Coding Theory: Tutorial & Survey
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention arXiv:0704.2857v1 [cs.IT] 22 Apr 2007 of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50]. -
Modern Coding Theory: the Statistical Mechanics and Computer Science Point of View
Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View Andrea Montanari1 and R¨udiger Urbanke2 ∗ 1Stanford University, [email protected], 2EPFL, ruediger.urbanke@epfl.ch February 12, 2007 Abstract These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on ‘Complex Systems’ in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as ‘large graphical models’. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field. 1 Introduction and Outline The last few years have witnessed an impressive convergence of interests between disciplines which are a priori well separated: coding and information theory, statistical inference, statistical mechanics (in particular, mean field disordered systems), as well as theoretical computer science. The underlying reason for this convergence is the importance of probabilistic models and/or probabilistic techniques in each of these domains. This has long been obvious in information theory [53], statistical mechanics [10], and statistical inference [45]. In the last few years it has also become apparent in coding theory and theoretical computer science. In the first case, the invention of Turbo codes [7] and the re-invention of Low-Density Parity-Check (LDPC) codes [30, 28] has motivated the use of random constructions for coding information in robust/compact ways [50]. -
The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001
The packing problem in statistics, coding theory and finite projective spaces: update 2001 J.W.P. Hirschfeld School of Mathematical Sciences University of Sussex Brighton BN1 9QH United Kingdom http://www.maths.sussex.ac.uk/Staff/JWPH [email protected] L. Storme Department of Pure Mathematics Krijgslaan 281 Ghent University B-9000 Gent Belgium http://cage.rug.ac.be/ ls ∼ [email protected] Abstract This article updates the authors’ 1998 survey [133] on the same theme that was written for the Bose Memorial Conference (Colorado, June 7-11, 1995). That article contained the principal results on the packing problem, up to 1995. Since then, considerable progress has been made on different kinds of subconfigurations. 1 Introduction 1.1 The packing problem The packing problem in statistics, coding theory and finite projective spaces regards the deter- mination of the maximal or minimal sizes of given subconfigurations of finite projective spaces. This problem is not only interesting from a geometrical point of view; it also arises when coding-theoretical problems and problems from the design of experiments are translated into equivalent geometrical problems. The geometrical interest in the packing problem and the links with problems investigated in other research fields have given this problem a central place in Galois geometries, that is, the study of finite projective spaces. In 1983, a historical survey on the packing problem was written by the first author [126] for the 9th British Combinatorial Conference. A new survey article stating the principal results up to 1995 was written by the authors for the Bose Memorial Conference [133]. -
Arxiv:1111.6055V1 [Math.CO] 25 Nov 2011 2 Definitions
Adinkras for Mathematicians Yan X Zhang Massachusetts Institute of Technology November 28, 2011 Abstract Adinkras are graphical tools created for the study of representations in supersym- metry. Besides having inherent interest for physicists, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. We use a more mathematically natural language to survey these topics, suggest new definitions, and present original results. 1 Introduction In a series of papers starting with [8], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller) have built and extended the ma- chinery of adinkras. Following the spirit of Feyman diagrams, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry alge- bras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. We redevelop the foundations in a self-contained manner in Sections 2 and 4, using different definitions and constructions that we consider to be more mathematically natural for our purposes. Using our new setup, we prove some original results and make new interpretations in Sections 5 and 6. We wish that these purely combinatorial discussions will equip the readers with a mental model that allows them to appreciate (or to solve!) the original representation-theoretic problems in the physics literature. We return to these problems in Section 7 and reconsider some of the foundational questions of the theory. -
Prahladh Harsha
Prahladh Harsha Toyota Technological Institute, Chicago phone : +1-773-834-2549 University Press Building fax : +1-773-834-9881 1427 East 60th Street, Second Floor Chicago, IL 60637 email : [email protected] http://ttic.uchicago.edu/∼prahladh Research Interests Computational Complexity, Probabilistically Checkable Proofs (PCPs), Information Theory, Prop- erty Testing, Proof Complexity, Communication Complexity. Education • Doctor of Philosophy (PhD) Computer Science, Massachusetts Institute of Technology, 2004 Research Advisor : Professor Madhu Sudan PhD Thesis: Robust PCPs of Proximity and Shorter PCPs • Master of Science (SM) Computer Science, Massachusetts Institute of Technology, 2000 • Bachelor of Technology (BTech) Computer Science and Engineering, Indian Institute of Technology, Madras, 1998 Work Experience • Toyota Technological Institute, Chicago September 2004 – Present Research Assistant Professor • Technion, Israel Institute of Technology, Haifa February 2007 – May 2007 Visiting Scientist • Microsoft Research, Silicon Valley January 2005 – September 2005 Postdoctoral Researcher Honours and Awards • Summer Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scientific Research, Ban- galore. • Rajiv Gandhi Science Talent Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scien- tific Research, Bangalore. • Award Winner in the Indian National Mathematical Olympiad (INMO) 1993, National Board of Higher Mathematics (NBHM). • National Board of Higher Mathematics (NBHM) Nurture Program award 1995-1998. The Nurture program 1995-1998, coordinated by Prof. Alladi Sitaram, Indian Statistical Institute, Bangalore involves various topics in higher mathematics. 1 • Ranked 7th in the All India Joint Entrance Examination (JEE) for admission into the Indian Institutes of Technology (among the 100,000 candidates who appeared for the examination). • Papers invited to special issues – “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding” (with Eli Ben- Sasson, Oded Goldreich, Madhu Sudan, and Salil Vadhan). -
The Use of Coding Theory in Computational Complexity 1 Introduction
The Use of Co ding Theory in Computational Complexity Joan Feigenbaum ATT Bell Lab oratories Murray Hill NJ USA jfresearchattcom Abstract The interplay of co ding theory and computational complexity theory is a rich source of results and problems This article surveys three of the ma jor themes in this area the use of co des to improve algorithmic eciency the theory of program testing and correcting which is a complexity theoretic analogue of error detection and correction the use of co des to obtain characterizations of traditional complexity classes such as NP and PSPACE these new characterizations are in turn used to show that certain combinatorial optimization problems are as hard to approximate closely as they are to solve exactly Intro duction Complexity theory is the study of ecient computation Faced with a computational problem that can b e mo delled formally a complexity theorist seeks rst to nd a solution that is provably ecient and if such a solution is not found to prove that none exists Co ding theory which provides techniques for robust representation of information is valuable b oth in designing ecient solutions and in proving that ecient solutions do not exist This article surveys the use of co des in complexity theory The improved upp er b ounds obtained with co ding techniques include b ounds on the numb er of random bits used by probabilistic algo rithms and the communication complexity of cryptographic proto cols In these constructions co des are used to design small sample spaces that approximate the b ehavior -
Algorithmic Coding Theory ¡
ALGORITHMIC CODING THEORY Atri Rudra State University of New York at Buffalo 1 Introduction Error-correcting codes (or just codes) are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to judiciously introduce redundancy so that the original information can be recovered when parts of the (redundant) data have been corrupted. Perhaps the most natural and common application of error correcting codes is for communication. For example, when packets are transmitted over the Internet, some of the packets get corrupted or dropped. To deal with this, multiple layers of the TCP/IP stack use a form of error correction called CRC Checksum [Pe- terson and Davis, 1996]. Codes are used when transmitting data over the telephone line or via cell phones. They are also used in deep space communication and in satellite broadcast. Codes also have applications in areas not directly related to communication. For example, codes are used heavily in data storage. CDs and DVDs can work even in the presence of scratches precisely because they use codes. Codes are used in Redundant Array of Inexpensive Disks (RAID) [Chen et al., 1994] and error correcting memory [Chen and Hsiao, 1984]. Codes are also deployed in other applications such as paper bar codes, for example, the bar ¡ To appear as a book chapter in the CRC Handbook on Algorithms and Complexity Theory edited by M. Atallah and M. Blanton. Please send your comments to [email protected] 1 code used by UPS called MaxiCode [Chandler et al., 1989]. -
An Introduction to Algorithmic Coding Theory
An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories 1 Part 1: Codes 1-1 A puzzle What do the following problems have in common? 2 Problem 1: Information Transmission G W D A S U N C L R V MESSAGE J K E MASSAGE ?? F T X M I H Z B Y 3 Problem 2: Football Pool Problem Bayern M¨unchen : 1. FC Kaiserslautern 0 Homburg : Hannover 96 1 1860 M¨unchen : FC Karlsruhe 2 1. FC K¨oln : Hertha BSC 0 Wolfsburg : Stuttgart 0 Bremen : Unterhaching 2 Frankfurt : Rostock 0 Bielefeld : Duisburg 1 Feiburg : Schalke 04 2 4 Problem 3: In-Memory Database Systems Database Corrupted! User memory malloc malloc malloc malloc Code memory 5 Problem 4: Bulk Data Distribution 6 What do they have in common? They all can be solved using (algorithmic) coding theory 7 Basic Idea of Coding Adding redundancy to be able to correct! MESSAGE MESSAGE MESSAGE MASSAGE Objectives: • Add as little redundancy as possible; • correct as many errors as possible. 8 Codes A code of block-length n over the alphabet GF (q) is a set of vectors in GF (q)n. If the set forms a vector space over GF (q), then the code is called linear. [n, k]q-code 9 Encoding Problem ? ? ? source ? ? ? Codewords Efficiency! 10 Linear Codes: Generator Matrix Generator matrix source codeword k n k x n O(n2) 11 Linear Codes: Parity Check Matrix 0 Parity check matrix codeword O(n2) after O(n3) preprocessing. 12 The Decoding Problem: Maximum Likelihood Decoding abcd 7→ abcd | abcd | abcd Received: a x c d | a b z d | abcd. -
Voting Rules As Error-Correcting Codes ∗ Ariel D
Artificial Intelligence 231 (2016) 1–16 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint ✩ Voting rules as error-correcting codes ∗ Ariel D. Procaccia, Nisarg Shah , Yair Zick Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA a r t i c l e i n f o a b s t r a c t Article history: We present the first model of optimal voting under adversarial noise. From this viewpoint, Received 21 January 2015 voting rules are seen as error-correcting codes: their goal is to correct errors in the input Received in revised form 13 October 2015 rankings and recover a ranking that is close to the ground truth. We derive worst-case Accepted 20 October 2015 bounds on the relation between the average accuracy of the input votes, and the accuracy Available online 27 October 2015 of the output ranking. Empirical results from real data show that our approach produces Keywords: significantly more accurate rankings than alternative approaches. © Social choice 2015 Elsevier B.V. All rights reserved. Voting Ground truth Adversarial noise Error-correcting codes 1. Introduction Social choice theory develops and analyzes methods for aggregating the opinions of individuals into a collective decision. The prevalent approach is motivated by situations in which opinions are subjective, such as political elections, and focuses on the design of voting rules that satisfy normative properties [1]. An alternative approach, which was proposed by the marquis de Condorcet in the 18th Century, had confounded schol- ars for centuries (due to Condorcet’s ambiguous writing) until it was finally elucidated by Young [34]. -
Adinkras for Mathematicians
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 366, Number 6, June 2014, Pages 3325–3355 S 0002-9947(2014)06031-5 Article electronically published on February 6, 2014 ADINKRAS FOR MATHEMATICIANS YAN X. ZHANG Abstract. Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown non-trivial connections with coding the- ory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computa- tional nature. We survey these topics for a mathematical audience, make new connections to other areas (homological algebra and poset theory), and solve some of these said problems, including the enumeration of all hyper- cube adinkras up through dimension 5 and the enumeration of odd dashings of adinkras for any dimension. 1. Introduction In a series of papers starting with [11], different subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, H¨ubsch, Iga, Landweber, Miller) have built and extended the machinery of adinkras. Following the ubiquitous spirit of visual diagrams in physics, adinkras are combinatorial objects that encode information about the representation theory of supersymmetry algebras. Adinkras have many intricate links with other fields such as graph theory, Clifford theory, and coding theory. Each of these connections provide many problems that can be compactly communicated to a (non-specialist) mathematician. This paper is a humble attempt to bridge the language gap and generate communication. In short, adinkras are chromotopologies (a class of edge-colored bipartite graphs) with two additional structures, a dashing condition on the edges and a ranking condition on the vertices. -
Group Algebra and Coding Theory
Group algebras and Coding Theory Marinˆes Guerreiro ∗† September 7, 2015 Abstract Group algebras have been used in the context of Coding Theory since the beginning of the latter, but not in its full power. The work of Ferraz and Polcino Milies entitled Idempotents in group algebras and minimal abelian codes (Finite Fields and their Applications, 13, (2007) 382-393) gave origin to many thesis and papers linking these two subjects. In these works, the techniques of group algebras are mainly brought into play for the computing of the idempotents that generate the minimal codes and the minimum weight of such codes. In this paper I summarize the main results of the work done by doctorate students and research partners of Polcino Milies and Ferraz. Keywords: idempotents, group algebra, coding theory. Dedicated to Prof. C´esar Polcino Milies on the occasion of his seventieth birthday. arXiv:1412.8042v2 [math.RA] 4 Sep 2015 1 Introduction The origins of Information Theory and Error Correcting Codes Theory are in the papers by Shannon [64] and Hamming [35], where they settled the theoretical foundations for such theories. ∗M. Guerreiro is with Departamento de Matem´atica, Universidade Federal de Vi¸cosa, CEP 36570-000 - Vi¸cosa-MG (Brasil), supported by CAPES, PROCAD 915/2010 and FAPEMIG, APQ CEX 00438-08 and PCE-00151-12(Brazil). E-mail: [email protected]. †This work was presented at Groups, Rings and Group Rings 2014 on the occasion of the 70th Birthday of C´esar Polcino Milies, Ubatuba-SP (Brasil) 21-26 July, 2014. 1 For a non empty finite set A, called alphabet, a code C of length n is n simply a proper subset of A and an n-tuple (a0, a1,...,an−1) ∈ C is called a word of the code C. -
Professor Shang-Hua Teng
Professor Shang-Hua Teng Department of Computer Science, University of Southern California 2054 N. New Hampshire Ave 941 Bloom Walk, SAL 300, Los Angeles, CA 90089 Los Angeles, CA 90027 (213) 440-4498, [email protected] (617) 440-4281 EMPLOYMENT: Seeley G. Mudd Professor and Chair (Computer Science) USC (Fall 2009 – ) Professor (Computer Science) Boston University (2002 – 2009) Research Affiliate Professor (Mathematics) MIT (1999 – Present) Visiting Research Scientist Microsoft Research Asia and New England (2004 – Present) Senior Research Scientist Akamai (1997 – Present) Visiting Professor (Computer Science) Tsinghua University (2004 – 2008) Professor (Computer Science)[Associate Professor before 1999] UIUC (2000 – 2002) Research Scientist IBM Almaden Research Center (1997 – 1999) Assistant Professor (Computer Science) Univ. of Minnesota (1994 – 1997) Research Scientist Intel Corporation (Summer 1994, 1995) Instructor (Mathematics) MIT (1992 – 1994) Computer Scientist NASA Ames Research Center (Summer 1993) Research Scientist Xerox Palo Alto Research Center (1991 – 1992) EDUCATION: Ph.D. (Computer Science) Carnegie Mellon University (1991) Thesis: “A Unified Geometric Approach to Graph Partitioning.” Advisor: Gary Lee Miller M.S. (Computer Science) University of Southern California (1988) Thesis: “Security, Verifiablity, and Universality in Distributed Computing”. Advised by Leonard Adleman and Ming-Deh Huang B.S. (Computer Science) & B.A. (Electrical Engineering) Shanghai Jiao-Tong University, China (1985) Thesis: “Efficient Methods for Implementing Logic Programs.” Advisor: Yixing Hou HONORS/AWARDS: 2011 ACM STOC Best Paper 2009 ACM Fellow, 2009 2009 Fulkerson Prize (American Mathematical Society/Mathematical Programming Society) 2008 G¨odel Prize (ACM-EATCS). 2003 The NSF’s 2003 Budget Request to Congress listed the Smoothed Analysis of Spielman-Teng as one of three most significant accomplishments funded by its computer science division.