C 74LS 157 BDALR1 %1 (1) (B1)(5Al) DATA XBYAD 4A DM60*0-— (2 I0 XDALO 0- _) (1) \57 [2811 r )12) [1831 DO j - [81] BOAL0RL (13) (i5) (3 ) >>—0 LOCICDIAGRAM 5J( BDALØO [484) I- ) & KEYBOARDINTERFACE (Bi )(5A19 S9 DMACONTROLLER 61 (ND-DMA-A) (S DNA0* 74LS1 57 [1 841 DRAWNBY: R.F.Y. I CHECKEDBY: H I SHEET3 OF5 DATE DRAWN:3_IO_77 I APPROVEDBY: e(*I S7O-2420-O1 —I 2 3 I I I A

B -iSV KBØ7 KB04 (B06 K801 (803 (805 (800 KB02 RC1 RC1—10 RC1 RC RC1—19 RC1—7 RC1 RC1 1 —20

—17 — —18 ‘\

1±j ‘ c —8

( D82 —9 SCCLK SCIILD* 3821 [44] +5V ]305 —I—-, -[O05 i25- —.. TiOOO5 —i—i —

TfOO5 — FE1 F L I———] LIZ I I Lt L’’ F F LT_ 14; r :j; 0- Q 1OK 4.(15)

1: 100051 boos S(6) J i (13) 25— 0005 (14) 10K 0005 10K 10K LI 10K Z-] 11 7j 10(1 7 — —

7] 1. __c.) -I (5) (3) (9) 1 1 I I I I I I I I I I I (4) CEPCETA (51

5- (6 I C 0 B 4 LD (7 74161

5 54(12) 19 (4)4(13) (6)(h1) CO 413) (11) 4(12) j(1o(2)

I (15) C QC QD QB LR 6 Wi (12) (14) (13) (1) )—

I -I — (13) -C (4) (14) (15) 44 0 (13 74148 5) SCN1 L_ 0 SCN2 El SCN4 (9) 7442 43 42 41 40 11 Os E0 112 111 110 KBEN* [SB1]

I 16 >cj >)

I 9 8 7 6 4 3 2 0 (8002 KBDO1 (7) (8)

L ji2(2) — _ — -

L (14 (_t. c12. (13 (11 (12 (11 (10 (13) 114 1(2 113 112 Al 40 Al (5) 110 6331 6331 +15V0 1? ?(15 E E (15) Q8 97 Q6 Q5 94 93 92 91 7406 7406 98 Q7 Q6 94 Q5 93 7406 92 91 (9) (7) (7) (6)

(4) (_a (6) (5) -- (4) (2) (3) c1_ (2) (1) £.

2 (12) (2) DD2 (6) — 98 - _[JsE

—i—i F L ‘ F I L Fc L1I I I I F5E I LJI L I I I r-: L LJ I 4.2.2K (12) -: KYTM* -:i 15::

L°°° 1 I, L 4 !_i (4) 114— p2.K oodi 0001 2.2K (13) (1)(14) j_ 10) 0001 0001 25— (5) 0001 -0 0001 (3) 0001 2.2K1 22K 1 2.2(1 2.2K) 1 2.2K) 98 93 92 (5114) 91 94 95 -I -1 1 -I -1 I 1 -I -I I I I I I I I (6004 —.

—> — — — — —> — RC1—14 RC1—4 RC1—13 RC1—3 RC1 RC1 RC1—11 RC1 —12 K8107 —2 (8102 (8106 (8105 (8101 (8104 —1 (8100 KBIO3

-I

I . MUTIR* [5o4] . (14(1O) LS08 j RF46 r 3R2 (13) (11) (14) (11 (13 (14 (3) (4) (6) (141 (11) (13) (6 4) 1 (6) (3) (4) 10 20 3D A 50 10 4D 2D 5D 3D SD 3D 4D 20 10 :9) Kt4 74LS1 KT KT KT

3. 74LS1 74LS1 24 3 2 1 2 CLR

3 CL 2Q INIT* 39 [ 49 59 74 6Q 19 49 29 39 74 59 74 1 49 39 1Q 5Q 29 B2] (5) (7) ______(10) (12) (15) ( (7) (12 i

— iJ

11 —

: - ______r —000CLK IRAS* [143] (5) (581) KYTM 7414 (VECTOR 26 KYTM BITS) (6) — BXFR [5112]

I RF44 [382] 738h1 )7438(82 438O 43D__—0 (4) 738ii2__.O (5)

I 438° I N (3) (5) 0— 7438 1 7406 7406 . 12 12 (3 D 6) 74LS74 +5 17 V (10) (ND-DMA-A) DRAWN DATE NC () (6) BDOL07L BDOLR6L BD4L05L (384) 804 (384) BDIIL03L (384) BOOLØ2L BOVL01 (384) 8011 (384) (3B4) (384) DR1(WN: (384) BY: L04L LOOL SC (41) R.F.Y. DMA H L (\l 3—10—T7 LO CONTROLLER I I

4 LOGIC 1(PPROVED CHECKED & KEYBOARD DIAGRAM BY: BY: ()O) L’dH DATA INTERFACE I I S70-2’420—OI SHEET ECN I-z =:>- 0 C>- — LI 0 L — - o REV Q bi : z w x L —: w 4 I w W r co: S Cd) 0 ).- I OF °-z O 0 : - ONS DATE 0 V) — i- _J >- W W w 5

A

XI

C C

C ______

I I I iO-UZfiZ-OLS G]AOUdd LL-OL-C:Ntiuern]! S O 133HS t1Q 3D3RD Ad NMVG [501] .013W (V-VO-ON) 0 3DVJN3INIaVoA 3111OI1NODVO IwvIo DIE3O1 (sot) [soo] NI01D (501) * ZI-IWOI 0 viva NV31flN (SOl)( 100) SdW0- (000) (000) SNOIS IA3 (501) I I b a 31a ND3 •0 O3ISOW (EL) (I) (I) (6)1 013 V .____SLSD..______.______. 0 1IOWOO t A1dIJO (oL):a [] (1) A1G.LW10— 09 09 vr5 J (St 05+ (L) (080) (SI) * dW OS1t7 —0 !OM000 (01) U 05+ lit LS117L ( 101) —0011013 AS+p (01) IL) • 179 (ii) ( L) ) (1) OS OS 9) (500) VNO V (501) [Lot] (SOS) 0 *JI1 (ZOO) I;) (5) 013 O1 >0 Cs) (171) (Sot) (lOt) 1L) [50t] —I 17151171 .500I OOWO (ii) (5) .tboil 0— oO 0 so (5) 51) (ZL) (lot) 56LOut EI (IL) t7lL — -C :r (0) (1) .90011 0— 80 017 0 cn (0) 1) —I m 05+ 1 0 a (lot) (5) .s0011 0- DO 3 (01) .500I r, (9) z (17) (lot) z- .00011 o—-y 00 0 (6) AdD :— — (01) SI) 1100 LJ I,, Q U* m (too) ‘—p (SI) ()(lL) (17L (500) IdOl c: (St) c, C r’l 0*1 NDO)I(St) OP 0 X 9OlJI a (iioS) (01) OS CM *1 *1 1901000 ii hit (8 6 -C -4 : -v 1(6) 9 [sot] (9)* .9001 00 9OShhiL 05+ (1) 51 (5) — *01 (5) zv (1) N3)IDAD — at -v -< C* \J\ (1) 00 aNo1o—K< T 1.- - ‘(0) LX Lii 3 .0 T63 (9) ON0 0KE —>-—--——0 aNo - I 3v_ iia L1O OIS1I7L 05+ Il n ON0 0—<—---— —>-———0 ON0 [081] [SOS] LJO .IINI 0— —•0001i1a8 0N0 05+ o-4-- —>--0 ONO ZOO Ira Lb (5) 0 0 05+ aNO 0N0 d —>--0 [500] LAD 030 030 [5051 DNASA0 ONO —0 05+ —>--0 0N0 DNASO 9)90Sh1716 [505) 003 LID 110 101000 (01) 05+ ONO —>--0 aNO 05+ (SI) LAO NIOJXO 1013 IWO [OOZ] 3 05+ 0N0 —0 0)08 aNoo-<-- —>---0 II) .0 [sOS) 000 LID LIO (8) (LI) 501000 I 15171 rt-5- 05+ ONO ONO (9) 81 01) 0 [SOS] —>--0 17151171 901000 000- ODD 0DO al-i-a (15J) (500) IL lAlddO Z_0L [SOS] 801000 V d T° [SOS] I 1S171 601000 ALI7 at [SOS] (SOP) I0n ) [OOZ] .011001 inoao —00h1Oa0 05+ ( 10))113N3 -0 LL1 1LWO (P41Yj) i5•° ;.::_1 [501] 1) 0117 C)’- so 9 (01) t D . SDOOdS

I I I ______

I 2 3 I 4

XINIT* CN1 CD1 XIRI1 O—< p 13 0— ------—>>—S--C)XIRQ1 D8H CE1 4 CP1 86 XIRI2* p 10 r—O+SV 14 0— - —>>-—--0 X18Q2 Q<- CF1 4 CR1 15 XIRQ3* X1R113*C—< -0 11 R4 +33O O—---—--—-—>>—---——O C’ XDDLD3 IROF 0 CH1 DV2 (2____XDAL15 zo 11IR 114 O—<-----———-—-— IRD (811 ) (1131 1---—> XIRQ4 XDAL15* (1) DD1 BO (31)(4B1) DN1 11D11L02 I NTREN )7:8 XOS7* Q (L___ XBS7 R3 68O 10 XDM6l*O—___ç 1 (84) [811 [31121 5 XDMR1 p A15 p 0— - >—O - 0 (111) (32) DPi XDDL01 DEl DU2 XDM62*O.<( p 2 [81 1 6 0 >>—O XDMR2 XDOL14* (4) XDAL14 r-i Bi DR1 XD11L00 DF1 4 °—:: (3i1)(4B1) Ii (5) [81 1 —0 14 p 3 7 0 >>.—O XDMR3* (3A2) 0T2 Z2 XDL13 XDMG4 XDMR4 (l2) B2 XD11L13*< (341)(4B1) CJ2 12 i_i.__o 13 84 (32) XSYNC*0 <<- XSYNC Z3 j (B2) +5V A 26512 Ji2___. XDAL12 A XD11L12* 83 0 (31)(3B2)(4B 13 (14) LSRL* (62) 2MHZ E2 El A13 [841 (3A2)

XDDLO6 DWELL*

[81 1 (2B2) 2MHZ* XDOUT XDOUT DR2 XD4L11 (113) * (1) • (113) XDAL1 1 60 (3l)(342)(4Bl) (2112) —C (B3) (82) 10 -----—-O ll (84) (381 1 (3A2) (384) (364) DP2__ XDLlø (4B3) XDAL10*o—4::: Bi (3l)(3ll2)(4Bl) (82) Ii —0 lø (3A2) +5V DN2 z2 JPL. XDALØ9 XDALg9* r;;i B2 (3l)(32)(4Bl) XBS7 (82) 12 AØ9 (6) —0 [1121 77 (13) (32) DM2 Z3 (481) 26512 —0 xDLø8(3l)(32 XWRD* XDAL08* .c---k 23 (3l)(3l2)(4B1) (. (14) XDAL03 (82) E2 El —OEØ8 [811 XDDL02 XRPLY* [81 1 (3B2)(382)

[1111 OMRF1 DL2 zo .i2___ XDLø7 [B31 X8YAD* Bo (2) (31)(34)(4Bl) 10 (B2) —j 1107 (3B2) XDRL DK2 Zl i__. XDL1LO6 0 (4) [B11 XD11L06O—c •—c: Bl (112)(3111)(4B1) (B2) Ii i2__ 0 1106 (3B2) (62) EDAL1 DJ2 (12) Z2 X011L05 (382) (3B1)(3B2)(4B1) 52 70 (.1iL... 1105 26S12 (3B2) XDOUT Z3 XDL1LO4 (15) [1121 11011L04*O____ —C (3B1)(362)(4B1) 13 (14) +511 E2 El (3112) 1OHMZ 10MHZ 0141100* 1 4(283) (113) [2B3] (284) (283) B (264) B 0F2 ZO XD11L03 60 (1131(1121(381 )(382) CHAR XD11L03* [3113] I0 1103 DRNDF1 (3B2) (382) DE2 Zl X011L02 XD11L02* l...... <( —C 61 (112)(113)(3B1 )(382) Ii —0 1102 (382) CV2 (12) Z2 (l0) DEVSEL x1111L01 [831 —C 62 (11) (112)(113)(3B1 )(3B2) 12 DM0 —0 1101 63 (382) [1131 (15) 26512 Z3 63 0111 XDAL00*Q—.----E--El 13 (14) DRNDF2* E2 El -(9) (113) E0DL1 ECN DATE

+5V REVIS IDM5

NOTES: 5 —THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ON THE DIAGRAMAND/OR PRINTEO CIRCUIT BOARDASSEMBLY. AOC* SIGNAL NAME CONNECTOR [4112] — SIGNAL SOURCEDRAWINGLOCATION, OR PIN IC INTEGRATEDCIRCUIT SAT — SELECT AT TEST ————GERMANIUMDIODE 1 — ALL DIODES ARE 11964 OR EQUIVALENT, EXCEPT AS NOTED. (4112) — SIGNAL LOADDRAWINGLOCATION NUCLEAR DATA

— VCONNECTOR .C. PIN Q —TRANSISTOR (P1) PRECISION RESISTORS 100PPM —*4--— SIL)CON DIOOE I ZONE LOCATION 2 —ALL RESISTORS ARE 1/4W, ±5%, EXCEPT AS NOTED. BOARDNAME 1/8W, ±1% METALFILM ,...... •L_ SHEET NUMBER I ( ) — IC PIN DESIGNATION ZENER DIODE I.C PIN BOARDNAME 3 —ALL CAPACITORSARE pf, EXCEPT AS NOTED. LOGICDIAGRAM OC COMMON CONNECTOR —>>—— DESIGNATION TUNNELDIODE YYY LAYINTERFACEASSEMBLY 4 — I.C. VOLTAGES, EXCEPT AS NOTED: CONNECTOR NO PIN C NC - CONNECTION FERRITE BEAD - SELENIUMDIODE O72)B (ND-DMB-A) 14 PIN DIP, PIN (7) GNU: PIN (14) +5V 946 RESISTORPACK I.E. LOCATION 16 PIN DIP, PIN OND: PIN (16) +5V - DRAWNBY:THJ CHECKEDBY: igI4 SHEETI OF 5 (8) CONNECTOR 2.2K TO +5V .C. LOCATION ON P.C. BD. +5V 24 PIN DIP, PIN (12) GND: PIN (24) IC. TYPE ON BD I .C. TYPE j P.C. DATE DRAWN:2-17-77 APPROVEDBY: y 570-2413-Oil

I I ______-- ______

I I I ÷ 2 3 C9 1600 R28 4.7K 4 5v +15v — (1 2) R26 2 2K ZDLY 3Ous D [A2] (10) 74LS08 BLANK* SLINK ll2R_23PLTINH* RC—24 COL6 [82] [143] PLOTEN (4 SEEK V :LOTF [42] ÷5V ZOLY (43) (9) 3) 4) 5) 6) 42 ‘ 8 C ‘92.2K:C CEP-LD (13) 74LS86 4NK 11 4 CK Q *0121{”””\Qi11Rx4C* .J PLOTF* [811 74LS32 (42) [83]ACCLK CR8 -l2V CLRQA_ (3) (13) —15V r ÷5V 14) 2) 11) (10) 1N4728 1 DRO1 PLTINH ‘(9) FLDMS* +5v [144] 7432 11431 [Ml PLTINH* ) 6 6(l)T )Ll COL2 (10) 7400 MRKMS* - (Al)(B3) )7411(8) S D 8 ALPHA [A3] +5V (81)(483) ZSg7 45( [81] PLOTF* MRKMS (Bl)(4B4) (5B1) [4A2) (13) (82) [A4] A ZSØ6 Q— 44 A [4t2) CL PLOTF (12) 9 C 2 41 48 Q3 ZSØ5 43 ZINH0—--- ) 0— 0 E42) (11) C1l 4S08(hh2 42 luf R33 1K ( 3 zsga0— (5) 34 MRKMS Al (9 (3 (J(5 (6) (42) (7) [4i2) (9) 3258 LD A B C D 2N4124 AC CEP ZSØ20— (10) [4A21 CET 19 ZTC* CLI( (15) 4 33 74161 —0 CLK (81 ) 2 74LS1 51 15 CLR B QC D (14) 4 9 (6) ) H RC 25 w (13) ) COMPLT . (14(l31(12(11) CHCKEN COL4 ALPHA [All IB1] (12) (7) I1 ZDLY - (9) 2MHZ* SKIP* (A2)(L13)(A3)(B3) (1l)r — (1B4) SF0 [144) 74564 [B4) (Q) 12 (8) [B3] (12)1 CHAR 7410 LOG [383] (11) ROW7* - (B3) (4A4) Ui — W 2MHZP [82] •‘:• [341] CHAR (84) __j I- I— [3A2]4 CALPLS cJ ) (3) (4) (5) )- -Z 54000 2MHZ 4(3A4) (4) (4) [3A21 20 )[1A4 .1100 (5) P (4).. 74LS04 ROW* ZTC 6 o)-__ w 7 6 (2) (2) [B2) 0 Q c12._ [A2] ( DMAF1 0— o Q (4) 74LS08 =w SCL* CIILMOD 2MHZ [1831 bJI-VI- •, [144] a- [Bli Q [342] 8 ZCH4* 0>- 0 (4) ADVNC 18 6 [42] (4) (4A2) Q_: - 7474 (14 (13 ADVINH 14 (342) 74574 Li Z Ui X (121(11. 6 (5)1 0 J U) [3A2] 74L532 ÷5V — z c-, 0 W 0—4 (5) DWELL (15) ALPHA SKIP [143] (6)1 D (3) Q* (6) Q* (6) _1 —)< CK —NC [83] LSRU* Q (3) CK C0L6 ROW4 [14412MHZ SF* (11) ,c c) 0 4 (Al) - D LJDI- —W [A2) [1B4) (B D i04(6 (82) (9) C 0 C W W 0 U) (B3) 12 _I — (1) ROW2 (4) ‘‘(6) C (12) (83) 7410 (10)’ (1) C W U) 0 W (Al)(B1)(4B3)(484) ZCH3* — ROW1 (5) (4) lO (13) —z B I (442) I- W W W * (9) . (8) 74161 CHAR EDT i z EOS*[A4] (10) ‘ — — — — — — (14) [Bli +5V CoL6 L004ç___&.) A w [343) 7402 [344 A :o Q W Q (8) CQL6 840 (9) (1) — o>-- Dul CLR (9) — — U) I- [A2] 122.2K( C LD 7404 W I- B XTMOUT* U) 0____< 9 (10) CEP CET CLI ZSO9 ) = I-= >- — (13) 74LS32 I- 8 (9) (7) (10 (2 [4A2] 12 (6) (12) (7) ALPHA 7410 BLINK* 0 Q ZCH2* 7 — 4 (14) 0MHZ* (442) ZSO7 0 44 P [182] 74Q4 (6) 6 (2) (5) 18 [442) 13 M13 D Q SKIP 43 CO ZSR5 0 SKIP [341] (82) 74574 5 (5) (11) [442) SCL* D QD — 12 —0 [83] CFS3 0 (10) ZSO4 42 (81) (Nc) Q* [382] 0 (4) ZTC* ZON* (4) A CK 4 0MHZ QC [442) ri p EOT* Os [lB21* CFS2 0- C (IlL (11 [42] (B2) 74196 11 SF1 ZSO30 Al (82) (1) DMAEN 5 (3) CNT MR 13) (1B3) 74LS74 (82) [3B2] 3 [—-1 C _ci2 B 31 QB ZCH2* [442) 0 LF* +5V [3B21 E0 )cJ.2_.DMA0O* CFS1 0— CLK2 (3) Q* (6) 74161 ZSO2 40 ZON* 4 0 LDAR* CK SKIP* (13 0 (2) (4B3)(4B4) [382) (14) [442] 46 2 CR* (8) [B2] 112 )c!_.Q [384] (42) CFSO0— _(2 A QA 6331 p ZINH (42)(4B3)(4B4) 3 C (82) SF1 (Al) [3B2) (1) 1 (1) Al (7) t LD SP* 4 E* [1 0 +5V0 [83] (1) CHAR* .i SEC (4B3) 1/2 SFO* 2 (9) [3A2) CEP CET CL . (484) R3l t 841 AO I 470K R29 DMAF2 1 25 150 *[3A2] CALPLS 2N4126 [184] 74148 CHAR [A4IEOS* Q 02) 0 [344] ECN DATE 74LS32 DMAINH SF1 0 1OMHZ* ZCHO* ZSO6 Ql [342] F — — (43) [1B2) [442) (9 ) (442) REVISIONS do - CNCKEN 4LS5l luf Q2 [43] (10) I R30 5cr 2MHZ - 22d ) [144] NUCLEAR DATA ALPHA ALPHA FN4124 [811 LK* j [811 +5V (Al) LOGICDIAGRAM (383) 74S11 CSR DISPLAYINTERFACEASSEMBLY ZOLY (11) (1B4) [A2] 10MHZ (ND-DMB-A) CHAR* [1B2] DRAWNBY: CHECKEDBY: SHEET2 OF [3112] T.H.J. I vdU I 5 DATE DRAWN:2-18-77 I APPROVEDBY:d1’ I 570—2413—01 2 3 I ______I______

I 2 I 3 I LINEAR 54042 LOG* [42] 47402 13 74LS32 SPDTM SADØ3 [42] (4A4)(543) I ADVINH* (A4)(2B2) IDINH* AdS (l2) 44 C4 QSRSICALMOD (282) CALPS* (144) [A4] 04 (481) ADVINH* (243) (ll) __c__2____ C DMAINH* M15 84 0 CARYF [] (2B4) (1B3)(2B2) [4B41) (2A2) (7) — (1) LDAUXR* AC14 3D 34 Bil (483) [A4] 89 E3 90 —0Acl5(A3) 4D 44 (10) (2) LOAD Mi4o—-i-) B3 BiD [4B4] 74LS1 74 AC14(A3) [84] lLS283 (13) (12) (3) INTR* O 5D 5Q 89 4Cl30—-- E2 PRUN (81) [A4] (15) 4C12(A3) (4) [82] CHAR* M13 o_—i- 82 60 64 88 [4B41 (82) (283) CLR 4C12(A3) Al 76 A +5 (84) (283) ACl20—-- LUJ_Q+ El V (144)(482) 5 (2A2)(483) Ml2 (6 81 ADVNC +5V (2B3)(484) [4B4] Co A 4[283] (7) +1S (22) A 0+15v I ci (21) 1uf COM : OAGND 1uf CHAR (14) (B2) (9) —1 0-lsv (1B3) 4C T (2A1) E4 (10) ci 3 (281) [A4] 62 1000 Mli 0—------84 DAC8D (24) [4B41 REF (5) OUT ACiø0— 43 (13) (]21 • 87 [44] (15) E3 L___. QC 0 (6) Ml012 83 82 (6)c c!22 86 0— BPO 1D 14 (2) 74LS283 mi XDAL11 INTREN ’[484] —0 AC1B(43) (7) 83 QB cj_! 85 hAil (4) (143) ACA90—__ — _iiB 2D [44] E2 74L5195 XDAL1ø0— 24 (144) 4C49(43) (8: -. (2) B2 ______c_A 44 !—° 73 M092 ---- B4 hAl] (6) 0— REF (16) XDALØ9O— 3D 34 [484 (9 (1 ) t_____4C08(43) (5 1 CLRXAC IN CLR 0 [141] 4C08 Al S/L (11) 4LS14 (1 0) XDALØ8O— 4 MRKRS [441 El : F +i5V C Z n [141] (13) (12) (243) M08 co SD 54 Q_ XDALØ7O yPOSUP [484] (2) (10 RXAC R6 [141) (4B3)(444) (2) (7) [2421 (14) (15) CHAR*Q 74:SO8> 68K bU I- XDAL120— 60 64 DMAEN [B4ILDAR* [1411 [42] (20) (282) +5V SUM A +5V )741l(12) JCT (9) _(1)

Q_ I- 20V NC 0 w : w : ci, (9) RNG - C 0 cx ci-) (4A2)(l1) R7 C4 510 z •wzo 4C07 (10) (9: 10 PRUN [441 XDALØ5 0— - lQi —0 (11) (11) (10) by ._i]i NC [11 (42) M07 0— :: RNG 20 24 [4B4] QD* w C W C U-) XDLØ4 0— —0 LINEAR (14) (7 [1B1I 66 (44) ACB6 0-— 43 (13) 0 QD (12)(10 XDILØ3 3D 34 75 E3 B2 — 0— —0 CFS3 (6 76 - VOLT [181] 74LSl 74 (2B4) ) c QC OUT I- W bi W 0-i 74L5283 z XDBLØ20— __i__]__)40 44 CFS2 [484] 83 74LS195 ACØL —0 (5) I-, w [1B1] (284) 4C05 42 B QB :o C W C J 0— —XOUT c_c XDALØ10— L2 5D 54 CFS1 [441 E2 (1 ) 81 I- —0 (2) (4 )fl (541 ) — — ci, c [1B1] (284) M05 0— B2 A 44 (l w - 5 ci-) B XDALB3 XDBL$Ø0-•--— 6D 64 —0 [4B4] 80 CFSØ Al CHAR* >- — [1B1I [1B1] (284) 4C04 0 S/L CLR ACØ4 ACØ5 CLR El [42] XDALØ2 [44] : F (83) (83) (6) [1B1I M04 0— Bi co (442) (442) XDAL$l [4B41 LDCMD* i) INIT* (7) [1811 0— —0 (142) [ 142] +5V ADALBØ [1811 S * (2) [183] LOAD (2) LD * RAM* (3) 104043 14 74LS32 AR [B31 [143] ly !L__ SPADA3 2MHZ* (81) (4) lB 0 (Bl ) (84) SADØ3 [144] 0— (9) (2B3) [42] 4C (5) 104002 0— 24 ACB3 A4 _c_z)____ (10) [143] (6) 2Y [84] (11) E4 (ii) (6) 54002 2B 0 (81 ) M03 84 0— 0— S [42] 74LS1 57 [484] (11) (14) (7) (7) 34 A3 D QD 104001 0— AC42 0 (13) —0 ACB3 3Y 2L__ 68 E3 (83) (442) -;;-N,> [1B3] (10) (6) 69 QC 3B 0 (Bi ) 83 C L1IL.. (1) S4001 ] —0 AC02 +5V 0 0— 0- 74LS283 ECN DATE (.5) 74L5195 (14) (B3)(442) (10) 44 42 B 48 oAdBBo__S--- —0 ACB1 REVIS IONS 108003 0— [1B3] 4Y !L__ SPADØØ E2 (B3)(4A2) [1831 (13) 82 (4) (15) SADBB 4B 0 (81 ) A QA 4Cøø 108D02 11 0— —0 0— [142] [4B4] (1) (B3)(442) IRCLK* [183] Al S/L CLR NUCLEAR DATA 12 ACBB0— (143) IORD01 0— j(1) (l5) [84] El :::F [1B3] (6 J A 5K j I0Døø 13 MØØ 0— 81 0— [R84] DIAGRAM [1B3] (2) LOGIC j7) INTERFACEASSEMBLY DLVSEL . DISPLAY C [183] o (15) DRNDF1 (ND-DMB-A) XDOUT 0— [283]OACCLK [142] [182] DRAWNBY: T.H.J. CHECKEDBY: I.IoL- SHEET3 OF 5

5 DATE APPROVEDBY: DRAWN:2—21—77 R-W S70—2’413—O1 2 —3 I I I ______

I I 2 3 A

ZSØ8 zs09 (2B1) (2A3) (B2) (2B2) 9

74LS157 ZCH4* IA 8C07 (4) (1) ___cL) 1I 80 ly Bl 1 .7 (11) [2B4) 0 0 A2 lB lB 38 0 I ZCH3 81 (14) BC86 28 (7) (2) 4 (5) 2B j_ [2B4])4 QB 2Y BiD C 2Y 45 (13) B2 2B Q_) 2B 74LS195 74LS157 4 (14) 74LS 298 B B Cl (13) CB5 38 (9) (3) LOG o—cjj—)3D [2s4 QC 3Y 89 [283] L060* .5 15) (5: A B C2 (83) 3B (1o) .3 __.i2) S/L CLR (l4 Dl (12) RCB40— (12) (4) 4-5 0+5V (14 SPDTM 4D QD 4Y 88 4 K* 5V [2541 3821 J (6 ( (13 D2 48 3 XDDL12 4B (2) (10 (3) —OZSø7 ) ,oi [1D1] _; ws A 13 +15 (22) A S 0 ZSØ6 (B2)(2A1) 0+151 4OO (B2)(2B1) j(lo) (j)(ii (581 (2B1) +_! C5 :PL[382] (2B1) JiIl5) l(ll jT15) ZQD* LDD* luf 0 COM (21) p AGND 0 sn[384] 28 3: C6 ZSØ5 ZSØ4 luf 34 0— [2B3] DAC8O (B2)(281) (B2)(281) (14) (2B1) (281) —15 -15V 74LS157 ZCHØ* 0- Al -W1A (4) (5 ) (2) lB 72 [284] ly 87 3o— — (11) __! 82 ilB (24) i B QD* BEF XDDL11O 40 OUT [1811 22 QD LMM50— - --2 81 (14) 8C020— I2A 28 D 44 QB 2Y (7) +15V XDDLØ2 51 [B2] —t[3B41 _) 86 (6) (13) 82 0- 2Y C QC __c_L 2B [1811 - (6) (17) XDAL1ø 2B 74LS195 74LS298 74LS1 57 BPO NC QB (14) — __c_22 Cl liii 38 [lml) DCØ10— (9) (7) 38 (13) 3Y Ru QC 85 1.21K A QA ;;— C2 (15) ( ‘ 3B (16) i2i REF (P1 ) 38 - LOGD*Q...... i.90— (9) IN S/L CLR Dl C )C [8210- (12) ACAØ0— 4A (12) Rl2 [84] DG19OB 0 48 QD (8) 84 ø0— +5V (6) (13) 6.19K ) Eo LJ K*3 02 4B 813 — (20) (P1 ) (13) 48 If’ (4) NOTE: R15 - SET TO EQUALIZE SUM — wS 3S Dj >- S G JCT 820 VERT. F.S. IN LOG/UN O S 0 I Lzs03 MODE c 0 (2A1) I JTh(15) 100 JTFQf(15) )0— (281) Q ZS02 (19) 4 (16 CSRU*O 2 I(10)1(11) DV (281 NC 800 0— [184] BND Ji) 0 [1B1I (281) 510 0>- - x i- >- 1DV (18) NC u.Iu-c Z w BND — z L)Jv, 0 W (3) LMM20— Al (15) (2) c)WWb. W [82] QA 18 if u( C) (2) (4) (9) (15) 0 (1l) . ZSØ1 — AZ 47 B3 VOLT QD* (3) 18 OUT (5A1) 1/2 - XDAL15 0 LMM10— --ia) Dl (14) (5) bi 0 [181 1 QB 28 — (6) 87 (13) ]zsøø (7) (10) —: C [8 — __Li.?82 82 UJ bi L XDAL140— 2 I-z [lAl I 74LS1 95 74LS298 28 XDAL13 B QB _ci) Cl 0— (13) S G [181] QC o>--- A _c__) (11) 81 L2!__ XDAL12 QA1i C2 (1) _(1 5) M15 8 ---0MD7 ,: w i- 0— — v) 0 (381 ) :I=w B [181) (9 (3A1)(3A3) (383) —w IDI (7) = = )- — S/L CLR ;_?____ Dl M14 7 0MD6 I- C +5V (12) C14) —0 (? I- - QD LF* 84 LF*QL 84 Q— (381)(3A3) 1)(3F3B3) K* _._) (6) .J D2 CHAR* DO [2B1] —0 M13(381) [2Bl] 6 —0M85 LS1572Y (13) 83 (3A1)(3B3) [3A2] CR* 83 5) C282) C283) C383) CR* 6 (2) wS (10) (3) A 5 [2Bl) (12) —0 M12 [2811(12 ( (10) SP 82 (3A1)(3A3) 82 0— (4) 4 (3(3B3) [2B1] —0 Mll [281 1(11 (11) Al Al )(3B3) 1(11) ROW7* C3A1)(3A3) B0W7*0-_ (3 —0 MiD [2821 (10 AD (2) (3A1)C3A3) COL60— 80 )C3A1)C3B3) (14) 53 2 2 XDAL110— [282] —0 M09 [282] 60 —0MW 6331 (381 ) (383) [181] (1) C3A1)C3A3) 6331 2(1 1 XDAL1D0— —0 M08 E (MDø [lAl] -NC (6) (11) C3A1 ( 0 (381 )(3B3) 13 — D QD XDALB9 UJip G 79 [181] (5) (12) 0 CHAR* XDALDB JiE ZSB8 84 C QC 6 [382) [1A1] 74166 [A2] 2 (13) QB XDALD70— ZS$7 0—--- 83 YPDSD1 0—- B —0 YPDSD1 [181] [82] ——-——0LMM5 [83] 74161 (B3)(5B1) ECN DATE A2 A QA XDALB60— ZSØ6 (4) (82) YPOSAD !ii_ Cl (83)CsBl) [181] [82] —0 LMM4 [B3] (9) ) REVISIONS B ZSB5 Al LO CLR XDALD50— (82) LDAUXR f.—0 CHAR* CLR (3) [181] [82] LMM3 [382] 2- —0 [3821 CEP CET XDALD4 A S ZSB4 AD 90 (82) 0— (2) 2 (7) (10 (2) [181] (15 [A21 37 —0 LMM2 NUCLEAR DATA LSRL* S/L 6331 I\D —C (82) 2t1 [181) —0 LMM1 (82) TJ5i) jCiS) YPOSUP MHZ* LOGICDIAGRAM CSRL* p [3A2] 2t184] DISPLAYINTERFACEASSEMBLY [184] SRSI (ND-O$4B-A) [384) DRAWNBY: LHJ. CHECKEDBY: vWP SHEETL OF 5 DATE 2277DRAWN:2_ APPROVEDBY:V1 S70-2413-O1 2 3 I I I >

II

0 .

v

k)

•1

. C)

p

“: CA)

C.) -J -J

I-

C)r, -,

U) U) -J IS THE EXCLUSIVE PROPERTY OF NUCLEAR DATA, I,, THIS DOCUMENT - AND MAY NOT BE REPRODUCED, NOR MAY THE INFORMATION CONTAINED THEREFROM BE USED IN ANY MANNER, EXCEPT C.) (-F’ THEREIN OR DERIVABLE BY WRITTEN PERMISSION OF NUCLEAR DATA, THE PROPRIETARY RIGHTS TO THE AFORESAID INFORMATION. OF A PATENTABLE OR UN— PATENTABLE NATURE, ARE EXPRESSLY RESERVEDTO NUCLEAR DATA.

PENDING ECN______I 0 0 ______

I 2 I 3 4

CONNECTOR J3 ALL CONNECTORS A & C ALL CONNECTORS B & D CONNECTOR J2 SIGNAL SIGNAL E SIGNAL i: SIGNAL SIGNAL : SIGNAL SIGNAL : SIGNAL BDCOKH il-b +5V BDMRL CNI GND BDCOKH DAI GND ;— BSPARE I --- +5V :L J3-I 42 T I i: : 4 BSACKL DNI 19 :L BSPARE2 -: —12V !_ BPOKH JI-I 82 :i BHALTL CPI 9 2 BREFL CR1 — ---- BEVNTL DRI BADI6 (NOT IMPLEMENTED)C2 GND CI SSPARE 4 (NOT BUSED) C2 GND —.- — BDAL2L DE2 21 BADI7 (NOT D2 DI SSPARE 5 (NOT BUSED) D2 +12V BDOUTL CE2 21 4 .2.!_ IMPLEMENTED) +12V —f- SSPARE BUSED) E2 BDAL2L BRPLYL CF2 22 5 BDAL3L DF2 22 SSPARE I E2 BDOUTL J2-4 El 6 (NOT J3-4 —-- Fl SSPARE 7 (NOT BUSED) F2 BDAL3L J3-5 BDINL CH2 23 6 BDAL4L Di-12 23 !_ SSPARE2 - BRPLYL J2-5 —- BDAL5L SRUNL(NOTE I)JI-2 (NOT BUSED) 1-12 BDINL J2-6 I-Il SSPARE B (NOT BUSED) 142 BDAL4L J3-6 BSYNCL CJ2 24 7 DJ2 24 25 GND --- BSYNCL J2-7 JI GND Ja BDAL5L J3-7 !_ BWTBTL CK2 25 8 BDAL6L DK2 26 A A KI MSPARE A (NOT BUSED) 1<2 BWTBTL J2-8 1(1 MSPARE B (NOT BUSED) 1(2 BDAL6L J3-8 BIRQL CL2 26 9 BDAL7L DL2

MSPARE A (NOTBUSED) L2 BIROL J2-9 LI MSPARE B (NOT BUSED) L2 BDAL7L J3-9 BIAKOL AN2 ONLY 27 0 BDAL8L DM2 27

: I I i I BDAL9L DN2 28 -- GND BIAKIL J2-II MI GND M2 BDAL8L J3-Iø BIAKIL CM2 ONLY BDMRL J2-I BIAKOL J2-tO BSACKL J3-2 N2 BDAL9L J3-II BBS7L CP2 29 12 BDALIØL DP2 29 BDMGOL AS2 ONLY 30 13 BDALIIL DR2 30 BHALTL JI-5 J2-2 P2 BBS7L J2-12 P1 BSPARE 6 (NOT BUSED) P2 BDALIØL J3-12 :ii: BREFL J2-3 BDMGIL J2-I4 RI BEVNTL JI-6 J3-3 R2 BDALIIL J3-13 BDMGIL CR2 ONLY 31 14 BDALI2L DS2 31 PSPARE 3 -- BDMGOL J2-13 SI PSPARE 4 (NOT BUSED) S2 BDALI2L J3-14 BINITL CT2 32 5 BDALI3L DT2 32 GND BINITL J2-15 TI GND T2 BDALI3L J3-15 BDALØL CU2 33 i 6 BDALI4L DU2 33 .:!:_!_ ---- GND UI 2 BUSED) BDALI4L BDALIL CV2 34 GND 7 BDALI5L DV2 34 PSPARE I — BDALØL J2-16 PSPARE (NOT U2 J3-16 VI +5V V2 BDALI5L i3-I7 +5VB Y__ BDALIL J2-17

CONNECTOR JI CONNECTOR P1 CONNECTOR P2 CONNECTOR P3 PIN SIGNAL Q_ PIN SIGNAL PIN SIGNAL i: SIGNAL PIN SIGNAL >-z

I I I GND GND — I BPOKH BBI 6 BEVNTL BRI +12V PROCESSOR GND 2 2 +5V 2 SRUNL CHI ONLY NC 2 +5V 3 GND 8 +5V 3 —12V 3 GND 3 GND 4 NC 9 NC 4 +5V w : w : i, 5 BHALTL API 0 BDCOKH BAI 5 +5VB

NOTE: SRUNLON CONN. CHI, — (I) BSPARE (BUS SPARE) NOT ASSIGNED, —: PROCESSOR MODULE ONLY. = RESERVED FOR DIGITAL USE, w :oz 0 w 0 (BSPARES ARE BUSED,EXCEPT BSPARE6) VIEW FROM MODULE SIDE OF BACKPLANE w - SSPARE (SPECIAL SPARE)-NOT ASSIGNED, (I) B = >- — IPOWERSUPPLYI J210 NOT BUSED, AVAILABLE FOR ‘ND-MMF I I I J2-II .J2—14 39-7009 I USER INTERCONNECTIONS. CONNECTORS ‘A’ a ‘B’ I CONNECTORS’C’ a ‘D’ ‘P1 I J2 I I ‘S PSPARE (SPARE)- NOT ASSIGNED, I3 I P2 NOT BUSED, CUSTOMER LN PROCESSOR P3 J4 2 ASJ USAGE NOT RECOMMENDED.

I MSPARE(MAINTENANCE SPARE) 2 OPTION 2 M N R S OPTION I MfNR(’S \ I CONNECTED TOGETHER AT EACH I I OPTION LOCATION.

3 OPTION 3 1R ‘ ‘ OPTION 4 ,1N M7NR/S

4 OPTION 6 RI,: OPTION 5

I , , 5 OPTION .7 )N; OPTION 8 M’ M’NR/S ECN DATE 1 REVIS IONS 6 OPTION 10 OPTION 9

A B C D NUCLEAR DATA DAISY CHAIN INTERCONNECTIONS SHOWING OPTION LOCATIONS FOR PROPER CONNECTOR TABLES PROPAGATIONOF DAISY CHAINED SIGNALS. FOR BACKPLANE, FRONT (ND-MMF) (CONNECTIONS BETWEEN ‘MZ’ TO ‘N2’ AND ‘R2’ TO ‘52’ ARE

ON I OF MADE WHEN ANY STANDARD OPTION IS INSTALLED IN MODULE) US DRAWNBY: RMG CHECKEDBY:I’dI SHEET I 72-1374 _ DATEDRRWN:3-2-77 RPPROVEDBY: Pit S7O24I90I 2 3 I ______

I I 2 3 4 56 0V2 26S12 13 -OD15 ‘IN—LINERESISTOR PRCI( (1K TO +5V) 63 BDL15L z3 (13) (2A1) n —0 BDAL15 (1B3)(183) 12 (11 ) BANK RI 12 O014(2A1 ) I BDAL14L 82 BDAL12 (3) (jppDAL14 o.____1_.oCEØ z2 — 10 • 1q AC (1B4)(184) r— [1841 BDBL11 74367 DT2 Ii __c_) 2 All I ACS1 +5V B 2 16 BDIL13L 1 BDAL13I BDL16 (7) (184) (10)1 849 [1B41 ZI (6) __(..) p 3D 3Q OR1O(iB4 (241 )(241) ACS2* B)(1B3 I ON RflLI 9 [1B4) 1K B1B I DS2 10 _cll) 1O) BORRD 4 ACS3* ENABLE BDiL1 2L 80 (12)4 (6)1 [1B4] A1) BDBLB ZQ i]!.) D 5 ) 0848 ACS4* 74174 I [1841 8D4L7 (14) (15) (241)(241) 6 ACS5* £ I p22?(7) CLR [ 1841 0ORPLY (12)1 (11)0847 ACS6* ( 182) —. [1B41 A A (241)(241) 8C57* 85 YNC 55 [182] [1B41 BDIN DR2 26512 13 Dli [iB2] +3V RDLY BDAL11 83 (2B1) L z3 (13) [144] REFCY* DP2 12 (ii1o oi 8C50* O—F--o CEA [183] [1841 BDRL1ØL 82 JO) (281) z2 BCS1 0-_H_c DORPLY [1841 [144] 2N3642 Ii __c__1_oD09 BCS2* BSYNC 67 BDRL9L 81 (6) (2B1) [1B41 406 (10) I 180 zi 846 BCS3 Q__i_Q CE3’ BDIN [1841 [1821 I (28i)(241) RPLY* DM2 I __i_o D08 BCS4* —ocy— CE4 (182) I BDRL8L 80 (281) BDAL6 [1841 1 ZO (3) (7) BC55 * 1 1 B45 pIo 1E E21 . p [184] BDRL5 (6)I •_• (281)(241) .o 2Q I BCS6* [184] iiS ROAL4 8C57* (142)(24i )(2Bi) 3D 3Q 404 (12)1 (i1)p 844 [184] ACSi 8041.3 (]_]_ I1 (2Bi)(24i) (142 )( 242) ( 282) 50 10 I ACS2* DL2 26512 13 _ji Q (142 )( 242) ( 282) 5 4C53* BDAL7L 83 (241) 74174 z3 (13) (14 6 p 843 (142)(2A2)(2B2) 6 (2B1)(24i) 4C54*

I 120K2( 12 cJ1LD6 (142) C243) ( 283) 0 ACS5* BDAL6L 2B (241) ) (10) I402 (14 (i3b (142)C243)(2B3) z2 B42 I AC56* C (2B1)(241) DJ2 Ii D5 (142)(2A3)(2B3) 57* 8DRL5L o-

I I 4 DH2 ‘p __c__2_o D4 (2B1)(241) L_____ I N 8DRL4L (3) (241) 0 0Z (1 .15) K 1E 2E A i2iS (j)(7)

BC50* (142) C2A1)(2Bi) B 45 44 BCS1 B 0F2 26512 13 CH2 26512 13 (1A2) C242)(2B2) BDINL (i5)( BDRL3L 83 (13) (241) 83 BCS2* < 3 BDIN (142) (2A2)(2B2) (144) (144) BCS3* DE2( ‘2 u]j_ CF2 12 (242)(2B2) 12 B 0 (12) ODQRPLY[144] (142) BDRL2L 0—c(E—————-( 2 (241) BRPLYL 82 BCS4* ) (_LO) BDAL2 (10) 4 z2 < z2 — BRPLY +3V (1A2) (2A3)(2B3) (5) (NC) BC55 * ‘1 CR1 1 — 680 (142) (2A3)(2B3) (241) BREFL 1B BCS6* BDRL1L (6) BOAL1 o•—<<--—c zi 1 —OBREF (1A2) (2A3)(283) (183) BCS7* 10 CJ2 (1)( I 410 (1A2) (2A4)(2B4) BDALØL (241 BYNCL 0—<< zo _c_)o BDRLØ —QBSYNC (NC) E 1E 2E : 2 (iB3)(iAl )

(9)? c2( *[1 )7 (-;;--—--:.0 RPLY 44] ECN DATE 1:-— I p MOIN*[144] REVIS IONS

ADC* NOTES: 5 — THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ON THE DIAGRAMAND/OR PRINTED CIRCUIT BOARDASSEMBLY. SIGNAL NAME CONNECTOR [4A2] SIGNAL SOURCEDRAWING OR — LOCATION, CONNECTORPIN IC — INTEGRATEDCIRCUIT SAT — SELECT AT TEST GERMANIUMDIODE 1 — ALL DIODES ARE 0964 OR EQUIVALENT, EXCEPT AS NOTED. —t--- — (442) — SIGNAL LOADDRAWINGLOCATION NUCLEAR DATA .C. PIN TRANSISTOR — PRECISION — SILICON DIODE LOCATION (P1) RESISTORS 100PPM —+1—— P C NAME 2 — ALL RESISTORS ARE 1/4W, ±5%, EXCEPT AS NOTED. IIZONE BOARD 1/8W, ±1% METRLFILM I— SHEET NUMBER I I C BORRO C — IC PIN DESIGNATION ZENER DIODE C NAME ) PIN LOGICDIAGRAM 3 — ALL CAPACITORS ARE pf, EXCEPT AS NOTED. j DC COMMON —>——CONNECTORDESIGNATION TUNNELDIODE BASICFIRMWAREASSEMBLY 4 — I.C. VOLTAGES, EXCEPT AS NOTED: CONNECTORPIN—... C NC — NO CONNECTION ——— FERRITE BEAD ————SELENIUMDIODE 21i_cO7i)_>__ (ND-MMC-A) 14 PIN DIP, PIN (7) GNO: PIN (14) +5V LOCATION DRAWN CHECKEDBY: 1 OF 16 PIN DIP, PIN (8) GNO: PIN (16) +5V CONNECTOR BY:THJ SHEET 2 I.C. LOCATION ON P.C. 80. 24 PIN DIP, PIN (12) GND: PIN (24) +5V IC. TYPE ON P.C. 80 I.E. TYPE DATE DRAWN:ll-19-76 APPROVEDBY:,I S70-2V71-nn

I I A

B [184] [1841 [281] [2B1] [2B11 [2B1] (281)(282) (281)(282) (281)(282) (2B1)(2B2)PULL2

I PULL3 (BCSØ) PIJLL4 (PULL7) (PUL8) 889 888 [1821 B117 [182] 886 B85 [182] B83 [1821 B89 882 [iii2i [182] B88 BRi B87 [182] [1821 [12j] [1B2] [1I2jp) B84 [182] [1B2) [182] [1B2] 883 [iB2j 882 1B2](15 182] 0 0— 0 0— 0 PULLS PULL40 PULL) (2 (21) (17’ ( (15 0 0 8 87 6 84 A 83(58) 2 8 i 87 & cs* 85 8/W 84 V 83 82 i cs* R/W V

c: PROD (11)Ei S6834 PROD S6834 56834 (57) () 59 = 60 07 D& 05 03 D 4 D 2 Di 07 D 06 05 04 02 D 3 Di D 0 (2.2K IN—LINERESISTOR

(iii (10) (1) C1)__ 0

Lz1__ 0 c..]___ 0 .2___o —0 —0 ——----0 —0 (5) —0 (4) 2)___ (3) —0 —0

cti__0 !2__ (1) —0 —0 —0 (2) 13

1 (8) (281)(282) (6) (281)(282) (281)(2B2) (4) (281)(2B2)pULL6 (3) (2) 13 TO +50) N12V Dl 014 [181] [1811 013 012 Dli (1811 [181] 087 [1811 010 006 [181] [181] 009 DOS DOS [1811 D83 [181] D04 002 001 [181] [181] 000 [181] [1811 [1811 [181] S PULL7 PULL8 PULLS 0 PACK 0 (12) B41 881 THRU THRU

I

I [184] [1841 [2811 [281) [2811 [2811 [1841 [1841 [2811 [281] [2811 [2811 849 0— Q—<< 0-4 0—<< 0— 0—<<- 889 0 PULL2 (PULL6) cJ1 ACS1 AJ1 PULL4O (BCS1*) ( AM1 BJ1 (PuLL7) CM1 DM1 PULL8) *(J...... ( (16) (17) (18) (20) (22) (21) (23) (24) (15) (11) (14) S6834 (52) 54 ST1 CT1 AT 8C2 CC2 DC 1 2 [1 [184] (9) (8) (7) (5) (3) (6) (4) (2) 84] (BCS2*( 14) CS2

2

2 0—( 0—’ (16) (17) (18) (19) (20) (22) (21) (23) (24) (15 (11) 882 D82 C82 Dvi 801 S6834 (47) 49 +50 I-) [1841 [184] (9) (8) (7) (6) (5) (3) (4) (2) 8CS3 (53*)() 0—cT< 0____4(l(_—_-_ 0—C (17) (18) (19) (20) (21) (22) (23) (11) (24 (15 882 882 082 CB2 S6834

I (41) N12V 43 i

I BIAKIL BDMGIL BIAKIL BIAKOL BDMGOL BDMGIL 818 KO [184] [1841 (8) (7) (6) (5) (4) (3) (2) L 0-< 0—<< 0—4::: o—<( (BCS4* AN2 AM2 AS2 AR2 CR2 CS2 CN2 CM2 (16) (17) (18) (20) (21 (19) (23) (22) (24) (15) (11) i 4) ) S6834 (36) 38 (9) [184] (8) [184] (7) (5) (4) (2) (3)

3

3 N12VO (BCS5*)( 14) 1cs5* SV0

-a:- ______(i21 -) (16) (17) (18) (20) (21) (23) (22) (11) (13) t.L3.3uf -1 SPARE 56834 (31 33 l X8 3.3uf i;v 5V x ) (9) (8) [184] [184] (7) (5) (4) (2) (3) —1— SOV •Oluf 8CS6—ç (16) (17) (20) (22) (21) (23) (15) (11)

I

I S6834 (25) 27 (9) (6) [1B41 (5) [184] (7) (3) (4) (2) NOTES: 8CS70C (57* 1_ 2. (ND-MMC-A) -) -) DATE BANK THIS FOR DRAWN SHOWN ON CONNECTIONS FOR (BA—), (17) (16) IDENTICAL (20) (21) (22) (15) (14) (11) EACH SIGNALS 1C59 DRAWN:_q_7ç SHEET (B) BY:T.H. IN DATA—(D—) MEMORY S6834 (28) PARENTHESIS. AND IS 22 TO SHOWS AND ARE IDENTICAL THOSE IC6O. J. BANK, I.C.NO. BUSSED AND ONE (9) () (5) (7) (4) () SHOWN

I 44 BASIC ADDRESS POWER— BANK APPROVED CHECKED EXCEPT AND 5 LOGIC NUCLEAR FIRMYIARE (A) 0 BY DIAGRAM 8Y:1d4I D08 [181] Dl D0O : [181] S yt ASSEMBLY THRU DATA

I D07 570-2421-00 SHEET ECN I_z o )- - bJ Ui >c :Q — I- = v, : REV C c, z : W = —z 0 2 - = I S w 0 0 )— IONS OF Q_ i- DATE : v) Q — I- — v, w 2

A

j z ______

I -2— I 3 I 4

AAF’ILD [83] ROMLD SRPLY L\P2 4[ (282) 15 7 82] 081* +5V BBS7L ‘7 (9) 0 74148 BS2 04 [ 42] C (1) — (11) BOAL12L 6A 071* BR2 (2) OPT ON A 2 ( 82) BDL1 tL (10) 1606XX O6I* 10 1Q RON 03 [ 081* BP2 421 (13) C 82) 08E 44 23 051* 3 GS .c__L__o BDAL1ØL Q______( )— 2D 2Q RAM 6301 [ BN2 (4) 42) (1) (15) (6) (7) ( 82) (5) (10) BDALØ9L 43 041* Q...... ( 4 EQ )— - 0 QD RAMEN (11) 16g4XX o —c 8M2 02 [ 621 . 74174 24 (282)(283) (7) A (2) (6) (11) (10) 082 (4) (11) BDALØ8L 2 031* Q______(5 04 )— 4D 4Q C QC ______. SPAD2 74LS295 BL2 )7) (13) (12) 081 (3) (481 )(481 B BDLØ7L o—<< i (12) 021* 6 2 SD 5Q - QB ----—-O SPAD1 (4)r—N oi (481 1(481 BK2 (14) (15) OAfl 07E BDALØ6L 7 )i)_ 6 8 QA c_i_a_ J6L i £ 0 SPADØ A E1* E2* [ 621 CLR (481 ) (4B1 A +58 0 MODE (5) (1 SI CLK 0 (1 )cj(9(8) XX+I606XX* 60’ BSYNC +5v DLcfNjB) 061* (283) 06E 5V RAM 18 7442 )(1) [A22(6) I 8J2 C7X* BDALØ5L O—<<-— C >(2) 6X* ROOUT )(3) [283) BN2 2 5X* 28 05E B 7442 BDAL84LQ—

AU2 )(5) p X3* BDALZL o—

AN2 BIAKOL O—<<

AR2 BOMGIL O—<<

AS2

BDMOOLo—4:::

ECN DATE REVISIONS

ADC* NOTES: 5 —THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ON THE DIAGRAMAND/OR PRINTED CIRCUIT BOARDASSEMBLY. SIGNAL NAME CONNECTOR [482] SIGNAL — SOURCEDRAWINGLOCATION, OR •CONNECTORPIN IC - INTEGRATEDCIRCUIT SAT - SELECT AT TEST - GERMANIUMDIODE DATA 1 - ALL DIODES ARE 6964 PR EQUIVALENT, EXCEPT AS NOTED. (482) — SIGNAL LOADDRAWINGLOCATION NUCLEAR IC. PIN TRANSISTOR (P1) — PRECISION RESISTORS 100PPM —ml——SILICON DIODE T3ZONE LOCATION 2 —ALL RESISTORS ARE 1/4W, ±5%,EXCEPT AS NOTED. 1/8W, ±1% METALFILM SHEET NUMBER .... P.C. BOARDNAME ( ) —IC PIN DESIGNATION ZENER DIODE 3 — ALL CAPACITORSARE pf, EXCEPT AS NOTED. LOGICDIAGRAM — DC COMMON FIRMYAREOPTIONBOARD .—>-.—CONNECTORDESIGNATION —Id——TUNNELDIODE 526-01 4 — I.C. VOLTAGES, EXCEPT AS NOTED: V C, NC —NO CONNECTION —.——FERRITE BEAD ——— SELENIUMDIODE 14 PIN DIP, PIN (7) GNO: PIN (14) +5V (ND—OOM—A) i.C.LOCTON DRAWNBY: CHECKEDBY: I 16 PIN DIP, PIN (8) GNO: PIN (16) +5V CONNECTOR T.H.J. udI4I SHEET OF [1 RESISTOR [1 WIRE WRAP POST I.C. LOCATION 24 PIN DIP, PIN (12) GNO: PIN (24) +5V LC. TYPE ON P.C. RD. DATE 6DRAWN:11—23_7 APPROVEDBY: iS70243401 I I I A B BDAL15L BDALO7L BDAL13L BD8L06L4( BDAL14L BDALB5L BDAL12L BDA BDALO8LD—.——-<<__(15) BDALO3LO.—

I

I 7430 7404 70 (6) BOAL1 ( ( BDAL1 81) Bl) 4* 3* (8) 2 2 B8 BA9 8A5 8A8 (4A1 (SAl (5A2)(582) (581 (5A2)(582) BA7 (481 (5A2)(5A2) 884 (5A2)(5A2)(5Bl) (481) (4A1) (5A1) (SAl) (4A1)(4Bl)(5Al) (582) (582) BA3 (5A2)(5A2)(5B1) (4A1 BA2 (5A2)(582)(58l) (4A1 BA1 (5A2)(5A2) (4A1)(4B1)(5A1) (5A2)(5A2) (12 )(48’1)(5A1 )(5Al) )(5A1 )(4B1 )(4B1 BSYNC i: )(4B1 74175 3 o D 831 6 (9) )(581) ) )(5A1) (581) (581) (581) DELAY CLR [ lQ lQ* * 4Q* BDIN [ )(581 841 +5V 831 (2) (3) )_ :Jo) — )____Q 4i00Bl) ) t 1A31 RAMBN5 +5V = BANK6* (3A3) Ri 680 RAME [1A3 + ( 2) 3

I BDMGOL BDMGIL BIAKIL BIAKOL 7408 BRPLYL BDOUTL<< BSYNCL<< MDIN* BDINL O—<< ____<< o—<-- D—<< (841 DORPLY BDOUT BSYNC RAMEN [1A3] CH2 CF2 CS2 CR2 CN2 CM2 CE2 CJ2 (1) (4) (12) —< (15) C C (11) ( I I 26512 80 Al 83 82 __j)(9) 44 E 2 25 E 1 Ii Z2 Z3 12 13 3 111) (__) (14) (10) (11) 3 (10) [3A4T436(6) ROMCF p BDIN BSYNC DELAY BDOUT ( ( (182) (1A2)(1A3) ( ( (481) 83) 82) 84) 82 B3 A2) 82) B2 82) RAMWRT* (4>I(II) (14) OARD L 74367 +5v ON +5V ENABLE

I (13) +5v 3(6) j4O8 (12) (5) (NIJ-0014-A1 DATE DRAWN C 0 (B3) (B3) DRAWN:11-23-76 OR BY: PLY T.H.J.

I’D 4 FIRMWARE DELAY CHECKED C APPROVED ( 83) B2) LOGIC NUCLEAR BY: OPTION BY:LIdf DIAIRAM vd4 BOARD DATA S70-2434-O1 SHEET2 ECN ( Q D_ 0>- =w _J — tJ uJ w ., — = z I- I- U) o>-- = REVISIONS z Ui 0 x w o _2 I- LI W bi w c-, W W U) — 0 )- 0F6 *_ DATE I- U) —L*J 0 LJ — - W U) A

:2:1 U 0 0

ND] ONION3d

•v1a fl1313flN O1]A3Sd A1SS3HdX] 3JV 3dIIIVN 318V.LN]J.Vd —Nfl iQ 3191N3.Ld JO NOI1NNOdNI OIS]NOd ]H.L 01 SIHOHJ ANU.L3IIdO1d 3HI V1fli 33flN JO NOISSIWH3d N3!IINFI A ld]DX3 ‘N3NNW AN NI 3Sfl 3a WOIIJ]N3HI ]1BVAI HO NI3HJHI G3DflGONd3 38 ION AVW ONV a3NI.LNO3 NOI[WIiQJNI JHI AIIW NON L1j •IIIO N131OflN JO AIN3dOIId 3AISfl1JX] 3HI SI IN3Wfl300 SIN! u-I < I- < — 0

- = lu L,c -

: uJ z __J LI LI

* I—

C.,

:

I I

C?)

CN CN

D

I I I 2 3 4

O15[2A1) D14[2A1) D13[2A1) D12[241) D11[241) D1O[2A1) D89[241] DO8[241]

(12) 1(12) j(12) (12) (12) 1(12) (12) (12) (14) SPAD2 0 49 [1 3] sPo1 p (15) [13) (16) SPADØ0 11ij (1) B7 0 [2A2) (2) B16 O 5A29 35 40 46 50 56 60 66 NOTE: +5V TO ALL 2102’s (PIN 10) [242) ONDTO ALL 2102’s (PIN 9) BA5 0 4A [2A2] (6 2102 2102 2102 2102 2102 2102 2102 2102 BA4 0 3A [2A21 (5 843 0 . 2A [242] (4 A 842 0 A [242] (8 841 0 [241] (13 RAMCE*0 CE’ C C C C C C C [283] R/W C C C C C C C RAMWRT’ DIN AC2 CC2 [243) *J11) J11) J(11) J(11) (11) GND O—4 >>—o OND 11) J3 cL(11) AJ1 CJ1 o—<( >>—o BDALB9 BDALØ8 BDAL13 BDAL12 BDAL11 BDAL1Ø IIM1 CM1 BDPILI5 BDAL14 [241) [241) [241) [241] [241) [241) [241) [241) o—<< AT1 CT1 o—c::c >>—o BC2 DC2 o—_ >>—o Oji O—<( >>—o BM1 o—<< BT1 DT1 51 GND Q—<< >>—o OND SPAD2 c [143] >-

SPAD1 [143] SPADE [143) Q 847 0>- [242] Q_ 442 CR2 B46 [242] +5V O—<< )>—o +5V — (_) w 842 D42 BA5 Q—<< >>—o [242) ‘C C) 844 wI- —w +5V +5V Q.____. >1____ w c w 0 (/* [241) m — w BA3 w n 0 w v) — [242) U — . 842 ÷5V [242) BAl zz w [242] BB2 o,-- RAMCE’ —12V w - B [2B3) Lfl I- [243) -

—12V

ECN DATE REVISIONS

NUCLEAR DATA :3 LOGICDIAGRAM FI4ARE OPTIONBOARD

(ND-OOM-A) DRAWNBY: T.H.J. I CHECKEDBY: c’IJ I SHEET4 0F6 DATEDRAWN:I1-24_76 APPROVEDBYIIdW I S702q34o1 2 3 I I I I I 2— I 3 I -4

881 0 thru B89 [282] (16) B09 8 7D Dl 5 [2I21 [281] C; (17) (8) (17) (8) BA8 0— 7A 6D —0 D14 [2i2] [281] (18) 5D (7) (18) (7) Bl7 0— 6A —0 D13 [2L2) (19) [281] (6) (19) 42 37 31 21 13 (6) BOb 0— 5A 4D 012 62 52 [2A21 68 (20) [281] (20) 56834 56834 56834 (5) D (22__o- S6834 56834 56834 56834 BI5 0— 4A 3 011 [2I21 (21) S6834 [281] (21) (4) 3A 02 ci___ BA4 ° 0 Dl0 [2a21 [281] (3) (22) D (3) (22) BA3 0— 2A 1 —0 DØ9 [2a2] (23) [281] (23) (2) B82 0 1 D ----—-o008 [202] A (24) (13) [281] (24) A B1 0— [242) (15) (_;_; (15) OSB* OsH*0__C cs* Q÷5V Q...... ( OSC0—( OSD*0__.( OSEO( OSF0—C (14) [383] (14) [3831 [3831 [384] [384] [384] 13841 11(3)PULL1 R/L4 0c_i)__—129 PULL1O— (1) (11) [E](2) PULL2_(ii) VPROG 1 PULLD— 0 008 THRU D15 [281]

881 0- thru B89 [282] z w (9) B89 8 07 007 [2821 [2B1] (17) I- Li___ (8) w 8118 87 06 0 006 [2821 (18) D _cn___12B11 (18) (7) B87 0— 86 0 005 Q_ [282] (19) (6) >- 04 [2B1] (19) 63 53 43 38 32 22 B46 0 8 004 14 [2821 69 [2B1] (5) (20) 03 _c!___ (20) 56834 56834 56834 56834 56834 56834 S6834 885 0— 84 003 S6834 0 [282] (21) (4) wI-c,)I- 83 2D [2B1] (21) - 884 0 002 )- — [2821 (3) [2811 (3) Ew i- >- (22) 1D (22) - : 0 B83 0 —0 oØi 2 w 0 wJ [2821 (23) [2B1j (23) (2) —. z L) 0 W B82 ° 81 D 000 z [2B1] •wo [2821 (24) (13) (24) C)WWb W >c -) 0 B81 ° [2821 (15 (15) cs* --;-;-;- 0sc* OsD* OSF* 0sJ 0_( Q+59 0__C 0—( Q( OsH [383] [383) [3B31 [384) [384] [3B4] w v C W rE-i(4) PULL3 (14 R/W (14) — —12V PULL3(— I- W W W 1E1 PULL4 (11 (1) PULL40__(-ll) WI-z I- PROG LU 9 zoz w 0 _1 _) I- 1 —— I- x LU I— Z B vu 0 oss = >- — thru I- D07 [281]

+5V

33uF/15V (x8)

NOTES: OND 1. ON THIS MEMORYBANK,ADORESS—(B8—).ORTA—(D—) POWERCONNECTIONSRRE BUSEDAND IDENTICAL TO THOSE SHOWNFOR 1C68 ANDXC69. 3.3uF/15V (88)

-12V

ECN DATE REVISIONS

NUCLEAR DATA I

LOGICDIACRAM FIRMVIAREOPTIONBOARD C (ND-OOM-A) DRAWNBY: T.H.J. I CHECKEDBY: v1 I SHEET5 0F6 DATEDRAWN: APPROVEDBY: Vc/-h’I 2 .3 11-24-7I S7O-2434-OI I I I 0 0 fl

I >

cr)c:clJ’o

cncw

m.oomc’

w I- w

I- 0) k) k)

w c) c) SPAD- 2

z

0 0

-4 :E r’) C-

-.4 -.4

0> •UG) 5> Co I I,, THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEDR DATR. 0, Cs -I AND MAY NOT BE REPRODUCED, NOR MAY THE INFORMATION CONTAINED C) THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF NUCLEAR DATA, THE PROPRIETARY ‘1 RIGHTS TO THE AFORESAID INFORMATION, OF A PATENTABLE OR UN— 0) PATENTABLE NATURE. ARE EXPRESSLY RESERVEDTO NUCLEAR DATA. > PENDING £04______I I I 2 I 3 4

81 (11) cDnøcc BSYNCL SYNC* BV2 DL1 5 C, BDOL15L (21)(3t1) (243) Dl 5 (281)(2B2) Q4(2) (31) REFCY* DALi4 (243) BOAL14L (2A1 )(341 ) (1B1 ) D14 (341) DIN DALi3 BDINL (2B3) BDAL13L (241 )(342) Dl 3 (342) DOUT BDOUTL (2A3)(2B3) DALi2 *+CSD4 BDAL12L (241 )(342) CSC D12 (3B1) A (342) A BWTBTL CSD4+C SB (3B1)

BREFL

BDAL11L 4R2

BDMGIL

4C2 CC2 BDAL1OL 452 +5V O—<< >>—o +-12V 0 BDMGOLO—(< AJ1 CJ1 >>—o 1+ 1+ 1+22/15 TYP. BDALO9L DM1 CM1 CR2 AT1 .—- BDMGILO—<< CT1 III BDLILOBL BC2 DC2 +5v0 CS2 >>—o BDMGOL BJ1 O—c TYP.

BD2 BM1 DM1 DM2 >>—o. I I 22115 BT1 T BIAKILO<< 04L07 D2 (2B1)(3B1) 4N2 + 12V D07 BIAKOLO—<< —o (3B1) 0 DALØ6 4D2 (281 )(3B1 CM2 D6 BIBKILO—c +3’) +12V4 (3B1) +5’) DALØ5 (2B1 )(382) CN2 005 BIDK0L0—c (3B2) 04L04 330 BDDLO4L (2B1 )(3B2) 004 (3B2) B B

zo DDLO3 BD4LO3L (2B1 )(3B2) 10 003 (3B2) L _ zi DDLO2 BDDLO2L (2B1) Ii 002 +3’) (3B2) R2 22 DDLO1 )(3B3) BDDLO1L 2B (2B1 12 001 17 (3B3) 26512 23 04L00 3B (3B3) 13 000 2E 1E (3B3)

(7) ?(9) ECN DATE [244)MDI REVISIONS

NOTES: 5 — THE FOLLOWINGSYMBOLS/NOTATIONSARE USED ON THE DIAGRAMAND/OR PRINTED CIRCUIT BOARDASSEMBLY. ADC SIGNAL NAME CONNECTOR [4A2] — SIGNAL SOURCEDRAWINGLOCATION, DR IC - INTEGRATEDCIRCUIT SAT SELECT AT TEST GERMANIUM CONNECTORPIN 1 - ALL DIODES ARE 6964 OR EQUIVALENT, EXCEPT AS NOTED. - - DIODE NUCLEAR DATA F (442) — SIGNAL LOADDRAWINGLOCATION — IC. PIN TRANSISTOR (P1) PRECISION RESISTORS 100PPM —p4——— SILICON DIODE LOCATION 2 — ALL RESISTORS ARE 1/4W, ±5%, EXCEPT AS NOTED. TZONE 1/BW, ±1% METALFILM SHEET NUMBER ( ) — IC PIN DESIGNATION ._.:_. ZENER DIODE -P.C. BOARDNAME 3 — ALL CAPACITORS ARE pf, EXCEPT AS NOTED. LOGICDIAGRAM DC COMMON x 16 RAMMEMORY —.>>—... CONNECTORDESIGNATION TUNNELDIODE 526—01 4 — I .C. VOLTAGES, EXCEPT AS NOTED: C NC - NO CONNECTION .-—— FERRITE BEAD —a-—-SELENIUMDIODE (ND-ORM-A)(ND-ORM-BS70-2457-0I) 14 PIN DIP, PIN (7) GND: PIN (14) +5’) )(. I .C. LOCATION DRAWNBY: CHECKED I OF 16 PIN DIP, PIN (B) GND: PIN (16) +5’) INLINE RESISTOR PACK D WIREWRAPPOST T.H.J. BY: UAU SHEET1 3 j] .C. LOCATION ON P.C. BD. PIN GND: PIN +5V 1KTO+5V 24 DIP, PIN (12) (24) I .C. TYPE ON P.C. RD DATE DRAWN:11-22-76 APPROVEDBY:VA41- I570-2435-01

I I I I I I —.———— C IO-cEh-OLS :i O3AOddd 9L-ZZ-LL:NMHa 3!O

C O Z f33HS a3D3H3 rH1:A8 NM (IO-Lct-OLS e-NdO-ON)(V-O-ON)

AOW]frHVd91 X )Ih HVdVIO 3Th01 tQ [z1 V.LVO NV1OflN D:. xnw I •(c: dO c: ±3HS NO SN0ISIA] VdDVIO SNIddVdIS GNV±ON OS1V S) 3100 N33 SJN3VJ9aS AèIOL’N3L’N1VDISAHd (1dO I) ANVCd. S)1NV-SSèIGGV 9 dO 3N0 ANVNDISSV01 cI3sn 9 1NAVI 9NIddVl!S LVIdd0dddV SDAD HS3ddH 099 [Zn] DNIèflGA1dd SJJ9IHNI r DNI11V±SN DNAS 0 [LOLl :S3ION LOlOC [101] Z0100 A10a [LOU 50100 Li-M [LOU] jL] DNAS - -I - -Ic, — -C m— Ln rn P1 -4 v — — V V—-4 r) F- m rn ZmVV oX [Loll m m rn V -I (8) 00100 :— — ø1Hr1 I-I 0 U ‘i r,1 — r- CL0S)(L0c) [LOU (M 0 P1 0 V 000 50100 V C I,, rnmr [LOU] c—v-zm. Vr 90100 A1di9 [LOLl I’1 0 C — ( UOS)(LOS) C,, r- 0 L0100 (d P1 L00 r- X -C -4 [LOU] “zOV -CO- 00100 (LOS) -CrV1O zo 0 O -c ‘ *NIaw f’1

( UOS)(

(LOS) .503

Lf )IU (U JION) (lONOIldO)

AS÷ 110 )INOO, (5OZ) [sol] Ald000 .DNAS V XflL’ V

LO (ZL)

[ LOU] (SOZ) 1 SL100 SOD O 170 [LOU] OO VL100 SO S 90 (L) 9 [LOL] S L100 099 3 —0 L (SU) 00133135 NO0

OZU SdNi SUQ/ suOOZ DNI1 A013 AS+ L_ J I I I ______

I I C IO-SEtiZOLS %fl:A O3AOidd 9L_Z_II:NMO ]1 C Jo £ !33HS :A a]){D3HD rH1 : . (IO-LQt7-OLS e-O-aN) (V-IO-ON)

AOV43fr4frV 91 X h v3vIo DIDO1 raøi c- [17L1 CL) DSJ -.-——0asD+DSD viva V31OflN (L)H ] (L) SD p I [ 17 LI SNO S I L!ø! LsD —--0 SD+*11SD 31170 ND] 117

L [S17D OS17N 1— c 0 pas17

C DS17D p 1!) t)J CLa)S17H p (flic) V117 —I I [01I ,Th \.1 (L17) S17D 0— V17 (LLl) as 0 01c17Ll [zj Ir [tJL1I 117 L1JM p —C 411U1 1!s17D0— VI — —0 S17D 17S17H0 LrL 117 3dfl03D0dd SIH± 0± S±H9IH 11V SIAèJ]S]èJ 3N1VJX1GUV31DflN G11V±SNI 1SflVJ S±èIVd GILVIDOSSV GNV SS3H±N1èJVd NINMOHSS±NNOdVJOD [LaL] [Lat] [LaL] [LaL] [LaLI [LBL) [LB-L] [LaLI iDflGOdd SIH± dO 1A1 NQLLdOH1 3ONVHD0± 00117a L0117a øiaa øia 1701170 s0117a 90170 10117G 0 W —I -I u •AeI0vj:1v’jdO S>INV9dflOd 0± dfl 1VG0LN0DDV -4 m NVDGèJVO9D/d-VièJ0H± JO ±flOAV1DISV8 H± :J0N I,,x- x— — I.,, C C)) m

96OPNW 1S () H]d L dAl L0 ozm.><— rn c r — p AS- U, I- 0 0 C., I” ‘i r- : -< - w : -u C,,.

96O17)W O N3d L dAl L0 Zv C) pAL+

-I _m-l

N17a ADd L dAI 0 AS+

aa—za 6 SL 6L S 6 S Ui 517 LS 55 19 19 LI 11 58 a

GIOA 17 OL tiL O 9 0c 9 17 917 S 95 9 99 U 91 179 3

alGA S LL 51 L L L L t7 LV S IS 9 69 ci 61 58 a (DA17)aL1IJM

17 aI a-IGA GIOA 9 L 9L c:a 8 175 9 01 171 O 98 (3 ‘8 II) OS] [85} 17 S HL 51 V LS17—OL LS17—O1 0 9 I 8 6 -ii—LI L L (3 8’ 17)SAD V A—WAG A—WHO 17—WHO [LA] (AAOA 17)a SAN GNQDDS) OO9N 009N Q99N AS+ 099ON

A 1+ 1S960170W 1117 01 NOWWOD

AS—

C I I I A

B 4 2 3 1 NOTES: — — — — lb 14 ALL 24 ALL DLL IC. PIN PIN PIN DIODES CAPACITORS RESISTORS VOLTAGES, DIP. DIP, DIP, ARE PIN PIN PIN (9) ARE EXCEPT 0964 ARE (8) (12) (7) 1/4W, SPARES pf, GND: GND: OR GND: AS EQUIVALENT, EXCEPT ±5%, NOTED: PIN PIN PIN EXCEPT

•1 (16) (14) (8) AS (24) NOTED. +5V +5V EXCEPT +5V AS NOTED. AS NOTED. SRUNL BPQKH BEVENT OND +5V NC NC NC NC 5 RC—8 RC—6 RC—1 RC—8 R RC—2 RC—9 RC—7 RC—3 LE— — — E—O+5V -.>-. C—4 — C NC THE IC ) — — — — FOLLOWING TRANSISTOR NO CONNECTOR INTEGRATED IC CONNECTION PIN DESIGNATION

I SYMBOLS/NOTATIONS DESIGNATION CIRCUIT ÷5V .—l—.— DRE (P1 SAT USED ) — — DC 1/8W, FERRITE SELECT PRECISION ON COMMON THE ±1% AT DIIIGRAM BEAD METAL RESISTORS TEST

2 FILM DND/OR 100PPM PRINTED .——— —I— —*1— ..... CIRCUIT — — — SELENIUM GERMANIUM TUNNEL SILICON ZENER BOARD DIODE DIODE GSSEMBLY. DIODE DIODE DIODE

I

I [4821 (482) It ADC* I—SHEET ZONE — — LOCATION SIGNGL SIGNAL SIGNGL NUMBER CONNECTOR SOURCE NAME LOAD DRAWING DRDWING

3 LOCATION LOCRTION, ON OR P.C. 80. DC LED ON -CONNECTOR I.C. CONNECTOR TYPE I .C.

I HDLT PIN PIN P.C. ON I .C. BOARD P.C. S26—O1 LOCATION NAME 80. (ND-PMM—A) DATE DRAWN DRAWN: BY:T.H.J. 11-18-76

4 +5 +5V V 813 2.2K RC—5 R14 2.2K APPROVED CHECKED POWER LOGIC NUCLEAR BHDLTL MONITOR DIAGRAM BY: BY: V14— VdtIfI DATA •I S7O-2439-OO SHEET ECN REV I I S I OF DATE ONS I

A

B

j SPECI Fl CAT ION S

) /MPQ7 : ,,, OQ 22o VAc ±10 Y , 47_ 3

2. OUTPUTS I. ,LV, 25i4 2 # /2v 2. 5A ADYSTA8LE 3. -/2V, 2.5A _) ±5’/ 4. */5V 2OOMA (. eM,.JA 5. -/5v, 2MA (- 4T7ERMINAL h’66ULAT/OAJ : ,, 2, 3 — • I UTpurS 4 t 5 - I %

: RIPPLE •y OAJ ALL OUTPU7S

P2recr,ô,J : CURAJ7 5A”er ‘vir AAID PEV6R5 L’oL r 6d PRarc’r/oJ o_, ALL OL/7PUT3

Cp-QAr,AI TEi-ip. :

REc:oMMEJO6D IFIPLIT PLS’J : SA p //oV4C. 254 Fo 22oV4

C

F” DATA A72- 1408-00 (39-7009) B AOO6D 2Mv4 8QA. WARt I

A AtJa ‘EOAi1/ 14 vJA5 ‘C’ SiZE XENTEK INC. SAN MAPCOSCALIF. i:i C Pow SUPPLY OUTL/AJ tt:Mu t DA r Aloo 27951 Rv 8 NOTES: 2. I. FOR ALL 23OVAC RESISTORS II5VAC UNLESS JUMPER INPUT OTHERWISE ARE 2 JUMPER TO 1/2W, 3. SPECIFIED APPLY I

± TO 5 1/. LINE 2 AND CARBON POWER 3 TO FILM. TO 4 ON I AND TI;FOR 4. TI

9 j_ SEE C3018-501 C3018—SOI SEE

------+.i. --——--- REGULATOR REGULATOR SCHEMATIC SCHEMATIC —lay, +12V,2.4A

A4 2.4A (XP2O—12) (xPzo-12) ASSY. ASS’I’. NO. NO. - __J

r —

I

1 —I2VDC — G BLUE RAY

-I

NUCLEAR

POWER

AIAooa •*LI IO-I2-76

4rr” Zov.4c

472-1408-00

SUPPLY SAN

(39-7009)

XENTEK

DATA *PPROVID•V MARCOS, CO.%JA’ECT’øiJ

SCHEMATIC

INC. CALIF. ±I2VDC

+ +I2VDC —I2VDC +

-I- + +

+

+ N/C ZOVAC 1- + + f5.COM 4- ±I5VDC + — 5COM 5VDC 5VDC 5.COM 5VDC 5VDC 5. I5VDC 5COM tVDC 5VDC 5.COM 5FOM COM

DATA

om*41Ae ,

ge-v. CO1L4 SHT.20F3 COM 3..-77

4 XP2O-3

XP2O—9 .

XP2O—5

XP2O-28

XP2O—I2

XP2O-24

MODEL

MODEL

3.5,9

NOTES:

24,28

CAUTION

L

L

2.

2. 2

3. 4. I.

I .

ALL

Q2

DERATE

CR3ANDCR4

RECOMMENDED

POWER SELECT OF

TO

CLOCKWISE ALLOWABLE CONDITIONS APPROXIMAT€LY

TURN VOLTAGE (SEE

______• 2526V,

27$28V, I

I92OV.

ovP

7

INPUTTAPA

2-3V.,4.OA

2N3O55

SET

THE

470-ft

12V,2.4A IIV,2.5A 1.2K I RESISTORS 13V,2.2A

1.5K

R2

5V,4OA

7V,3.OA

8V,2.9A

SV

:

UNLESS

TABULATION

OVP .

READ

Q2

PROPER

SUPPLY

OUTPUT

OPTIONAL

I

1.6

I.OA

TABULATION .

.9A

TO

8 .

USED

TEMP. A A

ADJUSTMENT

TRANSISTOR AT

ARE

4.7K

2.2K

RE-APPLY

1.2K

R4

INSTRUCTIONS OTHERWISE

DESIRED

ARE

40°C

INPUT

EXTERNAL

293OV,

3I432V,.6A

2324V,

I

21

IS

4V,4.OA

ON

PRIMARY

6V,3.3A by,

14V,2.2A

I5V

I5/e

16V, 60505 9V,

VOLT)

BLOCK).

22V.,

OVP

IS

DESIGNED

—24

I/2W,±5’/.

IN

1.5K

2.9A

2.7A

TAPB

2.IA 1K

R5 1K

150°C.

FOR

.9A

POWER I

I.2A

.8 .

FREE

OVERVOLTAGE .

-28

5

ON

A

SHOULD

TURN

A

SPECIFIED

POT FUSING:.7SAFOR

TURN

50

TRANSFORMER

BEFORE

-3,-5,-

390.ft

LM300

LM3OS L

AIR 47ii.. LM3O5A LM3O5

LM3OSA

MODELS

FOR

ICI

R7

M

Hz

AND

SLOWLY

305

POWER

OVP

BE

ENVIRONMENT.

CONTINUOUS

OPERATION.

SET

OPERATING

MONITORED

IOQUF

IOOUF

IOOUF

IOOUF

MODELS

16V

ADJUSTMENT 47UF 3W

16V 4

ONLY.

25V

LIMIT

CI

CLOCKWISE

7

OFF

SUPPLY

UF

II5V

TAPS .

ONLY.

(2o°/oABOvE

IOKUF

TURN

3.6KUF TABULATION_____

2.5KUF IOKUF

2.5KUF

5KUF

15V

15V OPERATION.

C2 25V

35V

OPERATION

soy

SOy

POWER

UNDER VOLTAGE FOR

IF

UNTIL

115

(SEE 47-63

AIR

POT

VOLTAGE

VAC±IO%

47OUF DESIRED

470UF

22OUF

220UF

220UF 220UF

IOV

35V

3W IOV

25V C6

16V

NOTE

FLOW

SUPPLY. PARTICULAR

5CR

Hz

FULL

TO

UNDER

OUTPUT

2)

NORMAL FIRES

IN400I

ADJUSTMENT IN400I

IN400I

1N4002 IS

IN4002 1N4002

CRI,2

OUTPUT

COUNTER-CLOCKWISE.

COM

RESTRICTED.

AQ

FULL

0-

VOLTAGE

WORST

(VOLTAGE

______

______

OUTPUT.

2.7K

8.2K

12K

15K

RI

1K

1K

VOLTAGE

LOAD

POT

330fl

180i1

3.9K

6.8K

CASE

7.5K

R2

RECOMMENDED)

1K

AND

THE

DROPS

WE

TI

FULL .

RANGE

22Q.tl 470.fl-

270

270.ft

220J1

MAXIMUM

R7

HIGH

CASE

80-ft

SET

COUNTER—

TO

ft

820±1

OUTPUT

LINE

TEMP.

1.5K

33K 2.21<

cw

R8

5.6K

31< OPTIONAL

CIRCUIT

•18f2.

.22n.

•47t

.68f.

..12J2

RIO 221L

22011.

5.6K

18K 12K 15K

271<

Ru

L

R2

RI2

2K 2K

2K 2K

1K 1K

IOOfL

RI3 1.8K

1.8K 1.8K

.3K

I

K

C3 S

POWER £

//--75

PROPRIETARY

NO BE

OR

PERMISSION

R5

INFORMATION

NUCLEAR DISSEMINATED

COMPANY

MODEL

SUPPLY _-___-

SAN

72-1408-00

XENTEK APPROVKD

(39-7009)

OF

MARCOS

WITHOUT

XP2O •Y:

SCHEMATIC

XENTEK

GIVEN

TO

R9

INFORMATION

____J

DATA

INC.

ANY

CALIF.

THE

HEREIN

INC.

PERSON

EXPRESS

SHT.

C3O18—SOI DRAWN DRAWIH RKVISKD

+

REV.A —

MAY

3OF3

CR5

OUTPUT IN

RED

4001

W

OUTPUT

BLACK

WIRE NUM•1

I

RE

C!

0

C _+ ___

8 I 7 I 6 I VlJ 5 4 I 4 3 j_L L ‘- 1$I 2 NOTES: —. TI•

NOTES: 4

I . ADJUST114 SO THATTHEcPU FREOUENCTNEASUREDAt E57 PIN S 5. CONPOWENTSAREHOTINSTALLED(RESERVEDOPTION)UNLESSSPECIFICALLY Is 2.3 Il ± .0mHZ. ThE NODULEMATSE OPERATEDATOTHEP INSTRUCTED. D FREJENCIES FORTESTPUPPOSEONU. SEE SHEET(Al). D S. DELETEDFOPU7284-YAVERSION 2. ADJUST515 SO THATTHEREFRESHFAEOUENCYNEASUREDAT Eli * OVG .39V55 LSI SET. -S V RMI 7. lIP r ‘9TFX U s PIN I IS 525 HZ t5 Ni. SEE SHEET(Al). BG .39V FON151GIIP SET,NDONBIW I74•YA 3. TIRE lIEU? FNCNFALLINGEQGE E3I PIN 9 TO FAILINGEDGE M74A8 i.SI ONIPsr. -s v INTEL4ARAM 51101110 NS. P7 MAYBE RENOVED I .g R I Eli PIN 4 SE 110 10140 3 • FON151 GIIP SET. 5V95 4ARAM THAN •5.Ov dTEK TO INCREASETHEDELAYSLIGHTLYIF LESS 110 NS IS I4• WEASURED.SEE SHEET(Al). S. SIIL ISIGêTIG4 4. JUNPERFUNCTIONS*110CONFIGURATI4AREAS FOLLOWS: g i!! 1 E—_-.H (HIGI). L (La) ASSERTED JI*PER SELECTFEATURES -I--—I F.c.54Il:.1).f SKIPPINS STATUS I ‘Ic’.+! — •——;---— — — 4 — — .7; SELECTIONWHENINSTALLED IPTION h17254(REV Y1 .i!.!! £) Lsig&ONIGIN(PAGE)It(TIFIER J_[;IJ RESIDENTMEMORYSANAI C.O. R R RESIDENTMEMORYSANKI .L2._ 13 DISASLEEVENTLINE CO. P Il

+ I EE :::::DISABLEMEMORYREFRESH C.O. R [1 + E +B 1 E R POWERUP MODESELECT CO. R P / POSERUP MODESELECT CO. R P BIASINGVOLTAGEVDATAVROI F.O. I I NOTEI C ._!!__ s C BIASINGVOLTAGEVCTL:VROM F.O. I I , 4 LtJ • . + E 1 + T is DISABLEREPLYQOU RESIDENTNEMORF.O. P + +÷ EJ +- ——— + i + . :i: DISABLEREPLYDURINGREFRESH • C.O. R P 8.44 ENABLEONBOARUMEORTSELECT CO. ] U RF

a INSTALLEDIF RESIDENTRAMISNOITHESLOWESTREPLYIN THESYSTEM. mF] El R + - - ++ E1 L .i €. E - +_ + •+ g POWER-UPMODES 1 i;i MODESELECT j ..L ._rPE_;__ -Jz{±j+u 4 0 N R PCAT24ANOPSAT2S.ORHAI.TMOOE / UtEJL E + . + Li L EEL . I Ei + ZL E14 I R I OOTMICROOOE OE & t 2 I R PC AT 173000 FORUSERBOOTSTRAP 3 1 I SPECIAL PROIESSORNICROCOOE •EIEI (not .pIe.ent.d) EI IEI 4El 131 EIØfEIfrEI IFJ$’PJ E ‘ B + ‘ . E+ ‘ I; INSTALLEO C.O. CUSTOMEROPTION I - R; REMOVED F.O. FACTORYOPTION I B 4k RAM / q 8 Rz !EI’ IIE• +L f;j lJ IE R . . + I 4 + E E DCCMHØc2 .3 . + 4 +4 +.{——;•;--;-Y. ÷. j_,_I ? , __ id-. ++ . + , , DEC.. 7S32.2 ‘7 14 DEC 747 S DEC... e4qf I’ 1VU1SPNWLCJHF[DCI 1VUSPMMLJHFEQCI VUT” . VU!MLLJHF DEC. 74S257 8 IC. EJEC.. 74.S174 IG, DEC. 74.l4O 7 14 10.44 RE.F DEC 74SI39 S DEC. 7475 /2. 5 DEC 74574 7 14 EEC. 7474 7 14 ITEM DEC. 7442. 8 H. QTY REF.DESIGNATION DESCRIPTION PART NO. I FiRSTUSEDONOPTiONUOOEL DEC 745” 7 14 L PARTS LIST DEC. ETCHBOARD REV. 74SiØ 7 4 E I I I I I I I I I I I DR DEC. 8;37 S IC. I., DEC. 7.sØ5 14 ciwo. DATE i i A 7 Idi191ItIai_1 I DEC. 74S$4 7 14 z DATE 0 TITLE DEC. 74SØ 7 ‘4 0 PROJSMO., DATE 0 i2’-7 LS1 II Dtc. t1Ø 7 14 0 C 74 0 DATE MODULE TTPt +w •I2V D 5’ i.2o-J Cpu l. . 0 NEXT HIGHERASSY ‘9 C •m eo w USUALLYPWI 7 ømo 14 SIZECODE NUMBER V. PWTWtLY L1Ic1FT1O$ STATtO U, AI0t DEC NO. EIA NO. DECNO. EIANO. SCALE —T DICSJM724-O— I pIll LOCATiONS SEMICONDUCTORCONVERSIONCHART SHEET cw •T••••••• 01ST. _c _ I I I I I I I I I I I 7 6 I I 3 2 S70—2344—OO 1 I 10) 1 *__ 4 (Sheet of ______

8 7 6 5 4 I 1 3 - 1 -Tw AW# AM D5 DIODE, IN1lA,5.1V, 5% 1110994 43 IJ EF RE REF EF c 7P4. IIV ATION x-Y COORDINATEHOLELOCATION rr dOT •-:—• k-CO-M1264.g-4 -:— c — —j— 06 DIODE, 1N751A5.IV, 5% pAl? AS T) S4 T)* JaCIMI t SF4.1 I11094 44 ñ7 w T• ASSY/DRILLING cw rT UT SflB PMI i H0I1 LAYOUT D-AH-1264-g.5 TAa. IQUNI COIAfl4 3 3 . 3 02.06,09 DiODE, !N75IA, 5IV, 5% 1110994 45 tw 2 UODIiIEECOHISTORY B-H-M7264--5 4 4 4 4 Dl ThRIJ04 TRANSISTORPNPH1GH £PED I5i11 46 E •_ i__ ETCHEDCIRCUITBOARD 5011545 3 3 3 3 E38,E45,I72 IC. DEC14fl t905515 41 I I I ClOD CAPACITOR,I2pt bOy, 5% C 1002081 -1— -;—- E24 LI:. DEC 74S 1910532 46 S :i: •r— r •-r -i—-• CIO4 CAPACITOR, 68pt CDV%’ 1000014 E37E59.E69 I.C DEC 744 1909686 —:—• 2_. .1.. 1— -i-—— C103 CAPACITOR,220pf, ICOV’, 1% 1012121 7 E6l I .C. DEC 14SB4____ Iq10534 ._L.. •9_ ‘1— •—r -i•— C102 CAPACITOR, GBOpt, IOOV. 5% 1000026 D E51 I .C. DEC14S65 1910535 51 -:— 8 I.. .__!_ E• 7’ Cl THRIJC4,C9 THRU CI2Cl1 • CAPACITOR, .OIuI, 53V, 10% 1001510 THRU I I 1 I E31 IC. DEC 8037 1911116 52 C2O,C23 THRUC26,C31 9 THRU C34,C31 THRU -:-— —:-— •-:--• C52,C54 —— E55,E62 I.C. DEC 14SIV 1910536 53 THRUC57,C59 THR1JC62,C64, C65,C9IC68,C69,C1l E48,E55,E62 DEC .C12,CR :::i: :::::i: IC. 14SIB 1910536 54 C16.C11,C80,C96,C91, 2 2 2 E32,E52 IC. DC 74SI’ 1910531 55 -:—- —:-- •—:— Cl THRU I 1 I ES I .C. DEC7442 C4,C9 THRUC12,Cl1 CAPACITOR, 1910046 56 ‘j .Olut, V, 10% 1001610 THRUC2O,C23 THRUC26,C31 1 i•— —i •i E43.E44,E49,E64,E11 IC. DEC 7414 19fl541 51 THRUC34,C37,C38,C39,C43 THRIJC52.C54 THRU C57,C59 •r• -•i- •i-• E50.E54.E57 DEC 1910544 i IC. 4s;d 58 THRUC62,C64,C65,C97,C68, 4 4 •—:— E25,E40,E42.E41 1.C. DEC 1415 1909050 59 C69,CII ,C12,C1OC71,C80,C96

_i— •‘i’— —I-—E56 IC. DEC 745139 19I616 60 T’ -i—- —I— CIOl CAPACITOR,.33ut, 50V, 10%POLYCARB :i: E39,E17 I.C. DEC 745148 1910546 61 1010031.4 I .. •iI C5 THRUC8,CI3 THRLIC16,C21 CAPACITOR, .4luf, 25V, 20% 1010279 ,_:_ Eli IC. DEC74SI48 1910546 62 C22,C27 THRUC3O,C35,C36, 12 C53,C58,C63,C66,C1O,C13,C14 I 1 I I E60 IC. DEC 14I14 ‘910550 63 C18,C19,C81 THRUC85,C90 —I-— —:— THRU 5• •7 E2,E4I2,E2o,E34.4:. C. DEC 14S251 • 1911641 64 C95,C98,C7’ c7S —:-- —:— —:---- —:— —. —:-• C53,C58,C63,C86,C7O,C73,c74 —- E2.E4.EI2,E20.E34 IC. DEC 745251 1911641 65 j• CAPACITOR, .41u(, 25V, 20% 1010219 C78,C79,CBI THRUC85,C90 13 •T_• I-.— ‘•i•- E16 I.e. DEC 15I1 1910268 66 THRU C95,C98,C’T, C75 —V.. ‘T• E3,EII,E17.EI6,EI9.E23,E33 !EC 8641 -.-— :— lit. 1911519 61 -i_ CBS THRIJC89.C1O5 CAPACITOR,I5ut, 2OV, I0 1004812 14 I 1 I I E65 IC. DEC 1491 1911195 68 4 C8GTIIRUCBS CAPACITOR, C lSut, 20V, 10% 1004812 ‘S 1 I ElS DEC IC. hIC424 1911038 •r- -:-• • .I !. r E1,EL5 RrSjSTQR NTWK,i4-33O,)4-6o 13fI003-OL i E67.E14 DEC 3 3 ,_I, IC. 15322 1912955 70 3 RIl,R12,R45 RESISTOR, ID OHM, i_ i_ 1/48, 5% 1301317 17 2 2 2 2 E66,E13 I .C. DEC tWR26 1912098 ) . R45 ii RESISTOR, ID OHM, I ‘41, 5’, 1301317 59 . 56 - - E5 THRUE8,l3 THRUE6, IC. DEC4K, RAN, 3 ‘1” T” 2112958-01 72 “Y R42,R43,R44 RESISTOR, 22 OHM, 5% rHRU l’49, 1301969 Ig E71,E22,E27 E30,R35, —‘i—‘-— — —i- C38 R35,R62,R64,’2 RESISTOR. 33 OHM, — — — — ———— l’41, 5% 1300197 20 IS • ‘ IS TIRU E6,E13 THRU I I • I R9 [5 E)6, I.C DEC 4I, RAM, 2112126’OO 13 RESISTOR,38.3 OHM.RN55, 1’, 1305121 I,E22,E27 THRUE30,E35, 21 i I — i R54 PE3ITOZ’73;.—,’4,/4 /1 — — E36 . ——— 57,, I3I’72. — . . —‘:— 3 3 3 3 R13,R16,R60 RETOR .)Hty1.I/.W, — — — ——j—’E53 IC. DECCPI6I1BSI 2111549- 74 . /c 3O9 23 C 2 2 2 2 R36,R6I . - RESISTOR, 100 OHU. I 49, 5% — — E58 IC. DECCP162I8451 23001C2-OI 15 1300229 24 . . 2 2 - 2 Re,R1O RESISTOR, 533 — — E63 IC. D1C CPI631B-301U 23O88A5-OI 76 OHU,RN5S, IS 1303039 - . I I 1 I R2I . I E1O RESISTOR. ISO OHU, 141, 5% — — — — IC. DECCPIB31B-3BB1 23087A5-OI 77 — — — — 1300250 —26 1z l. 1 1Z R2 R4,R28 R3OR32 R49,R58, I 1 1 • RESISTOR,330 OHM,1 49, 55 E51 I C. DECCPI6IIB-39 2111549-01 78 R66,R68,RiO,R72.R,7 1300295 27 E5J IC. DECCP1621B439 .1...._L, 23001C3- 79 .“j” .‘“ “7 R3.R5,R6,R20,R23,R29,R3I, RESISTOR.680 OHM.I 41, 5’, 305424 29 ‘ I ‘ E63 IC. DECCP1631B103 2300IB5- R33,R50,R53,R52,R51,R61,R69 — — — — !_ P71,R73 0 ._!__ ,J__ ,_:._ ElO IC. DECCPI63IBC7’3 2300285 . !J. . - . . . 14 - R3,R5,R20,R29,R3I,R33,R50,- — — 20 20 • 20 P1 THRUW6,W9,IIO,WuI,TPI. PIN STAKING 9009149 82 29 R5I,R52,R57,R67,R69,R7I,R73 RESISTOR,680 OHM,l’41, 5% ‘fp - 1301424 I c’J — — . ———-— . - I I . I R41 — N — J3 THRU16,E9,TPI,TP2 PIN STAKINI 9009149 RESISTOR,909 OHM,RNS5, 1% — — — — 83 . 1302585 30 I S ‘ I R34. RESISTOR, 8 8 8 — 8 ______EYELET654 • I 9006732 84 1K, I.’41. 5% 5300365 •31 — — — — . - . I • 2 W7,W8 JUMPER.INSULATED R3 RESISTOYI,5K. I’49, 5% ) ..L_ .___ — 9009185 . 5 1300365 32 I I • I R17 RESISTI.R, HANDLE LEFT -t.4v8r.—OO 5.2k, 1/4W, 5% 30I320 ..,L .J_. . . 10 50 RI,RI9,RIR,R22,R38 THRU RESISTOR,2k, [‘49, 5% I 5 [___ 5302388 34 .L. ‘- I-kANbE RIGHT t4138a6 - R41.R48,R56 -s-- s. t3,E5)63,t7OI tT5 SQC’T 40 ?N [T T “7 7 R15 POT 3 TTa3—o 2K. 1/2W. 10% 309I50-07 35 I B I I I R14 POT, 5k, 5/21, 50% 1309143-09 I I - I R46 RESISTOR,5.11K, RN55, 1% 1304954 37 -‘I—- — RI i• RESISTOR,6.8K, 5/41, 5% 1301423 -:- 38 T T r v12VII WIRE,SOLIQ 1t4S.*.3OAWC- -:-- — 1-L r W4,W9 /v flE SQLIO IWS.$30 AWC- q1C5’F40 —I— -:—• 05 ‘i DIODE. IN748A,3,9V, 5% 1100122 41 - iE Dl,D3,O4,D7,DIO THRU021, DIODE. 0664 1100114 D23.D24,O25)D2 42 a QJ

U 0 U

lb

I I

I

LJ a

- ,iiII

c..j

‘-4 S

!? -j

Lu

C.. 4-4

c ‘luJr-4Q:

c>n.L. .

1 -rh44.4I4 c

OQ0000 0 000000000 0 lu

0ct:r.c

q

.j

>. k

4.4

I-

zz

z

I F.’

f

I I III

/

I

I I II I

—H(-1”

0

(4)

sJ•.

.--- -

if

4.44.44.44.4

(%l;

)‘-Q -“

Li

n.j n.j

U 0’. 0%

,)WU I-

n.j cv -

‘I ctL

(‘J

N .

0

•Oh

-J

2

(4,

N N

0’. c’.i 0% N

*?N(I)N(IX

‘0

.j

I-, 4.4

‘4 1.4 I- 1.4 4.4 14 1.4 4 4.4 1-4 4.44.4 vi

‘.0 ID

ee6B:?

8

“g.. s-”’ -J

0-0

Jj

.4.

t:( >

NC%J

:

(p

4H

• 1 :z

0Io 4

L::__j_j r.JN

— -.

-. 2!r%c00%

N

-,I

-j-J.J.jj,J,JJ.J%j th1tfl?TTtM

I

4.

%%-

>WrJ

C- t%b Q%—r•4

n)i*IJj

‘-I N —

: n.j

0% -

0’.

:

n.j

N

p..

43 (V.) &

‘4,

n.J ‘0•

n.j

.

I’)

(4) N

0’. n.j

0% N

A NNN

I4I-I

0%

H4r 1 c-o

r

&ees&

s

-

8.-. Q< q

_J_J

.J_J 0

*

m

0

4.

Lj

r’4

C,,

0

‘-4 ‘HI-44

i-k’-4

r0U3U 0

‘-4 :!z

U,

ij_Jj .jJJ_3

-j

L&j

—I U

I-

LP:

9”

—:D

U

N

0

Q_ 0 (I)

-4

UN

iT) ‘0

>

a

D

n.j

n.j -J I

w

C.’

I-

Ea%I+

I.’)

I r41

0-

U’

0

Hk4I.4

(D

0-

ocx

(‘J

N tkr

0

8

tL

n. N*’

-.cJj lJjJ JJ -.j_j .i C1

rn 0

0

I-

Cr

0

0

-J

C,,

-C

ci

ci)

.4-

en)

0

‘4-

C

I

I :c: U 8 7 6 5 4 3 _1Y-n TP4M• WIlCATO A11I*L A AT) NT N 0 1 I M? AS T) p TN CS w wt. Wfl TTI 1fl r•t j 5 IrrM. I? AT4 0

D D

F 8DAL 00 L M7 ve ‘ØA C a WDAL Ø H C Ice &f4M £ØO H x3 DIlL 00 H A(’ RAM 001 II /(3 D1JL f H F( ?AM 002 H k3 DAL 2H SCAL. 3 1 N9 zP iij (a RAM 003 H 1<3 DAL 3 H ,(3 DAL 03 H 0

/c’7 IDIN L (7’ D;W L

8PAL L Ic7 DP2A

B K RFN D44 H (3 DL 04 H RAM Dt5 N 9DIRL. 04, L K3 DeLØ5H ,c ,Dpi I5 F

,( RSM £?7 1 1<3 DAL ‘7 H 1(3 DAL.O7H

A A 0 DICSIM7264-Ø-1 1w

DIST.f I I I I I I T I_ 8 7 6 5 4 3 9 S70-2344-OO (Sheet 4 of 10’ 8 7 6 5 4 3 A• WCA ø T) TV. TI& 4T I JC L N I U I $041 n. wa wWv*i iN mt? MICTI p4T I 975To.& IAT4

D D

B0iL 08 1.. KDPR ‘58 14. L2AL 08 K2 v/DAL 08 g€ PiM 008 &DAL 09 L icc? DPR ‘38 AC’, DAL 08 RAM 009 ,c 8DL 10 L K4 DAL 09 (9 DPR ‘28 1<4 DAL 1 N C /G RIZIM DIØ H K4 DAL 10 BDAL Ii L C o(9 DI’!? KRAA4DII H 1(4 CAL fi H K4.DAL II H 1(7 EAL L

l(S• IDZAI L 1(7 OINR L

8DRL 1 I,. 0ccDPF I 8 i<4•D’L f2 H F< R1M OIaH 8DAL 3 t 1(4 DI?L 72 H K RAM DI3H K DL 1.3 H

B /(4 &xTM

KQ RcM P15 H K4DAL 15H

— —— — 585 7 L L__ F9 DPR/4

I(8rrvIr (I)H KY DPI GCYH

A A

DpSM7264-Ø-1 jJ 01ST. I I I RN 8 7 6 5 4 2 S70—2344-OO(Sheet 5 of 10 ______

8 7 1 I 6 I 5 4 3 — I I 2 -n O.lI M WICAfl _• t-ø-2L Ii I ,ITy TAI. AT1 M _:.. cT N 01 I CU I . I14 •n. Ml7 WI rT r WW1T TTSl IW rv 1t 7 k DTA H4T CIATIatr

)(3 DAL 00 H C +sv D ‘<4 EX1M L D

k4. DPLL I. H

, REFP H .s FMX H

c1 5•94CR L

K4 DAL )2 H

K3 D1 H 1(3 E CS H C K DAL II H C

K3 DPL Ø H - C

K4 OFL 10 H

K3 DI\L Ø H

K4 H DLØ c’J B

OPiL H 3 U)

B

K4 DL 08 H

K3 DAL 02 H

<3 DAL 07 H

k!DLØI H A A

ROt6 clix CHANGE NO. REV. C?ACUITCHEMAT!C ON THIS .HEET 3 CELETD “YA’ /ERSDN NUMIER REV. I I TITLE LS — I 1SIZEDool I I 1 CPU MODULE M7264-Ø1 J KD51 f [SCALE . L—/— SHEET OF DIET. .1 I . I L _ J J f J J I I L 8 7 6 5 4 3 I 2 S70—2344—OO(Sheet 6 of 10) I I I 1’ _____

JO V L 4ae1S) I .a, (oi. L OO—Vi4—OLS I --- -- I - I L - -Fr ‘-0 t9LV’JISDIa (9>-I)]7flOOVi fldD II — Jill! A3W U3WflN I3OO13ZIS I Si I I I •ATh •ON3NVHD AVG 3/16’W2// S •L/i2;cv/:’ . . . . - . - . ?;K1/tp/t?i’ Q3J373Q 5/ ±3H ci#i SNOlSlA3l ‘ CD

V jq ‘i.v V ?‘3Q ‘p33 ‘“) ‘P;,fr — W&’Y,4- i:- rnj• I 9 iczi ‘bz2’z2’q7 lid? 7 •j’zc7 4:7 -ci ciy”z: s. I7 1 A — ,— /-/c’c1’A — ;— i’YA — 1 L J1 2/,’ 0 1d7 -W V?I’/A , .c177 7 gtI7cY 517,-i )7 7 s-,Y:w çfi’7 zati I)lg ;_ ?? >— -7 s-va’a’ SVb’>— 7 SYe’/ )-7- 7 cve,ø’ )— 7 5119’ >..— 7_U;,? 3.i&’ 21/144 ):— 7/Af/ )— __1Af T 7.1a5 7 I 2M ):—7bU/ 21,12 1 ‘• Sf 7f7t7 1— 717-cl •*)1 fyzo ;— /7’ _c/ 7117 -pX [“IC — /7’ z/ 7117 -SI /7’ t4/t’2’ i;— _7__ f’ bVd’ 7__ sly 517- /1 SlO’ £4’172— jocv /1 pf t4’t’ LUt:K7 j7’ h’ /71/Z/1”J Z(7L7C ZIG, &V— LI-;:7 w,/- 1-;—--- t6’t’2’ 7’;’ tV/Y ,7;;— H P17 14’,2’ ‘V 1/ ‘7’ Pfr MIIY,Y L jJL P JOL Pj 9W ;— iT °7E çi I-I b’ L’W’ -)—_- /7’ ca’ ivo’a’ ci, t4/1/?J i H f II IAJI”,Y 1 z:j 7___ a;—“ -1 äT - — /7, V L4’’ z1 —H 21/ t4’t/,Y 21/ —f1 Z1/ wtg’ Zb’ s— H It! /4//It’ Q,,7_ L-Vb’Y-1- r—‘ I V /17’:—tl It’ C4’t’ /17 ‘7’ I/I 2:— 7 /1//4/1/ 9)1 2 ,1/1/3/ 2 :— H VL4f’ 91/ ::— ti 91/ t4/172’ H(/ 14//I,Y fl sc-7 623 c2cy /A’ti wyo ;y L4’1/a’l

—‘I If7i7 N) U)N ci 4-i WöA— —W6’à’A — VrJA— — r_L/ti/A ?____ 7_____ 7__ h’6’WA svy ?7 517?);— 7 5b’’ )— 7 51/W 2)j,;— 7 S1/7,?/ St.-;, w— 5bVa’ _;__ _7 .c/IJ& 1c- >— -7 17/Y >1 7 b’’Y )— 7 ,ct,’e,a’ >7 7 SiYô’’ )--— _7 Sb-a-a’ ):— 7/41/&A )— 7 _I_41/ 21,2- ‘ N 1/ Il/Id i— ‘>‘G7’1 -i----/7 7&’c7 —h’ 6p711c7 fl/Ic --— t7h’ fy10 “ 4Ø7&tJ >1 /y1: T__ H ‘91 7/7c7 7__ N9VfAJ// 1.c17 511 I-f 51/ t4’172/ p—H 5VW17’d /7’ 5iV fA/t7’Y 517- /1 51’ 64’t.’d’ t7’ f/C? JpGU I’,, f7/g fwb’ LOOU w—’ 109c7 )__ t4’1/,y Lf7U 1ç717 (4/t-’a-— __1000 7_ Lo7c7 p— # p_ !V1” -,---H1VW17’J H t’V — /1 Pc’ /L7’ 74’€,a’ —i 171/ 1 p., 2-;---- Wt’’ 77____ wi ,;7_— H ;—_ ’ ,7’ ?7____ ;_,4/ ‘‘ fL/ (‘/I/Y -tWti/ ci,, ;— H F11VI —/-/ 51/ b’V1/2 ci 5;— 1-1 Ft W1/a’ w “ cEb’1A’LYö h 14’1721 217’ /7’ Z&’ Wt’1 2f H 174’1/Y f/1/tfY 211 — — --—- Z(/ t’Wd 21/ -—-tI 2?.’ 21/ — /1 zt,, —H t’v1/a’ /1;’ ‘I H /t’i4’/ z__•___/1 /17/A/tW H /t’W1/W II; H /1/ /11/tIe, /17’ If,, t4’t ‘€1 14’t-’ :— 2:— 2 2:— ‘‘ 9d’ “ :r—‘ l1 :— Ø’1/17VV& :—H 1/ W(18 —H ftp’ 14/1/2’ ‘‘ civ wt /I iiyti-a I2? 92,;’ 22 .519 N 14/t’ )9t’ W17’1/Xt W1/ f44’’ ;yfr 14’1/2’ L4’17’2’:t

D D

5;, -—-—h’’A — A’b’ ;— /b’e, A- ,— ‘6’.l/ A — 9>1 St.,;, 7 51/2 7 Sb’7o’ •7 ;— b:—7yy SM.; 7_ —7 St2/ w— gt.7 ;;— t5VcY.’ -we, :7—7 St9w& >— 7 .cb2,w st/a’ 5b’Ye’ ‘51/a, 51/p >7- 7 ,-c172/’ 7 Sb’.’ -c)l 5 )-.— 1 1dM ):— 714l e 21A >j7JAl 0 7:ZMS YJ,2’Al 7 _/A4 IJI.’M ::—7--1Al 3.149 21/2/Al —7_1_44’ 7.1fa’Af 41>-r-- . 7?L,W 5>1 fy10 7tt7 £)1 Nra t’’71/C 6)1 11/10 H EO 71/C ‘via 29’ 71/17 fYK7 ‘-“ /çl 7//C 1,-Ic? -’ /-iø7yf7 ? —H W W 7-p--- — ‘I / T— a— Sb’ 51? u1/1i’ ‘-7, /4/1/e, — 511 w—/I 51/ St7 .91 ;— 5,- Wt’b’ .91 7___’LI 51” rncii El W&’4/ SI /L7_ g’c7 Joc?a H 1R17k7 w— iñl?’ö— 1i?Ql7 “7’ j4? 1j7170’ Wi/l— P1/lWb’ G ,1 PV t’W’ ticøc P1/ /1 p.1/ lc/M7’y— (lct7 p.1/ 14/1/tI irici ,w’a-— L0tU ui-na’ — ,)i I-;—— 77__ )f 2;— Wf7’/ ,—H I’ll 1’ — /1 Pt/ 14/1/a’ J7—IIP I4’D’3 .cx £11’ äT “ -‘ ;-_ II LV L4’LYJ a;— ft/ t4’1/Y 217 cli ?? ;‘ Eb’ IIL’LIa f-I i, SW ‘p— /‘ 26’ L4’6’b’ s—’Zb” L4’fr2Y ---— /1 21/ 14/1/1/ 211 57—/1 21/ 14/1/a’ 2?;’ — H 21/ /A’b’a 2?” —w It, H /1/ /1/ 1 7’ Iti’ t4’Vb /1/ It; It/tI/va, /1/ /t/ 6’VLYd’ ‘V —H /VVYfr2’ z__ 2:— z— z—/ 7:— “ H ‘t/ t4’t/b’ ffr’ C,;’ L4/i2;/ .:__/I1 9t;’ l/L/fr’ :— .?-_H “LI :—H c1 /4’t/’ —H fri-Wa’ P,t “2/3’ T “ 17?1:? L3 vI/ )1 w , 14’1/b’)ib’ bfl;, ;Y L’Yt’3’ Y

a ci

NOLLVjOd W*Iiamiw W10PLL L1iIb I M 374 3wu_,v_w alL w w 4j IV igw m m . i _ . 1W Gfr NAVO W1 ,u rw 4 uvm fr sz( co NUMI(R WI. I 1DkDSM7264-O-I V 9 I .T[ f c I 9

A

B

C

I I D

CHK I I .4_ ,I4TVJ -“ 1T — REVISIONS

M

kf

KB K7D1N

xa

KT 8 _. 7

NO.

K DOIJT

114

RPLIR

S

WDOUT INIT DT4.

n.e PH

- D L flI REV.

IIt

1

(I)

(I)L I

btN

H

H

H L

Af 2

a

AOl

AC

e,Pi I

i I +3V

w I

I

I

-:‘r1-ø

—-i- W13

Ru

P,7

I:,,

R51 g

PH

3

R72

RIØ

/<7 +!V

R58

I:,8

7 -1

,<1

K

7

SYA./C

REPL’1

REPL(

PH

3

(i

(I)

H

H

H

L

+3V

I

I KB

ka

-T INtTO)

ww

RPLI’

EPL’1

H

H

6

4”8

eeyr,)

)-

()H

6

<-T

TP

DOUT

CIA’

16

REFR (I)

.

L

H

(

H

It

—Q 84I

w

1<7

EIE

10

DOUTR

----a

+

5v

5

80

I-I

5 k8

src<

DF*1G

I

I

FE

1(2 k

a

(I)

WDIN

L

1<7

WSINC

L

‘41WR

OPR

-t

IL

H I .

+sv

1

H 9

L

H

Icr

iom

4

4

L

1(7 S’NC

‘e L

—————— I

mr

1a

i

(I)

P113

H

L

8q.)

L E3

tci

Ri

3

DIN

DIN

__J

L

H

I I SCALE

TITLE

Icy

K9

I 1

I

FPLI

DPR

I ItIITZøt?9Lv1 LSI—I

•Aa

I

FDIN

I

MODULE

I

H

K-r I

[EET

(I) RFCr

V4

L

2

0

8

E

e

lB

L

,c9 I

OF

1SJQ121

EUPL

Iiao:ilwsl

.N

O1NR

DPR

JQ

L

S70—2344—OO

6

L

48

H JDDSIM7264—øi 1SIZEcODEJ

01ST.

K1

I

DINR

L

S’fNC

DP (Sheet

PJUIER

S L

,

I

P

j

H

I

S’NC

I

8

I

of

L

::

10)

I

A

B

D

T

C

(Q

‘0 C) D

D

Q

V

a

D

0—

a 3O

)IH

j ID Oj t •I Iu

Th 4 W

zx

•H ID W *ID

9W 3VH 4L IV

SNOIA3d

‘cX W

£?JWM •ON

9

g_7w44 gj W ID 4L

/z

7Fh’,-bH •A3

H(’))LZ7VT

,va’

I ID U UVKIêW a NDILVI

I FM FIM G(V

I

I I I

I I

t:.ZJr

h7U “ —

1

?4’Oa’. H

E

91 ,.

L

N

L

HE

------J

I

I

1

‘\fJD—1

n——-- -

Z7t

-c’Ja’f7

9

gH

9)?

7

g9idcz,)1

‘Sd,4—1

dd

:13

1

-TwT

/A’’)( .

H

I

()_J

7(/)A2:/a’hl

E44 I

I

c

AE

A•,L

9f

QY

(/)JPYZ 9)

•7

W

Z

i I I

7(()3H

7(i)7/t’1s

4,

Ffci)N(aJ

t

,1c:--

;,‘L2A1

[

I I I

YJvA.LY

/lidb

7

FvtflH

fr19 L?

7

H

I

) .

57-

,

I I I

(/2

‘E7 ‘

ii

I

LDVZIW :,‘;‘2

&VQ .‘

I

A7 /1

:v

1-1(1)

/1

fr’

I

7 4li(Qk2

&‘Eyok7N

K 31vS

i —

I -

‘z3I

TdD —,‘-,--- —

I

I

j

£•3’

.L3JHS

2C

1flGOfrN ----—-

ii

Q7

io

bW

7 I—

r------

/-fZN.d

9)

7ri)IgH

c

9),

8,’ IslzKo

..LI7(7

a

c

I

)

I) •

zst,

(

C/i

Zn,’,, z:1v7 c7

liv)

(I)

•.s’c’

7 iLl

,.y

I

w t7,

koo3zIs1

I

Q.rg 27d7

idi

ocd7

O?d7

o9?vq

I

w’

OO—irie--oLS

frCkfa

I

I

I

L H3Ufl

I

4a09S)

I--t79LVJISDIGj

6

I

i

£

(ot

a

)

V -

y) -J •0 ; a 8

D

a Q Oi jo b’ * cI •0w

iza ij

bX 4 *

r’.’ t7,A_zt::7 U g.ah

8 SNOISIA3N •ON elY () W4 ,-,, 4 .ai.i

I wi,iubl *4J 1 4 NOILY fly

I LLVQ 11

. u

I I

L

L

ILON

S#

I I

13HS

I

9

9 I I

c

°;•8.7-r-

c —‘--

‘i

agz;’

i

1-

iؕ

4,

;-i,

i

t

1

II

11

P

v

I I

I

Ld

I

I

I

I

i

LI

Tw54

TZf 10’

ØID

iø-

T2,T

i

M-

I1

aiwsj -÷*—

fldD

IiTTLzTtT

idS)-0S:,T

1II

IS1

Li

jj

J_

T-c;T

iflGOVi

4)i

;f8:ki_;i 4)1

)j

)1

L4

44 1)1 b)l

&)4

QIioOIJ33HSL

o7

‘dCi

:de 2cfU

b’O

(6>1) ;1(7 37

‘cC :‘c7

.‘dU ?‘dU &fC/

2’

fic7 ‘O’Q YdU

2W0

‘dt7

aia’

?idU

èJdC

h/ i.;,

w/ ‘ AI’

b’E tf’/

&c

Fp p

v_F, ‘L b/

“ 1,/f 7Z/

VcIYdUq

1[PIM72Ø-i VT— 7__

1—7Z —5;

F__ r— i—

1

15__• iT fri w-

;-_ _7___ F— OOZSJ

—•c) r—

w-. •g—V6 r— 7___

;7—. FT U—

;—

1—

37__

5!

OO—lrfrEl—OLS

S;-F

øE

E5T

øF “zc

Ø-E

£r ØrE

0FF

--

&3

_z._g ,,1 )1w:

-wv-E Dw, q’ ØV2 , Øq; , I?’ I&’ _ff

(ib”2 Øgc) 3INflId

.,

-

—-r p&.G,) 4’-1S) ----

--E:

I.

-frt9LLISDJOJ

I

OL

I J°

c1 A3W

[IIII1IIll’.sio!

(oL

V

a

.ct

-0 B A 4 2 3 HOTS: 1 - — - - B 1-. ,4ND:pI,__H(i6)/ ALL ALL ALL I.C. x XDMR2 XDMR1 XDMR4’ 0MG DMA PIN IL CrCiIG RES!STORS D 3 VOLTAGES, I ODES DI DRE I WE EEL ,RL G94 (7) EPT5NO 1/IL.I, pf ND OR ExCPT EQU ±5%, +5V P11 5V I VDLENT ED: EXCEPT (14 AS I I [5A21 NQTFD , MPR [AS 5V +5V S EXCEPT I NETED. AS NOTEO. +5 +5V 5 V > - I NC THE a C - FOLLGING NO TRANSISTOR CON9ECTOR IC INTEGRATED PIPCKELRAPST CO1 Pt

±1 I (5) W DESIG +5V TIO SVtBOLS/NQTRHONS DESIGNATION OMR ( C A4) IRCU ATON I 1 RESET (82)(84) .-1T-- ARE (P1 SAT MC MA [A3] [63] USED ) LR ST — — ER DC FERRITE I PRECISION SELECT ON 83 -S.-.-’ COM1ON THE 1P’ AT DIRGRRM REDD RESISTORS TEST T 2 L FILI1 RND/OR 100PPM (A4) PRINTED CLAIM CLAIM* (Al ) (5A4) —— —-— —?4-— .f CIRCUIT — - SELENIIJ ZENER TIJNNEL GERMAN SILICON 00MG (A4) BODRD DMGW* 3) DIODE DMASTP RESET B [5441 [B2] 12B3I IUH DIODE RSSEMBLY. I NIT DIODE DIODE 0 ODE A4)(2B2)

I MASTER (583) (A2)(A4)(3B2) MASTER 4J DDC* Jt —SHET COfl MPB MP1 MPS MP [AS] [AS] [81 [ ) ZONE BS 2 CTOR I LOCATION SIGNRL NURLR IGNL P (9 cErc7ic N---- SOURCtDRTJIN6LOCiUIO4 NAI1E vyY 3 21 \ (R2)(A2)(A4) (2B2)(3A3) MCLR t C07 (83)(5A2) (582) MP3 C$--,.—---— B BOARD BS MPO (Bl r’ , 7L DM60 OR (A4)(5A2) )(B3) P C O—<< ATIOI4 NAME XDMO4* XDMG3* x XDMGI PIN DM6 2 IP2 S27-2 CONNECTOR —CONNECTOR \ ‘ I F j P’ VIAS

.1 (551 .C. 0 C [B2j [j52j MC [83] 64I MP4* (SEl T DMR [AJ —Cl LR F f P P!V P (5) I .R)o N —-—-<--—— N (542) (382) (SAl) VIA5TER RESET [As] [B2] 8857 [B4] DIG0 (AS) JDPl8PJO4LO 0- 0 BBS7 (14) (11) (5)

2 PCTDFFICE z 3 I 12 zi

: 11 C 3 2&S1 8 4 bbUO/66O I! 2 83 B2 Bi B 0 BOX NUCLEAR >i )(4) )(12) DLL) 451. PAL-TNE. CU1 DATA 1CIS .- A X XAO THOU 85 CO67 AR1 —>>—OBSIVCKL BN1 AN1 7 DR >>—o >>OBREFL >)‘OBDMRL INC T ECN REV I BDMGOL S I OTE JNS A ED U 0I >

>< .C ><

= ,__l + %fl; a’

‘-*

‘—

M

k)

—:—c,, —><

\, m

3

Ci,

C-, r

— I-

:,

fl 2 D ,_n

— —

-4 : rr -

-C-

C— -< -I n- -

rr

THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DRTA. C,-’ --1 RND MLY NOT BE REPRODUCED, NOR MLIY THE INFORMRTION CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF NUCLEAR DATA, THE PROPRIETARY CD RIGHTS TO THE AFORESAIL) INFORMATION, OF A PATENTARLE OR UN— PATENTABLE NATURE, ARE EXPRESSLY RESERVEDTO NUCLEAR DATA. .

n fl ‘-‘4, U ______

>

J i: ‘ a .j1 C ‘.1’ C a- ul C ‘J C C, 1 a , , , 4 r. ‘J I- I -‘ r- — I- I- I- 1 .- .— —-- r- r- r —----, I c2 C C.I Z t)—4 r ;c i1 .1 1 ( ( J i:

I :: (i cL i i J i?

.

- — — —‘ —- Dcx, —:i r- LZ: 1:\$/J : ::; I ;: r4;:: LIr—i C,, a,

r’j , g j “ A A C

—>< —>< k) —: C C, —4 - .— -I- a r- r— —r- .—r ____Q D - r’J A — ilF c•

‘—I w C,,

Lf1 CM

D . I1_1r :

, I _!____‘_i — ‘0 -

a a, 1

cr

fZifL, I r I ——Cr)C,CCM c - -J I r- I c- C, C) C/C CM C—j CM Q r,C CM ‘ CM c:1 :‘ rn C’ ‘

‘1 C 1 C - — c

z 3 z, : ..—-) —0 —‘O —

z C r’J C ‘J NC C N) ‘—r- _fL - I I I

.-__ . j : : : (f c c

) x r I

THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEXR DXTX, P.ND MM NOT BE REPRODUCED. NOR MM THE INFORMXTION CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF NUCLEAR DATA. THE PROPRIETARY RIGHTS TO THE AFORESAID INFORHATION, OF A PAIENTABLE OR UN— PATENTABLE NATURE. ARE EXPRESSLY RESERVEOTO NUCLEAR DATA. > . :v

A

B

BDL1 [441

[441

j

j

1

4HØa

C

p p

BDLR9 BOL1Ø BOLLø8

BDOLR7 4A1 14i] BDRL6 BDALØ5 {481 4A1 BDALR4

[4B1 200L03 R0LLØ2 4Bi) [4s1 BDLøi

B1 4B1 [!31

C2

220 RiO

C3

j I

I

j

I

I

I I

47tif

100 -

11)

BBS?

[1B41 -

R8

S.A.T.

+5

74

II II

XTL 10MHZ

V

R6

2.2K

BSYC

[343)

3Oms*

(R3)

I

INIT*

[2441

(5)

74H04

74H04

5V

74

+5V

Q—---(

o_!iik

__L.iQ

__c_i) _D

WB

(10)

(6) (9)

(12

(12

(5

(5)

39KHZ*

(A2)(R3) •.:__.o .-

.,-.

D c S

A L

Cu

C

B L

Cu

74L51 . C

74LS193

88 .-

—0

81

—.,—.-

CLR

041

rt(i3)

+5V

Qc

QAL!L Q8

CD

B

QBJ1I- Qc

CLR CO

>—.---o

(4)

---

-,——.-

1OMHZ*

(183)(342)(343)(343)

_L&L —

_c!L_0

(2)

()

2

2

XCLK

5

BOCUT

[3431

V

1.25MHZ

(isi

)

SCCLK*

(641

INIT*

12441

B

BD4LØ1 [4B1 1481

0

AL0B

I 1

I

I

RDKYBD*

(682)

3

IGRPLY4

[2831

XD4L6*

XDOLØ5* L451

(481

xD

XDPiLø3* 4B1

XD1Lø2* [4B1]

[4Bi XDALØ1 14B1

A

L04

I

1

I

I

I

(4)

IRQ6*

(241)

39KHZ

1421

+5V .

•IL

XDLØ7*

14B1

X04L06

[481

XDALØ2*

[4Bi

5V

j

1

I

:

EET51J

NC-C1G

C90N: .------

/I

‘73

4

NO600/860

CPP’C’ED

KYQ.

NUCLEAR

(1)

PITERFACE

DNA

RI

:Vd4

CONTROLLE/

DATA

DMAR*

(IAI)

DTE

::,:>- o

Q_

LI

S7O-248 w

:cDc a>--- = U)

—w

D

Q

:

‘J c

:

z

REd

LJu

w

_J c, w

XbJ =

W

— ‘,, w

>-

S

I-DO

: —

a ,

— Q — CD)—

ONS

>-

w

w -J

A C (51 >

J r,,

, o CD cD — , Cc r’

,- m

w J *

, ‘C

CD

a’

: -

C*,c

_.J C I. *,-

--1 —fl —: —m —-< -Q--

-. ‘C r’:o C

-C -

0 0— C

vi C DC :

— :

-. CD

-C c ()

cM

‘: -1

-

C

. ...

‘..—.—

C..C - - 2: -1 C-)

C;.)

C.- C’)

-

O•) 7’) CD CD

CD

rn

cm cm CD rn

CD I- cm

-. 2:

DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DATA. ‘— C-’, THIS -C ND MAY NOT BE REPRODUCED, NOR MAY THE INFORMñTION CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF Nu;LEAR DATA, THE PROPRIETARY cm —C-’ C RIGHTS TO THE AFORESAID I[IFORMATION, OF A PATENTABLE OR UN— PATENTABLE NATURE. ARE EXPRESSLY RESERVEDTO NUCLEAR DATA, : C Cs >

— r, c- z r c Js —;: — ; — c .t c --- - -. , - Q I— -1 C) cQ T 7 o— P

j;o— %..1 FJ — 0 C1 0

+ , — C

— CM C, vi C) - p C- —

- .— — — - C-

0

k)

0 0 0 0 0 0 M0 0 x 2 C aC — — C- - C- -C- -C .- — . — .- - l’J CM

‘0

CM —

(‘3

1:’ C,

C,

-.‘ C_C

THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DRTA. AND MM NOT BE REPRODUCED. NOR RAY THE INFORMRTION CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PEVRISSION OF NUCLEAR DATA. THE PROPRIETARY RIGHTS TO THE AFORESAID INFORAArION, OF A PATENTABLE DR UN— PATENTAFCLE NATURE. ARE EXPRESSLY RESERVEDTO NIJCLEAR DATA. > ______2 3 ———- ——----— — A SIGNAL PIN SIGNAL PN SIGNAL P1JSIGNAL P SPARES AAI AA25V ir — = +5V AB t 4B2 E••i XSPARE 2 — PSPARE

GND XSPARE 3 GNC AC I AC2 i XIRQ1 (2A1 ) PSPARE AD I AD2 CDI AEI BDOUTL (3.A4) CEI XIRQ2 (2A1) CE2 4XDOUT (3B4) CFI XRPLY* E7;D— AFI AF2 BRPLYL (2BA) XIRQ3* (2A1) C2 (3A1)

AH AH2 BDINL (3M) CH1 XIRQ4* (2A1) CH2 XDIN* (3B) XSYNC* AJI GND AJ2 BSNCL (3A4) CJI OND CJ2 (3B4) AKI AK2 BTBTL (3M) CKI XAD* (3B1) (2 XI.JTBT* (3B4) BIRQL CLI CL2 XSPARE 4 (12) AL! AL2 (2B4) X8YAD (3s1) 1,7:1H74;8 CM2 XSPARE 5 AM I GND AM2 BIAKIL C281 ) •E•i AND A AN BDIIRL (1A4) BIAKOL (2B4) •E;-;—XIRA1* (2A3) •Ei XSPARE 6 A

API BALTL (NOT USEC) AP2 BBS7L (1B3) CPI XIRA2* (2A3) CP2 XBS7* (1B4)

ARI BREFL (1AA) AR2 ADMOIL (1B1) CR1 XIRA3* (2A3) CR2 XSPARE 7 .:!L BONGOL (1AA) XIRAA* (2A3) XSPARE8 ATI AND AT2 BINITL (204) CTI OND CT2 xINIT* (1AA)

AUI AU2 BDALAL (B4) XADDR* (1AA) XDL\LØA*(4B1)

AVI AV2 BDALØIL (454) CVI +5V CV2 XDAL1* (AB1)

BAI BDCOKH (NOT USED) BA2 +5V DAI XCLK (5B2) DA2 ÷5V

BBI B82 DB I XSPARE 9 —15V

BC, 8C2 GND DC I AGND DC2 AND

OW BD2 001 XDMR1 (1 Al ) DD2 + 5V

BEt BE2 BDALA2L (4B4) DEl XDMR2* (ill) DE2 XDALB2* (4B1) XDMR3* BFI BF2 BDALØ3L(‘B4) DFI (ill) / DF2 XDALB3*(4e1) LJ 8H1 BH2 BDALØIJL(AB4) DHI XDMR4*(1A1) DH2 XOALØA* (481)

GND D2 XDALB5* o_ I3JI DJ2 BDALA5L (484) DJI GND (481) >- G SKI BK2 BDALBbL (4B6) DKI XDATO* (3B1) DK2 XDALBN* (481) Q SLI BL2 BDALB7L (484) DLI XOATIO* (381) DL2 XDALO7* (4B1) DM2 XDALB8 SM I GNU 8M2 BDALB8L (444) M1 GND (441 ) a>- CL ir I- >- BNI XDllG1* XDALB9 (441) BSACKL (144) BDALØ9L(4i) 2.!_L. () .2!:f! AC2,IJ1 w o : w : V) !i AM1 All — (_, c, w BPI BP2 BDAL1BL (444) DPI XDMG2*(143) DP2 XOIL1Ø* (441) GND O—<< x04L11* SRI BEVNTL (NOT USED) R2 BDAL11L (444) DRI xoio (143) (441) 442 +5V o_-—-————4. 5V DS2 XOAL12* p BSI BS2 BDALI2L (44) DSI XDMG4*(143) (441) BC2BJ1 U c w cz c2: J — 842, 8Vi AM1, BT1 •5•_i_ •i:2 XOAL13 (441 BTI GND 8T2 BDAL13 L (444) 6N0 OND +5V O—<<—-— -0 +5V BUI BU2 BDAL14L (444) DUI XTMOUT*(1B4) 0U2 XDAL14* (441) C42, CVi CC2,CJ1 BVI +5V 8V2 BDAL15L (444) — ÷5V XD4.15* (441) +5V +5V bj : O cz ....<< CM1 :o= w .j D42,DV1 OND _____..<< : w - B +5V Q—<< v, aw :i: : >- — DC2,DJ1 - I- a CONN. RCK DM1,DT1 SIGNAL J SIGNAL AND : KBIRø (642) K3Iøl (642) KBIR2(6A2) K8103 (642)

KBIR4 (642) 13 K8Iø5 (642) —f— DC1 R9 KBIR6 (642) ! K9107 (6A2) AGNO O—<< Lri (Nc) (NC) 22 —.. .!! —- (NC) .!.. (NC) 7 KERØ (643) 17 KBB1 (643) S K602 (i63) I8 K843 (643) 002 +15V p+15y ——----—--,.—- K844 (643) 19 K425 (643) o—__<< r L2_ i. DATE 10 8806(643) 20 K807 (643) 02 —‘------ECN —15V < 0—ISv REI S IONS

I LJ: NUCLEAR DATA

ND6OO/6O JA CCNThLILER/ KYbC. Iir:RFLCE N-L 4 DR2N BY: Jp CHECEO 8: r SHEET 7 CF 7 DATE D4N: 8 1277 DPPAD.ED AY:4 37O-2’8)3 3 1 4 r II I n w I > )< >< )< >< >< )< >< >< 1..’ )< )< > >< r- ‘JI —C- -‘ - — — - —. —

— r — — i .r a- r— r r -. C-,. r r r c - cj c,

-t, -t, 0 — —4

, -V V (d L ;)

> :0 m i rJ-’-- m — ---‘----. -V ______-: :‘ E

- .. , C, m !% O t ci) r,, II —-. : Iz

a I! E9àZi:

+ :

4. — Co . -. - -. :

— a

rn C Co I-

Co

Co Co a Corn =

o a Co Co z - a + m (fl_U Co —

CoCo Co a ..— Co a Co a , : a 0 Co a a rJ a :: - 0

Co Co Co Co : : a C Co a Co Co Co Co

Co c’

Co

a Co Co

Co a Ii

o

aa CoCo H :JJ

I c

I-

Co

Co

— =

L,,

Co Co Co Co - Co — Co

PLNiNG EC I ______I - 4 ———2-- 09 1600 428 8.2K T _ (5 4 ) +5V +15V —t —-3-—-C 9 2) R26 2 2K 10is C—----—á) - R41 I (6) 74LS08 BLANK Q —— PLTI NH 24 COL6* BLiNK [1o31 74511 EEK 0 LOTEN [42] 3 6 PLOTF +5V47438(P ZDLY (13, 51 [42] 9602 7474 (43) (12) °-H L____j CEPLD B C 0 +5j (13) LANK Q* (7) Q* 4 CR* • CK L1jCET (15) C0 [B1 3* j PL0TF 74161 CD C (42) [B3IACCLK* CR8 —12V0—--AQBC (13) —154 c- — I COL4(Lb1) C8 27 +5V 13) 12)11) fl .047 1N4728 15K DRB1 H* 1)i FLDr4S* ÷5V [144] (8) _LLDR*S* [143) _- A2) j (1 * [44] PLTINH* 6) (8)]) (10) 7400 lJCOL MR(MS D (A1)(83) (14) ALPHA (81 1(443) [431 +590 45 H I ( , Z507 )L1 MRKMS 0— 1 [411 (81 )(4B4) PLOTF* SEC {4i2j j9 (541) (13) L(3) (B2) [441 R54 iN A 7sø C— 44 CR7 A (9) 46 [42] (12) PLOTF ZS05 43 44 C [44) 2N412 0— )(5) I o [i2] 3 [83] Cli ]± (11) I (3) 42 1 I R33 ;i (13) Zs04 0————— +5V0— (5) luf T 39 4 V MRKMS ____c_L_41 (2) (9 (42) 2 ( )(J( =L’ [42j 0 3258 5 J)I LD A B C D I 2N4124 (9) ZS02 ] 40 3 I CEP 0— 356 15 [4A2] 19 ZTC* CLK (15) 4 33 74161 —a () (Bi 1 (2) 15) 74LS151 (2) CLK (14) CLR A QB QC Qo 0R03 5 (6) r—i (144) RC 25 w :1b (13) 6 (1(14(13j(12 COL4 ALPHA —0ZTC (B2) 74O0 CHCKEN 1411 [BlI (B3) 7 C -- t - ZDLY END 2MHZ* SKIP* (A2)(A3)(A3)(83) (184) (11)r — -i- — —I [344) I-=-- 1144] [B3] 74564 (8) CIIRYF I— •t CHAR0- [3441 , (12)1 74LS3 Q: I- [3431 (11)1 ROW7*Q 413 (B3) 2MHZPr [B2] [341 CHAR*cL (B3)(84) (9) (3)(4)(5)J (6) [3421 —0 CALPLS* ‘C7 ::>- 54000 2MHZ (344) CEPLDA B C D [342] :100 ZTC (5) 13 15) (2) (5) CET [42] 74LS11 0MAF1 0 D Q - 74161 CALMOD 11 [1B3] CLX [342] COL6* s— 8 C 0Q (4)? (8 ZCHA* 6 [42) (4) 18 (442) - : - ADVINH 14 (342) 7474 (1 (14 (13 (12)(11 (5)1 74S74 [342] 74LS32 I — DWELL* +59 L) W I (15) (6) ALPHAO SKIP [143] :D LJQ (3) (Al [B31 (6) (3) (6) COL6* I CK Q LSRU* CK p —NC [14412MHz I 0SF0* (b) )< = (Al ) R0W4 I 0- (11) [42] (3) [1B4] (6) 0 Q I (B2) (42) 0 c — I CB3) RQW2 (4) ROW7* C (12) (B3) (10)1 C Lj LI 0:1(B1)(483)(4B4) I ZCH3* ROW1 (5) 1(1) (13) 6 10 EOT* —,—— (442) — 74161 CHAR 1 74LS08(8) EQS (10) ‘— (14) [343] [811 +59 COL6* LOG A 4Q LI (8) 7402 :D Q LI I COL6* R40 (42) [344] (9) (1) DU1 >-:-- 2.2K LD CLR [421 (12) I C : LI r I- B XTF-b0UT 1/) cLI 0—< 9 CEP CET CLI (1) :c >- — (9) ZS09 (13) 74LS32 8 [4421 11o(2) (2) NK* (9) (7) BLI ZCH2 7 4 (14) (42) (442) ZSØ7 44 P JHHZ 0 [182] (6) (2) (5) 18 ) [442] ‘13 6 1413 SKIP ZS05 43 CD 0— SKIP [341] (B2) 74S74 [442] 5 (5) (6) ‘12 0 SCL* [B31 CFS3 0 0 QD (2(b0) ZSB4 0—’--—— 42 (Bi) (11) Q [3B21 (4) (Nc) 0—C OK (8) 4 F—-.-] ZON Q4(5) (5) QC [4421 Os * O C (42) 741 96 [182] SF1 FS2 f!O4(8 C---———---—81 t ZSØ3 OMAEN 3 (3) CNT MR (1B3) 74LS74 (42) [3S2] ci__L. C çI B 31 114 [4421 (10 0 LF* [3B21 EQ 0 DMAGO* CFS1 0 z1 40 r ZONS Q (6) 74161 - LDAR* SKIP* cj (13) (442) ZS2 0———--—— (2) (463)(4B4) Q( 4 CK [342] (14) CFS 3 [4421 46 2 [] CR (8) [B21 42 (42) 0— .i__q A 134 6331 p ZINH[3B4] [3B2] (A2)(433)(4B4) 3 (B2) (1) SF1* (41) 6 [1 p* +59 111 LO E p (1) CH43 (43) SEC 1/2 2 [3421 CETCLRCL (9) CEP (403) -- B4] I E:z R31 J(7) (1o)2) 1 25 (10) F 470K DMAF2 0—( CALPLS* b28 8—25—77 ZS08 2N4126 [1B4] 74148 CHIbR[3A2] [44]EOS’ 0 I (10) 0 [344] EON DATE [442] DMAINH*0-C SF10 ZCH0 ZS06 [3n2] F——— 4 1 (43) [1d2] 5321 I (442) REV S OHS [442) Cl 0 CHCKEN 74LS51 I (442) luf [43] (lo)’ 1•1HZ [ 144] DATA ALPHA ALPHA (b) K* *Th [B1] [81 —040 CL E ZZ’-Lr1’.IE V- +5V (41 ) LOGICCIACRAM (383) 74S; DISPLAYll4TERFACEASSEi-SIf 2DLY ) - (IbA) I (11 [42] 10141ZQ———-—-b—-——— INIJ-D)IB-A1 CHAR* [182] [342] .— -- iHiSJEET2F6 JAIEDPII.IN:2-18_77 APP1-C:E0 B’:fj* 113-02hS7O-2

- — i_’_•__ ;I [ 2 ——---—- 1 ______r______C ZC-CIhOLS : Gdd LL-L— N C LQ 9 E !ES —- :Ac H! : tZut) . 1DJ [LJ j______onogx [] — LdGNa ( J(ç) v-;c-UN) I I(st> [cuLl A1c]SSV 3DV.i 31N1 AV1dSIG (1 Ic isja vVIQ DIJO1 0•J) [t’J) L r .d [cut) (zu] L3 (cut) (SL) CL) t:::: LøOuOI vJ_vG uvmnN øøJv (EL) N1D’dI c:’—d zcsiui 0 : [c L (9) tD [tilti [LJ * zHW uzu ____1 !Ti—i--5-.—-oøOOI t) --5------OLØW Ctc3) øZOS —i--i-i-j 9 h-?-i_i.-.--o [cut] (zuu)(cu) U.) øWJdS At7 [cHL) 590 S ___J Lø3 cuauoi LL)u 0— (-?3-—---o —0 —ThTI--j CS) z (;Ty—° (OL) (zuu)(cu) S6LS1L 8S•1t7L t7t1j [1] ]1S tD3 zuDu s— AS+ DO D cj) c: Løci1S CL) 1 [t71 --j——-O (z)(cu) 3 99 Løads Ac: cuDu 0— —• ZøD j(tiL) i: CL) Z)[ [8) LSLS1tL TiS° [l11 L) (Ls) ti3 (LL) ZøGdS (OL) [tie) [ciL] ØOVOI Cs) (cuz) [ 3j] (uu) [tifl] (6)1 (La) L O øas I—Q - CL øGdS O——--j- [cCL] [cx] c Cl [zu] aOI °\jD-ct —0 a uci [cut] (fl 1N MdS [ tut) A5+ [xxi] (zxL) NølUax 1INI atnai [teL] 0— Lølxax -- (zuu) Czuu) [txL] [Lix] [zu] (ru) (cu) L] zxixox UHD ui 1/S Cuxz) (6) [ LeL] [Let] [uxu] NSdD y— uxiuax — m ---i- cøixox z : ub u 50W (uuz) ( tLis) [ teL] z —4- [xx) 0— OL at I (0 L) ots LiD zNJx LU I (Nu) ( : r m IN [Let) -< -I : (6L) AOz — uxiuax [ Let] seiv ax lDr - AS+ [ Let] t!flS Cxxx) Lvi] 901 vax [zu] N3xi’Ja ivax J__p(OS1PLCZ) * : [tat) C o9 (1) (xxx) cxx) tut] 9N teixax [xxx] dflSOdAQ— (is as LT° 03 e —0 80w (cxx) () (cL) [x) (9) L3 [xx] SNNN0— Ox oexixax AsL Cot) ox N1J 1/S _J-_--Z-) iv 903x L7LLS1LiL (Li) NI JNxNiD —0(5) [LxL] d]N (cu)9N]u D— CL) [xxx] — bc ac —o6xixax (L) 2 60N CL) £L () i- [Lvi] vO xx (8) —0Cx) (cx)603x 0— 56 LS1LiL (xx t) Liz ax pøiixax CL) -T-5: Cii) z u _j 603v (cut) [Lvi] I-c un cx 5) xv —0 (L) (cx)NLx Q— d8SiLiL (d) [xxx] N]HINIO— Cx) (9) DO 3 (9) xx cx —0 OLW (cx)LLDC CSL) [xx) °-•-—--i. Cd) d3 ‘no (5) (x L) Gb a (A) —OOLDx *aO (Lit) L N [xxx) d3 [Lvi] (Liz) —0 LW 000L eoivax (Li) [xx) CLxx) (at) [ txj 3Li LD (tux) 6Olvax Act— (Ti) CdxL) C) 0 (xx) [tvt] ¶ (Lii) (6 ) NLIHD 0 ixax ml [LxL]

Ltixax aNgu

ASL+p I (xz) CL) 03 [Lieu] (xeu)(cxx) AS+ Lx --j—--—-0xtw CcxLi)(xxx) V L3 [Lix) Cxxx)CuxL) (Li) hS-+ Lv ---—-—oxL3x (cxx) Cue) Ccx)zLDx [Liex] Ccxx) Cxx) xx b9 ax xx dLN [xx] (Li) (sL) tiL) (dt)xtDx o— [xx) CIC) NflNd as as eL1NI (d) (xL) dL) [ LxL] Ccv)xiDv 0— LitLS1Lt dexsluz [Lieu] [tiC] x tivax aLu cx xtw avoi Ox I txt] Cx) --- 06 Cceu) d3 68 [] c tivax CcL) Lte bc ac cx xLJx uxnxui CL) __ii— [ Lvi] Cxvx) [xxx] Cxex)CcxL) ti tixax (xxx) JA’duD Liz 0 [xvi ax SW I (i-i--i—-— [ Lxii Cdxx) CL8u) Cu) Cxtlt) h--y---—-° Li] [Pt] Stixax Sd1vD SitS 0 cxxx I (EEflC0L0L) xx SLD HNICI - LiD

(6) • * HNIAC Ccvs)(xvx) wiois cOavS Cxe)(cx) (xxt) C ) CLiZ) Ccvx) - [xv] xxcvs * 001 cxx ±ON3tid ?xif xeaxs C I __

ia 31DflN O1G3A3S3 A1SS3JdX3 3H 3Hfl1tN ]1V!N3!Vd —Nfl UO ]11N1 JO NOIJ’dWè1ONI OIS3NOd 3H1. 01 S1HOl Ad113èidOd 3H1 ‘11C) 31DflN O NOISSI3d N]1!IUM A ld]DX] U3NNW AN1 Ni asn WOJ13N3H1 31Ai]O HO NI]3H1 ON G3NJNO3 NOI1Jè1QdNt ]H! A NON Th]DflGOid3è 3 ION )JW Lu •ia ]1DflN JO A13dOUd 3AISfl1DX] 3HI SI 1NWflDQG SIHI

Lu •__L’)

-.< . D — r’J — —‘ r- — c_) t .— .- — — — .-- .- .- 0 L)

Lj ‘ __J —

:D 0 cz)__I () __J w

0 — -J Q — Q 0 ri — O

.— w 0

Q

& ‘- co Li.’ ‘- .— — -.-----.-..- —,-- ; Ef l;7

; ,..‘ .- :E

, ‘c o 0

* - - U.’ 0 ,r.’ LLi1LL \._JI

. U.’ LD Ui-: — 7 v____ (.‘ (. U.’n.o’

g: g

— :1 U’ i::— ,. • u. .‘ : U. : + 7 •1 o LI) .‘ r’J — 0 0 co co h :: co gLlI

Lj• ‘ r—.— :€-‘ ;:(-•.J

— (_, C) () ..J .J .- _J _J

— co c/c ‘ cr 8cr co co co cor-co co ;i r 1 :i: 1 co ‘ 0 I : co Ut

* cj.’ r r r r . ca co — a. co v) 0

— (‘J — c/c co co ca co r’i c..c O IEIi

co co co co c.’c D 0 & i - a. h th

ccI.’0 J co —C ; -C ?;

::coco : 0 ; Hi :EJ j L D I 1

. cx co 0

;:: —: JE -l

— cr - IC -. --- n ‘1 Pt >

-o

— -

— a C-

a u,

a a

‘J1 a

a

. a

a

II T Id.IL;TJ;1

, a Q_

r

— a m

-

p1

L p1

THIS DOCUMENT IS THE EXCLUSIVE PROPERTY OF NUCLEAR DATIX. AND MAY NOT BE REPRODUCED NOR MAY THE INFORiATON CONTAINED THEREIN OR DERIVABLE THEREFROM BE USED IN ANY MANNER, EXCEPT BY WRITTEN PERMISSION OF NUCLEAR DATA. THE PROPRIETARY RIGHTS TO THE AFORESAID INFORMATION. OF A PATENTABLE OR UN— PATENTABLE NATURE. ARE EXPRESSLY RESERVEDTO NUCLEAR DATA. > I 2 I 3 I 4

PN SIGNAL PIN SIGNAL P1 N SK3NAL PIN SIGNAL L AAI AA2 5V T__CAl CA2 5V GN 0 — GN 0 ADI AD2 iCDI xIRQ1* [1041 CD2 -i- ______XIRQ2* 1] XDDUT* [102] :i- CFI XIRQ3 [104] CF2 XRPLY* [104] I______XIRO4*04] XSYNC* [102) GND -- ..!_! GND !_ [1 4 I ALl AL2 CLI XBY0D [1B’4 CL2 A --i GND - ON 0 A x’Ri [1A2) XIRA2* [1021 XBS7* [102] .L XIRO3* .c___ [1021 ASI 2!_ XIRO4* [102] i: OND :E ONO E!: XINIT* [1071 AUI AU2 XODDR* [13) XD0LO* [181] XDOLO1* [181) -i— +5V 5v YE -i v ..c LK [ 181 1 Li p__ -15V GND .E!_ OND ONOLOG GND P2.

1 1 5 x DMR [ 1 04 1 PP + V !!_ --- XDMR2* [104] XQOLO2* [11 XOMR3* [iooJ XDRLO3* [181] .fL Pf__ . >< Q XDMR4* XDOLO4* a:LJ .!:!_ 2tL [lool [11 BJI GND OJ2 Dii OND DJ2 XDOLØ5* [181] ! i.ii --i-i DK2 XDOLO6* [181] i:- 91: XDOLO7* [1B1] =>- G o_z t• .-.:. BMI OND 6M2 DM1 OND DM2 x00L88* [1011 o P!_ XDF1G1* [102) PN? XDRLO9* [1011 C !.!_ . !_ XDMG2 [102] XD0L1ø [loll !_ XDMC3* [102] XDOL11*[1A1] !:!_ XDM54* [102] XDRL12* [1011 GND —L)OW OND XDOL13* [101 1 PI!_ :D •wzzro XTMOUT [2B2] QU2 XDOL1O* [101] Y!_ +5V .2Y! +5V XDOL15* [loll c c J — LU J) W _T 00 CONN. SIGNAL SIGNAL : Z .. c: _j Q>--- ‘z GND XOUT [502) :: , : =ww - B OND OND .--— 3 YOUT [502] 6 OND —:•— OND :i: BLANK [2031 5. OND Is GND :: I7 20 9 22 - • . - -— PLOTEN [203) II 24 SEEK [204] :: COMPLT[2031 13 OND 26

ECH DATE RE’JISCS rcr —- NUCLEAR DATA - - LOGICDIAGRAM DISPLAYINTERFACEASSEM]3LY ND-D8-A

DOTE ETF6 BY: S7O-L,iJ-OL I’2ii /7 2PPR’DE) I 2 3 c

A

B 4 3 2 1 NOTES: - — — - fC5 1 2A X ALL ALL ALL I C PIN PIN PIN CAPACITORS DIODES RESiSTORS VO’ DIP, DIP, DIP TAFS ARE PIN P1 PiN ARE EXCEPT 0964 ARE (8) (7) (12) 1MW, pf DUO: OND OR GIlD: ‘TS EQUIVALENT, EXCEPT ---—— ±5%, ----.- LO PIN PIN TED EXCEPT (16)

A 1

(24) : I NOTED V EXCEPT AS +5V NOTED. AS NOTED. 5 - - THE

>- C — - FOLLOWINC I TRENS1STOR RIjBONCBLE CONNECTOR 1. INTECkVIED C i CO IN DSIGNATtOJ CTII c SYMBOLS/NOTVTIONS DESIGNAT t.iRLUIT ION BPOKH’( GND< NC< NC< RE NC< (P1) . SAT RC-3 RC-7 RC-4 RC-I RC—9 USED — — FEMALE

----.-. PRECISION SELECT - ON /8N, L COMI•ION THE E ±1% NC D AMP AT DIDGRA1 TiEAL RESISTORS TEST PIN

2 ------FILM DND/OR 100PPM PRINTED

—*-- —RI— .i CIRCUIT - -

- - MALE GERMANIUM SELENIU1 ZENER TUNNEL SILICON BOERD A.’P DIODE DIODE SSEMBLY. DIODE DIODE PIN DIODE ------

1 CONNECTOR flDC TZONE PIN SHEET NUMBER — NAME LOCATION -- SIGNAL 5IQNSL rUIVBLR p NDME LOADDRiIGLOCATiO4 .C. (1 -.------rYPE )

3

I35 I.C. 7ARS\ r—I.C. ON OR P.C. LOCATION p I AD. I 273 ‘ --- CDNNECTCR ;—--;.--—-..,. ---CClu:ECTCR ‘ I.C. (2)1 q E TYPE PIN

1—- P:’i P C ONP.C.BD. ( BOARD - S2b-O1 HA , —--.-- (ND—PMG—A) DATE DPE,.?4 +5V DRAM: RI: POWER 11/7/77

‘4

4 MONIR LOGIC PO.ED ?iUCLE4 DIAGRAM & LINECLOCK ITA SHLET ECN REV

--- I S I OFt DflE ONS

A

B