Responses to Elevated CO2 Exposure in a Freshwater Mussel, Fusconaia Flava

Total Page:16

File Type:pdf, Size:1020Kb

Responses to Elevated CO2 Exposure in a Freshwater Mussel, Fusconaia Flava J Comp Physiol B (2017) 187:87–101 DOI 10.1007/s00360-016-1023-z ORIGINAL PAPER Responses to elevated CO2 exposure in a freshwater mussel, Fusconaia flava Jennifer D. Jeffrey1 · Kelly D. Hannan1 · Caleb T. Hasler1 · Cory D. Suski1 Received: 7 April 2016 / Revised: 29 June 2016 / Accepted: 19 July 2016 / Published online: 29 July 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Freshwater mussels are some of the most reduce their investment in non-essential processes such as imperiled species in North America and are particularly shell growth. susceptible to environmental change. One environmen- tal disturbance that mussels may encounter that remains Keywords Chitin synthase · Heat shock protein 70 · understudied is an increase in the partial pressure of CO2 Metabolic rate · Bivalve (pCO2). The present study quantified the impacts of acute (6 h) and chronic (up to 32 days) exposures to elevated pCO2 on genes associated with shell formation (chitin syn- Introduction thase; cs) and the stress response (heat shock protein 70; hsp70) in Fusconaia flava. Oxygen consumption (MO2) Freshwater mussels have their highest abundance and was also assessed over the chronic CO2 exposure period. diversity in North America, and provide many important Although mussels exhibited an increase in cs following ecological functions (Williams et al. 1993; Bogan 2008). an acute exposure to elevated pCO2, long-term exposure For example, freshwater mussels filter large volumes of resulted in a decrease in cs mRNA abundance, suggest- water daily, remove bacteria and particles from the water ing that mussels may invest less in shell formation during column, and generate nutrient-rich areas (Vaughn and chronic exposure to elevated pCO2. In response to an acute Hakenkamp 2001; Hauer and Lamberti 2007). In addi- elevation in pCO2, mussels increased hsp70 mRNA abun- tion, freshwater mussels provide an important resource as dance in mantle and adductor muscle and a similar increase food for other aquatic and terrestrial animals (Vaughn and was observed in the gill and adductor muscle in response to Hakenkamp 2001; Hauer and Lamberti 2007). Notably, a chronic elevation in pCO2. A chronic elevation in pCO2 freshwater mussel populations are on the decline, in both also increased mussel MO2. This overall increase in hsp70 species richness and biomass (Williams et al. 1993; Lyd- mRNA levels and MO2 in F. flava indicates that exposure eard et al. 2004; Regnier et al. 2009). Alterations in flow to elevated pCO2 initiates activation of the general stress regimes, land-use changes, invasive species such as zebra response and an increased energy demand. Together, the mussels, and climate change are all thought to have contrib- results of the present study suggest that freshwater mussels uted to these declines (Strayer et al. 2004; Vaughn 2010). respond to elevated pCO2 by increasing processes neces- With only a small percentage of stable freshwater mussel sary to ‘deal with’ the stressor and, over the long-term, may populations remaining (Williams et al. 1993) and continued degradation of freshwater ecosystems, there is an increased need to understand the vulnerabilities of these animals to Communicated by H.V. Carey. environmental stressors, and the mechanisms underlying * Jennifer D. Jeffrey their physiological responses to these stressors (e.g., Jeffrey [email protected] et al. 2015). One environmental stressor that is currently understudied 1 Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, 1102 in the freshwater environment is the impact of elevations in South Goodwin Avenue, Urbana, IL 61801, USA the partial pressure of carbon dioxide (pCO2). In the context 1 3 88 J Comp Physiol B (2017) 187:87–101 of climate change and rising atmospheric CO2, the impact 1983). The shell is comprised of a mineral phase (95–99 % of ocean acidification (i.e., elevated pCO2) on marine cal- predominantly calcium carbonate; CaCO3) and an organic cifying organisms has been investigated to a large extent matrix (1–5 %). Chitin is an insoluble polysaccharide that (reviewed by Fabry et al. 2008; Gazeau et al. 2013); how- forms the highly structured organic framework of mol- ever, virtually northing is known about the responses of lusc shells within which CaCO3 minerals are deposited freshwater bivalves to increased pCO2 (Hasler et al. 2016). (Weiner et al. 1984; Levi-Kalisman et al. 2001; Weiss and Upon entering freshwater, CO2 results in a decrease in water Schonitzer 2006). The enzymes involved in chitin synthesis pH due to the production of carbonic acid (H2CO3), lead- are important not only for mechanical strength and tough- ing to the release of H+ and, thus, the weak acidification of ness of the shell, but also for coordination of mineraliza- water. Levels of freshwater pCO2 can vary for a variety of tion processes and shell formation (Schonitzer and Weiss reasons including, terrestrial productivity, precipitation, and 2007). Chitin synthase (CS) is a key enzyme involved in local geology (Cole et al. 1994; Maberly 1996; Butman and the synthesis of chitin (Fang et al. 2011), and inhibition of Raymond 2011), resulting in CO2 levels that can fluctuate CS during early development has been shown to negatively both seasonally and daily, and that can exceed atmospheric affect rates of shell development, solubility of the shell, and levels (i.e., water bodies can be supersaturated with CO2). survival in Mytilus galloprovincialis larvae (Schonitzer and River environments can thus experience a wide range of Weiss 2007). Furthermore, changes in the mRNA abun- pCO2 over the course of a year (from less than 100 to over dance of cs occurred in mantle of adult Laternula elliptica, 15,000 µatm), with higher values being observed in warmer, a marine bivalve, in response to changes in environmen- dryer periods (Cole and Caraco 2001). Although less well tal pCO2 (and thus pH) (Cummings et al. 2011). Due to understood than for the marine environment, freshwater its importance in the biological control of shell formation pCO2 may increase as a result of increased atmospheric and evidence of its regulation in response to situations of CO2, greater terrestrial primary productivity, increased pre- ocean acidification, cs provides a useful target to assess the cipitation, and longer periods of dry conditions—although impact of environmental stressors, such as elevated pCO2, the magnitude of change is not known (Phillips et al. 2015; on shell formation in adult freshwater mussels. Hasler et al. 2016; Perga et al. 2016). Levels of freshwa- The impacts of elevated pCO2 on other cellular func- ter CO2 can also be intentionally elevated in the context tions, such as mediators of cellular stress, have also been of generating non-physical barriers to deter the movement investigated to some extent in marine bivalves (e.g., Cum- of invasive fishes (Noatch and Suski 2012). The form that mings et al. 2011). Heat shock proteins (HSPs) are among such a non-physical barrier may take has not yet been well the most evolutionarily conserved proteins, and are induced defined, but CO2 levels would likely dissipate as the dis- by a number of factors beyond heat-stress that affect cell tance from the CO2 infusion site increases, thus mussels protein structure and functioning (Feder and Hofmann may be exposed to a gradient of CO2 depending on their 1999; Sørensen et al. 2003). A key role of HSPs is to pro- proximity to the barrier. Together, freshwater mussels may tect and repair cellular proteins damaged by exposure to experience periods of elevated pCO2 due to both natural and stressors, and to minimize protein aggregation (Feder and anthropogenic sources, and with pCO2 expected to rise in Hofmann 1999). Heat shock protein 70 (HSP70) is the the future, this necessitates a need for a better understanding most abundant family of HSPs, and consists of the consti- of the consequences for freshwater mussels. tutively expressed HSC70 and inducible HSP70 that are In the marine environment, a major consequence of ubiquitously distributed in eukaryotic cells (Feder and Hof- exposure to elevated pCO2 for bivalves is a reduction in mann 1999). The key role of HSPs in mechanisms of cellu- both shell growth and biomineralization (reviewed by lar protection renders them good markers of the stress sta- Gazeau et al. 2013). The mollusc shell provides an impor- tus of an organism. In this way, HSPs provide information tant external structure to support living tissues, protect about the general condition and health of an organism as against predators, and exclude mud and sand from the well as the sub-lethal effects (i.e., early warning signs) of a mantle cavity of burrowing species (Gazeau et al. 2013). stressor, before more complex functions are compromised Changes in the integrity of the shell have occurred due to (reviewed by Fabbri et al. 2008). The inducible HSP70 is exposure to conditions of ocean acidification, and dissolu- widely up-regulated in response to a variety of stressors in tion of the shell as a result can have consequences for the bivalves (e.g., Franzellitti and Fabbri 2005; Toyohara et al. health and survival of bivalves (reviewed by Gazeau et al. 2005; Cellura et al. 2006; Cummings et al. 2011; Chen 2013). The mantle, a thin secretory epithelial tissue lining et al. 2014; Luo et al. 2014) and may represent a useful bio- the inner surface of the shell, is responsible for mollusc marker in examining elevated CO2 as a potential stressor in shell formation, and shell calcification occurs in a small freshwater mussels. compartment (i.e., extrapallial cavity) located between the In addition to the impacts of elevated pCO2 on cel- calcifying outer mantle and the shell (Wilbur and Saleuddin lular function, elevations in pCO2 also have the potential 1 3 J Comp Physiol B (2017) 187:87–101 89 to affect whole-animal energetics and metabolism.
Recommended publications
  • Growth and Seasonal Energetics of the Antarctic Bivalve Laternula Elliptica from King George Island, Antarctica
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 99–110, 2003 Published August 7 Mar Ecol Prog Ser Growth and seasonal energetics of the Antarctic bivalve Laternula elliptica from King George Island, Antarctica In-Young Ahn1,*, Jeonghee Surh2, You-Gyoung Park2, Hoonjeong Kwon2, Kwang-Sik Choi3, Sung-Ho Kang1, Heeseon J. Choi1, Ko-Woon Kim1, Hosung Chung1 1Polar Sciences Laboratory, Korea Ocean Research & Development Institute (KORDI), Ansan, PO Box 29, Seoul 425-600, Republic of Korea 2Department of Food and Nutrition, Seoul National University, Sillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea 3Department of Aquaculture, Cheju National University, Ara-1-dong, Cheju 690-756, Republic of Korea ABSTRACT: The Antarctic marine environment is characterized by extreme seasonality in primary production, and herbivores must cope with a prolonged winter period of food shortage. In this study, tissue mass and biochemical composition were determined for various tissues of the bivalve Later- nula elliptica (King & Broderip) over a 2 yr period, and its storage and use of energy reserves were investigated with respect to seasonal changes in food level and water temperature. Total ash-free dry mass (AFDM) accumulated rapidly following phytoplankton blooms (with peak values immediately before and after spawning) and was depleted considerably during the spawning and winter periods. Most of the variation was in the muscle, gonads and digestive gland. Spawning peaked in January and February and caused considerable protein and lipid losses in the muscle, gonads and digestive gland. In winter (March to August), the muscle and digestive gland lost considerable mass, while gonad mass increased; this suggests that the muscle tissue and digestive gland serve as major energy depots for both maintenance metabolism and gonad development in winter.
    [Show full text]
  • Effect of Sperm Concentration and Sperm Ageing on Fertilisation
    MARINE ECOLOGY PROGRESS SERIES Vol. 215: 191–200, 2001 Published May 31 Mar Ecol Prog Ser Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna Dawn K. Powell1,*, Paul A. Tyler1, Lloyd S. Peck2 1School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, Southampton SO14 3ZH, United Kingdom 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom ABSTRACT: Sperm concentration and sperm ageing effects on fertilisation success were evaluated in the laboratory in the free-spawning Antarctic soft-shelled clam Laternula elliptica and Antarctic limpet Nacella concinna. Fertilisation success was highly dependent on sperm concentration. High- est levels of fertilisation success were consistently replicated at ~107 sperm ml–1 for L. elliptica, and ~106 to 108 sperm ml–1 for N. concinna. However, both species exhibited extremely low fertilisation rates at concentrations <106 sperm ml–1. At sperm concentrations >106 sperm ml–1 N. concinna dis- played a rapid increase in abnormally developing larvae which, along with only a small decline in total fertilisation success above 108 sperm ml–1, was taken to indicate polyspermy. A small increase in abnormal development followed by a rapid decline in fertilisation success at high sperm concentra- tions (>107 sperm ml–1) for L. elliptica was attributed to oxygen depletion. Using the optimum sperm concentration found for fertilisation success, spermatozoa were capable of fertilising fresh ova for >90h in L. elliptica, and ~65 h in N. concinna. The sperm concentrations required for fertilisation suc- cess and sperm longevities reported here are at least an order of magnitude greater than those reported for nearshore temperate molluscs.
    [Show full text]
  • REPORT FOR: Preliminary Analysis for Identification, Distribution, And
    REPORT FOR: Preliminary Analysis for Identification, Distribution, and Conservation Status of Species of Fusconaia and Pleurobema in Arkansas Principle Investigators: Alan D. Christian Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467; [email protected]; Phone: (870)972-3082; Fax: (870)972-2638 John L. Harris Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Arkansas 72467 Jeanne Serb Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, Iowa 50011 Graduate Research Assistant: David M. Hayes, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Kentaro Inoue, Department of Environmental Science, P.O. Box 847, State University, Arkansas 72467: [email protected] Submitted to: William R. Posey Malacologist and Commercial Fisheries Biologist, AGFC P.O. Box 6740 Perrytown, Arkansas 71801 April 2008 EXECUTIVE SUMMARY There are currently 13 species of Fusconaia and 32 species of Pleurobema recognized in the United States and Canada. Twelve species of Pleurobema and two species of Fusconaia are listed as Threatened or Endangered. There are 75 recognized species of Unionidae in Arkansas; however this number may be much higher due to the presence of cryptic species, many which may reside within the Fusconaia /Pleurobema complex. Currently, three species of Fusconaia and three species of Pleurobema are recognized from Arkansas. The true conservation status of species within these genera cannot be determined until the taxonomic identity of populations is confirmed. The purpose of this study was to begin preliminary analysis of the species composition of Fusconaia and Pleurobema in Arkansas and to determine the phylogeographic relationships within these genera through mitochondrial DNA sequencing and conchological analysis.
    [Show full text]
  • Atlas of the Freshwater Mussels (Unionidae)
    1 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio and surrounding watersheds by Robert A. Krebs Department of Biological, Geological and Environmental Sciences Cleveland State University Cleveland, Ohio, USA 44115 September 2015 (Revised from 2009) 2 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio, and surrounding watersheds Acknowledgements I thank Dr. David Klarer for providing the stimulus for this project and Kristin Arend for a thorough review of the present revision. The Old Woman Creek National Estuarine Research Reserve provided housing and some equipment for local surveys while research support was provided by a Research Experiences for Undergraduates award from NSF (DBI 0243878) to B. Michael Walton, by an NOAA fellowship (NA07NOS4200018), and by an EFFRD award from Cleveland State University. Numerous students were instrumental in different aspects of the surveys: Mark Lyons, Trevor Prescott, Erin Steiner, Cal Borden, Louie Rundo, and John Hook. Specimens were collected under Ohio Scientific Collecting Permits 194 (2006), 141 (2007), and 11-101 (2008). The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by section 315 of the Coastal Zone Management Act, as amended. Additional information on these preserves and programs is available from the Estuarine Reserves Division, Office for Coastal Management, National Oceanic and Atmospheric Administration, U. S. Department of Commerce, 1305 East West Highway, Silver Spring, MD 20910.
    [Show full text]
  • Pleurobema Clava Lamarck Northern Northern Clubshell Clubshell, Page 1
    Pleurobema clava Lamarck Northern Northern Clubshell Clubshell, Page 1 State Distribution Photograph courtesy of Kevin S.Cummings, Illinois Natural History Survey Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State and Federally listed as Endangered umbos located close to the anterior end of the shell. Viewed from the top, the clubshell is wedge-shaped Global and state ranks: G2/S1 tapering towards the posterior end. Maximum length is approximately 3 ½ inches (90mm). The shell is tan/ Family: Unionidae (Pearly mussels) yellow, with broad, dark green rays that are almost always present and are interrupted at the growth rings. Total range: Historically, the clubshell was present in There is often a crease or groove near the center of the the Wabash, Ohio, Kanawha, Kentucky, Green, shell running perpendicular to the annular growth rings. Monogahela, and Alleghany Rivers and their tributaries. Beak sculpture consists of a few small bumps or loops, Its range covered an area from Michigan south to or is absent. Alabama, and Illinois east to Pennsylvania. The The clubshell has well-developed lateral and pseudo- clubshell currently occurs in 12 streams within the cardinal teeth and a white nacre. Shells of males and Tennessee, Cumberland, Lake Erie, and Ohio drainages. females are morphologically similar. Similar species These include the St. Joseph River in Michigan (Badra found in Michigan include the kidneyshell and Goforth 2001) and Ohio (Watters 1988), (Ptychobranchus fasciolaris) which is much more Pymatuning Creek (Ohio)(Huehner and Corr 1994), compressed laterally than the clubshell and has a kidney Little Darby Creek (Ohio), Fish Creek (Ohio and shaped outline; the round pigtoe (Pleurobema sintoxia) Indiana), Tippecanoe River (Indiana), French Creek which has a more circular outline and does not have (Pennsylvania), and the Elk River (West Virginia).
    [Show full text]
  • Palaeodemecological Analysis of Infaunal Bivalves “Lebensspuren” from the Mulichinco Formation, Lower Cretaceous, Neuquén Basin, Argentina
    AMEGHINIANA - 2012 - Tomo 49 (1): 47 – 59 ISSN 0002-7014 PALAEODEMECOLOGICAL ANALYSIS OF INFAUNAL BIVALVES “LEBENSSPUREN” FROM THE MULICHINCO FORMATION, LOWER CRETACEOUS, NEUQUÉN BASIN, ARGENTINA JAVIER ECHEVARRÍA, SUSANA E. DAMBORENEA and MIGUEL O. MANCEÑIDO División Paleozoología Invertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). [email protected] Abstract. The study of palaeodemecological features requires some particular taphonomic conditions. These conditions were met in the Mulichinco Formation (Valanginian), where burrowing bivalve trace fossils are widespread and often appear in cross section on bedding surfaces. Two groups of such beds were analyzed, measuring population density, spatial distribution, size distribution and horizontal orienta- tion of the burrows. The palaeoenvironment was established by means of a detailed sedimentological analysis, and the bivalve fauna present was checked, in order to attempt identifying their potential producers. High population densities were found in the two groups, indicating favourable physical conditions and good food supply, while differences in both spatial and size distributions were noticed between them; on most surfaces there was no preferred orientation. The first group (group A) showed a uniform pattern of spatial distribution and larger traces, with a remarkable absence of small sizes. In the second group (group B), the spatial distribution pattern is indistinguishable from a random distribution (except one case in which the pattern appears to be aggregated). Group A is interpreted as a set of escape traces made by deep burrowers in response to storm deposition, while group B is considered as resting/escape traces made by shallow burrowers in tide-dominated environments.
    [Show full text]
  • Reevaluating the Occurrence and Phylogeny
    University of Texas at Tyler Scholar Works at UT Tyler Biology Theses Biology Summer 8-14-2017 REEVALUATING THE OCCURRENCE AND PHYLOGENY OF THE PIGTOE UNIONID MUSSELS FUSCONAIA ASKEWI, FUSCONAIA LANANENSIS, FUSCONAIA FLAVA, AND PLEUROBEMA RIDDELLI IN TEXAS Charles J. Pratt University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/biology_grad Part of the Biology Commons, and the Genetics Commons Recommended Citation Pratt, Charles J., "REEVALUATING THE OCCURRENCE AND PHYLOGENY OF THE PIGTOE UNIONID MUSSELS FUSCONAIA ASKEWI, FUSCONAIA LANANENSIS, FUSCONAIA FLAVA, AND PLEUROBEMA RIDDELLI IN TEXAS" (2017). Biology Theses. Paper 49. http://hdl.handle.net/10950/589 This Thesis is brought to you for free and open access by the Biology at Scholar Works at UT Tyler. It has been accepted for inclusion in Biology Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. REEVALUATING THE OCCURRENCE AND PHYLOGENY OF THE PIGTOE UNIONID MUSSELS FUSCONAIA ASKEWI, FUSCONAIA LANANENSIS, FUSCONAIA FLAVA, AND PLEUROBEMA RIDDELLI IN TEXAS by CHARLES J PRATT A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biology Srini Kambhampati, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler July 2017 Acknowledgements I’d like to thank all of my friends and family for their support, this thesis would have been impossible without them. To my dad, Dan Pratt, and my mom, Kara Bennett, thank you for your excellent advice, your unwavering support, and your faith in me.
    [Show full text]
  • Generic Reclassification and Species Boundaries in the Rediscovered
    Conserv Genet (2016) 17:279–292 DOI 10.1007/s10592-015-0780-7 RESEARCH ARTICLE Generic reclassification and species boundaries in the rediscovered freshwater mussel ‘Quadrula’ mitchelli (Simpson in Dall, 1896) 1,2 1 3 John M. Pfeiffer III • Nathan A. Johnson • Charles R. Randklev • 4 2 Robert G. Howells • James D. Williams Received: 9 March 2015 / Accepted: 13 September 2015 / Published online: 26 September 2015 Ó Springer Science+Business Media Dordrecht (outside the USA) 2015 Abstract The Central Texas endemic freshwater mussel, genetic isolation within F. mitchelli, we do not advocate for Quadrula mitchelli (Simpson in Dall, 1896), had been species-level status of the two clades as they are presumed extinct until relict populations were recently allopatrically distributed and no morphological, behavioral, rediscovered. To help guide ongoing and future conserva- or ecological characters are known to distinguish them. tion efforts focused on Q. mitchelli we set out to resolve These results are discussed in the context of the system- several uncertainties regarding its evolutionary history, atics, distribution, and conservation of F. mitchelli. specifically its unknown generic position and untested species boundaries. We designed a molecular matrix con- Keywords Unionidae Á Species rediscovery Á Species sisting of two loci (cytochrome c oxidase subunit I and delimitation Á Bayesian phylogenetics and internal transcribed spacer I) and 57 terminal taxa to test phylogeography Á Fusconaia the generic position of Q. mitchelli using Bayesian infer- ence and maximum likelihood phylogenetic reconstruction. We also employed two Bayesian species validation meth- Introduction ods to test five a priori species models (i.e. hypotheses of species delimitation).
    [Show full text]
  • Unionid Mussel Surveys at Selected Sites in Osborn Creek, Swinton Creek, and White River - White River Watershed, Michigan
    Unionid Mussel Surveys at Selected Sites in Osborn Creek, Swinton Creek, and White River - White River Watershed, Michigan Prepared by: Peter J. Badra Michigan Natural Features Inventory P.O. Box 30444 Lansing, MI 48909-7944 For: Oceana County Road Commission, USFWS Green Bay Fish and Wildlife Conservation Office, and the USDA Huron-Manistee National Forest September 28, 2012 Report Number 2012-14 Background photo: Survey Site 1 in Osborn Creek. Inset photo: Cylindrical papershell (Anodontoides ferussacianus) juveniles from Site 1. Photos by Peter Badra. Citation: Badra, P. J. 2012. Unionid Mussel Surveys at Selected Sites in Osborn Creek, Swinton Creek, and White River - White River Watershed, Michigan. Michigan Natural Features Inventory Report No. 2012-14. Report to Oceana County Road Commission, USFWS, and USDA Forest Service. Lansing, MI. 10pp. Copyright 2012 MSU Board of Trustees Acknowledgments Funding for this survey was provided through a partnership between the USFWS Green Bay Fish and Wildlife Conservation Office, Huron-Manistee National Forest, and Oceana County Road Commission. Thank you to Chris Riley and Rich Corner whose efforts made this work possible. Chris Riley, Amanda Chambers, and Jay Niederstadt provided essential assistance with fieldwork and logistics. Nancy Toben, Sue Ridge, and Brian Klatt provided administrative support. Mussel Survey - Osborn Creek, Swinton Creek, and White River - Introduction 1970). Percent pool/riffle/run habitat within each survey Michigan Natural Features Inventory (MNFI), along with area was estimated visually. The presence of aquatic Huron-Manistee National Forest, performed unionid mussel vegetation and woody debris were noted, and a rough surveys at selected sites in Osborn Creek, Swinton Creek, estimate of current speed was made for each survey site.
    [Show full text]
  • Wabash Pigtoe
    Species Status Assessment Class: Bivalvia Family: Unionidae Scientific Name: Fusconaia flava Common Name: Wabash pigtoe Species synopsis: Fusconaia flava belongs to the subfamily Ambleminae and the tribe Pleurobemini, which includes four extant and one likely extirpated New York species in the genera Elliptio, Fusconaia, and Pleurobema (Haag 2012). In general, the shells are of this tribe are unsculptured and larvae are brooded only in the outer demibranchs (with exceptions) (Graf and Cummings 2011). F. flava belongs to the genus Fusconaia, from the Latin word fuscus, meaning dark or dusky, and the species name flava referring to yellow-brown color of the periostracum (Watters et al. 2009). In New York, F. flava is found in 16 waterbodies from the Erie-Niagara basin eastward to the Oswego basin (Mahar and Landry 2013). The species lives in running waters of all sizes and occasionally occurs in lakes. They can be found in muddy, hydrologically unstable, low gradient streams as well as course sand or gravel substrate (Strayer and Jirka 1997, Parmalee and Bogan 1998). Although ranked as “imperiled” in New York, this edge of range species is considered secure throughout its range. In North America, approximately 2/3 to ¾ of native mussel species are extinct, listed as endangered or threatened, or are in need of conservation status (Williams et al. 1993, Stein et al.2000). While population trends in New York are unknown, it is assumed that they too are declining, due to a myriad of environmental stressors. 1 Status a. Current and Legal Protected Status i. Federal ____ _____None______________________________Candidate? ____No_______ ii. New York ____None – Species of Greatest Conservation Need___________ b.
    [Show full text]
  • Ellipsaria Vol. 14 - No
    Ellipsaria Vol. 14 - No. 3 September 2012 Literature Cited Beaudet A. 2006. Étude de la dynamique des populations de moules d’eau douce (Bivalvia : Unionidea) de deux rivières côtières de l’Est du Nouveau-Brunswick, la rivière Kouchibouguac et la rivière Kouchibouguacis. Mémoires de Maîtrise, UQAR. Clarke A.H. 1981. The Freshwater Molluscs of Canada. National Museum of Natural Science/National Museums of Canada: Ottawa, Canada. 446 pp. Conner C.H. 1905. Glochidia of Unio on fishes. Nautilus 1905:142-143. Cyr F. 2007. Caractérisation de la biodiversité à l’aide d’une analyse génétique chez les moules d’eau douce du genre Pyganodon (Unionidae) dans le nord est de l’Amérique du Nord. M. Sc. thesis, Département des Sciences biologique, Université de Montréal, Montréal, QC. Cyr F., Paquet A., A.L. Martel, A. Bernard. 2007. Cryptic lineages and hybridization in freshwater mussels of the genus Pyganodon (Unionidae) in northeastern North America. Canadian Journal of Zoology, 85(12):1216–1227. Eads C.B, M.E. Raley, E.K. Schubert, A.E. Bogan, J.F. Levine J.F. 2007. Propagation and culture of freshwater mussels for release into North Carolina waters. Final report submitted to North Carolina Department of Transportation. 87 pp. Gray E.S., W.A. Lellis, J.C. Cole, C.S. Johnson. 1999. Hosts of Pyganodon cataracta (eastern floater) and Strophitus undulatus (squawfoot) from the Upper Susquehanna River Basin, Pennsylvania. Triannual Unionid Report 18. Hoeh W. R. 1990. Phylogenetic relationships among eastern North American Anodonta (Bivalvia: Unionidae). MalacoL Rev. 23:63-82. Hoggarth M. A. 1992. An examination of the glochidia-host relationships reported in the literature for North American species of Unionacea (Mollusca: Bivalvia).
    [Show full text]
  • Prospects for Survival in the Southern Ocean: Vulnerability of Benthic Species to Temperature Change L.S
    Antarctic Science 17 (4): 497–507 (2005) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102005002920 Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change L.S. PECK British Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge CB3 0ET, UK [email protected] Abstract: Organisms have a limited number of responses that enhance survival in changing environments. They can: 1. Cope within existing physiological flexibility; 2. Adapt to changing conditions; or 3. Migrate to sites that allow survival. Species inhabiting coastal seabed sites around Antarctica have poorer physiological capacities to deal with change than species elsewhere. They die when temperatures are raised by only 5–10°C above the annual average, and many species lose the ability to perform essential functions, e.g. swimming in scallops or burying in infaunal bivalve molluscs when temperatures are raised only 2–3°C. The ability to adapt, or evolve new characters to changing conditions depends, at least in part, on generation time. Antarctic benthic species grow slowly and develop at rates often x5–x10 slower than similar temperate species. They also live to great age, and exhibit deferred maturity. Longer generation times reduce the opportunities to produce novel mutations, and result in poorer capacities to adapt to change. Intrinsic capacities to colonize new sites and migrate away from deteriorating conditions depend on adult abilities to locomote over large distances, or for reproductive stages to drift for extended periods. The slow development of Antarctic benthic species means their larvae do spend extended periods in the water column.
    [Show full text]