Chaperones in Neurodegeneration
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Uncorrected Author Proof Boller Et Al
Journal of Parkinson’s Disease xx (2020) x–xx 1 DOI 10.3233/JPD-202323 IOS Press 1 Review 2 Neuropathological and Biomarker Findings 3 in Parkinson’s Disease and Alzheimer’s 4 Disease: From Protein Aggregates to 5 Synaptic Dysfunction a,b,∗ c,d,e,∗ 6 Yaroslau Compta and Tamas Revesz a 7 Parkinson’s disease & Movement Disorders Unit, Neurology Service, Hospital Cl´ınic / IDIBAPS / CIBERNED, 8 Barcelona, Catalonia, Spain b 9 Institut de Neuroci`encies, Maextu’s excellence center, University of Barcelona, Barcelona, Catalonia, Spain c 10 Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, 11 UCL Queen Square Institute of Neurology, University College London, UK d 12 Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK 13 eDepartment of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College 14 London, UK Accepted 9 November 2020 15 Abstract. 16 There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, 17 while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences 18 between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates 19 and synapse dysfunction. Thus, amyloid- peptide (A) and tau lesions of the Alzheimer-type are common in PD and 20 ␣-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine 21 immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their 22 presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. -
The Inhibition of LSD1 Via Sequestration Contributes to Tau-Mediated Neurodegeneration
The inhibition of LSD1 via sequestration contributes to tau-mediated neurodegeneration Amanda K. Engstroma, Alicia C. Walkera, Rohitha A. Moudgala, Dexter A. Myricka, Stephanie M. Kylea, Yu Baia, M. Jordan Rowleyb, and David J. Katza,1 aDepartment of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322; and bDepartment of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198 Edited by Michele Pagano, HHMI and New York University School of Medicine, New York, NY, and accepted by Editorial Board Member Gail Mandel October 1, 2020 (received for review July 2, 2020) Tauopathies are a class of neurodegenerative diseases associated AD cases, but not other neurodegenerative diseases, such as with pathological tau. Despite many advances in our understand- Parkinson’s disease or amyotrophic lateral sclerosis (ALS) cases. ing of these diseases, the direct mechanism through which tau Consistent with this overlap, we observed LSD1 protein mis- contributes to neurodegeneration remains poorly understood. Pre- localized to cytoplasmic NFTs, but not associated with Aβ plaques viously, our laboratory implicated the histone demethylase LSD1 in in AD cases or Lewy bodies of α-synuclein in Parkinson’sdisease tau-induced neurodegeneration by showing that LSD1 localizes to cases (26). In control cases, LSD1 remains strictly confined to the pathological tau aggregates in Alzheimer’s disease cases, and that it nucleus (26), due to its well-defined nuclear localization signal is continuously required for the survival of hippocampal and cortical (27). These data highlight the requirement for LSD1 in neuro- neurons in mice. Here, we utilize the P301S tauopathy mouse model nal survival and suggest that the nuclear function of the histone to demonstrate that pathological tau can exclude LSD1 from the demethylase LSD1 could be disrupted by mislocalization to nucleus in neurons. -
ENDOG Impacts on Tumor Cell Proliferation and Tumor Prognosis in the Context of PI3K/PTEN Pathway Status
cancers Article ENDOG Impacts on Tumor Cell Proliferation and Tumor Prognosis in the Context of PI3K/PTEN Pathway Status Gisel Barés 1,†, Aida Beà 1,†, Luís Hernández 2,* , Raul Navaridas 3, Isidre Felip 3, Cristina Megino 3 , Natividad Blasco 1,‡, Ferran Nadeu 2 , Elías Campo 2,4, Marta Llovera 1 , Xavier Dolcet 3 and Daniel Sanchis 1,* 1 Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, 25198 Lleida, Spain; [email protected] (G.B.); [email protected] (A.B.); [email protected] (N.B.); [email protected] (M.L.) 2 Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS) and CIBERONC, 08036 Barcelona, Spain; [email protected] (F.N.); [email protected] (E.C.) 3 Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida–IRBLleida and CIBERONC, 25198 Lleida, Spain; [email protected] (R.N.); [email protected] (I.F.); [email protected] (C.M.); [email protected] (X.D.) 4 Department of Oncology, Hospital Clinic of Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain * Correspondence: [email protected] (L.H.); [email protected] (D.S.); Tel.: +34-(97)-375-2949 (D.S.) † These authors contributed equally to this work (co-first authors). ‡ Present address: Grupo LMA Fundación PETHEMA, Laboratorio de Biología Molecular, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain. Simple Summary: The PI3K/AKT pathway is involved in cell survival and proliferation. Molecular aberrations and/or hyperactivation of the PI3K-PTEN-AKT axis are frequent in distinct cancer types such as endometrial carcinoma, the most common type of cancer of the female genital tract, and chronic lymphocytic leukemia (CLL), a mature B-cell neoplasm depending on B-cell receptor (BCR) activity, which induces chronical activation of this pathway. -
Limited Diagnostic Utility of Chromogranin a Measurements in Workup of Neuroendocrine Tumors
diagnostics Article Limited Diagnostic Utility of Chromogranin A Measurements in Workup of Neuroendocrine Tumors Jonas Baekdal 1,2,*, Jesper Krogh 1,2, Marianne Klose 1,2, Pernille Holmager 1,2, Seppo W. Langer 1,3, Peter Oturai 1,4,5, Andreas Kjaer 1,4,5 , Birgitte Federspiel 1,6, Linda Hilsted 1,7, Jens F. Rehfeld 1,7, Ulrich Knigge 1,2,8 and Mikkel Andreassen 1,2 1 ENETS Neuroendocrine Tumor Centre of Excellence, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; [email protected] (J.K.); [email protected] (M.K.); [email protected] (P.H.); [email protected] (S.W.L.); [email protected] (P.O.); [email protected] (A.K.); [email protected] (B.F.); [email protected] (L.H.); [email protected] (J.F.R.); [email protected] (U.K.); [email protected] (M.A.) 2 Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 3 Department of Oncology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 4 Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital, 2100 Copenhagen, Denmark 5 Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark 6 Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 7 Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 8 Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark * Correspondence: [email protected]; Tel.: +45-6013-4687 Received: 11 October 2020; Accepted: 28 October 2020; Published: 29 October 2020 Abstract: Background: Plasma chromogranin A (CgA) is related to tumor burden and recommended in the follow-up of patients diagnosed with neuroendocrine tumors (NETs). -
Identification of VGF Nerve Growth Factor Inducible-Producing Cells In
Int. J. Med. Sci. 2020, Vol. 17 480 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(4): 480-489. doi: 10.7150/ijms.39101 Research Paper Identification of VGF nerve growth factor inducible-producing cells in human spinal cords and expression change in patients with amyotrophic lateral sclerosis Yasuhiro Noda1, Miruto Tanaka1, Shinsuke Nakamura1, Junko Ito2, Akiyoshi Kakita2, Hideaki Hara1, and Masamitsu Shimazawa1 1. Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan. 2. Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan. Corresponding author: Dr. Masamitsu Shimazawa, Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan. E-mail: [email protected], Telephone and Fax: +81-58-230-8126 © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.08.06; Accepted: 2019.12.23; Published: 2020.02.04 Abstract Amyotrophic lateral sclerosis (ALS) is a serious disease characterized by the degeneration of motor neurons resulting in muscle weakness and paralysis. The neuroendocrine polypeptide VGF is localized in the central nervous system and peripheral endocrine neurons and is cleaved into several polypeptides with multiple functions. Previous studies revealed that VGF was decreased in the cerebrospinal fluid of ALS model mice and sporadic ALS patients. However, it is unknown which cells supply VGF in the spinal cord and a detailed localization is lacking. -
The Chromogranin A-Derived Peptides Catestatin and Vasostatin in Dogs
Höglund et al. Acta Vet Scand (2020) 62:43 https://doi.org/10.1186/s13028-020-00541-3 Acta Veterinaria Scandinavica RESEARCH Open Access The chromogranin A-derived peptides catestatin and vasostatin in dogs with myxomatous mitral valve disease Katja Höglund1* , Jens Häggström2 , Odd Viking Höglund2 , Mats Stridsberg3 , Anna Tidholm2,4 and Ingrid Ljungvall2 Abstract Background: The protein chromogranin A (CgA) is stored and co-released with catecholamines from the stimulated adrenal glands. Increased plasma concentrations of CgA have been shown in people with heart disease. The aim of the study was to investigate whether plasma concentrations of the CgA-derived biologically active peptides catesta- tin and vasostatin were associated with the severity of myxomatous mitral valve disease (MMVD) in dogs and to assess potential associations between these blood variables and dog characteristics, echocardiographic variables, heart rate (HR), blood pressure (BP) and plasma N-terminal-proBNP (NT-proBNP) concentration. Sixty-seven privately owned dogs with or without MMVD were included. The dogs underwent physical examination, blood pressure measurement, blood sample collection, and echocardiographic examination. Plasma concentrations of catestatin and vasostatin were analyzed using radioimmunoassay. Results: Catestatin concentration decreased with increasing left atrial and ventricular size (R 2 0.09, P 0.019), and increased with increasing systolic and diastolic blood pressures (R2 0.08, P 0.038). Regression≤ analyses≤ showed no signifcant associations for vasostatin. No diferences in plasma concentrations≤ ≤ of catestatin or vasostatin were found between the disease severity groups used in the study. Conclusions: In the present dog population, the catestatin concentration showed weak negative associations with left atrial and ventricular sizes, both of which are known to increase with increasing severity of MMVD. -
Association of Endonuclease G Gene Variants with Cardiovascular Disease Risk Factors
Reports of Biochemistry & Molecular Biology Vol.8, No.2, July 2019 Original article www.RBMB.net Association of Endonuclease G Gene Variants with Cardiovascular Disease Risk Factors Negar Etehad Roodi#1, Nushin Karkuki Osguei#2, Mahdy Hasanzadeh Daloee3, Alireza Pasdar4, Majid Ghayour-Mobarhan5, Gordon Ferns6, Ali Samadi Kuchaksaraei*¹ Abstract Background: Cardiovascular disease (CVD) is a leading cause of death, supporting the need for the identification of novel biomarkers as risk stratification factors. Endonuclease G (ENDOG) has recently been suggested to be a novel determinant of cardiac hypertrophy and mitochondrial function, and plays an important role in apoptosis processes involved in cardiac myocyte death. The aim of current study was to explore the association of two genetic variants in ENDOG gene (ENDOG) with CVD risk factors in an Iranian population. Methods: Subjects included 663 patients with CVD and 282 healthy individuals recruited as part of the Mashhad Stroke and Heart Atherosclerotic Disorders Cohort Study. The ENDOG S12L (rs 2293969) and L142M (rs 61397314) variants were genotyped. Anthropometric and biochemical factors were measured in all the subjects followed by univariate and multivariate analyses to determine the association of these genetic markers with CVD and biochemical parameters. Results: ENDOG polymorphisms were found at a significantly higher prevalence in individuals who had histories of smoking and breaking point in L142M. In contrast, other risk factors for cardiovascular disease, including lipid profile and blood pressure, showed no or very weak relationship with the ENDOG polymorphisms. Conclusions: Our findings indicated an association between an ENDOG genetic variant and smoking history as a cardiovascular risk factor. Further studies in the prospective setting are warranted to investigate the value of this marker. -
Role of Endog in Development and Cell Injury
Letters to the Editor 1971 very low in pre-treatment samples and it is strongly increased S Mainardi1, A Pelosi1, E Palescandolo2, R Riccioni3, in 18 out of 22 patients (81.8%) after therapy (Supplementary G Fontemaggi1,4, D Diverio5, U Testa3, A Sacchi1, Figure 3). F Grignani6, F Lo-Coco7, M Levrero2,4,8, G Blandino*,1,4 Altogether, our findings show that DN-p73 is a transcrip- and MG Rizzo*,1 tional target of the PML/RARa oncogene. This results in the transcriptional repression of DN-p73 providing one potential 1 Department of Experimental Oncology, Laboratory of Molecular Oncogenesis, molecular basis underlying the lack of DN-p73 expression in a Regina Elena Cancer Institute, Rome, Italy; large subset of APL leukemias. The role of PML/RARa in 2 Department of Internal Medicine, Laboratory of Gene Expression, Fondazione DN-p73 repression is confirmed by the ability of RA to restore Andrea Cesalpino, University of Rome ‘La Sapienza’, Rome, Italy; 3 its expression both in vitro and in vivo. The observation that Laboratory of Hematology and Oncology, Istituto Superiore di Sanita`, Rome, DN-p73 expression induces a number of differentiation Italy; 4 Rome Oncogenomic Center (ROC), Rome, Italy; markers in APL cells and cooperates with RA-induced 5 Department of Cellular Biotechnologies and Hematology, University of Rome differentiation in vitro suggests that DN-p73 might be ‘La Sapienza’, Rome, Italy; necessary for proper myeloid differentiation. Indeed, DN-p73 6 Department of Medicina Clinica e Sperimentale, Medicina Interna e Scienze expression -
The Granin Protein Family in Cardiac Disease
The granin protein family in cardiac disease Helge R. Røsjø, MD1,2,3 1 Division of Medicine, Akershus University Hospital, Lørenskog, Norway 2 Institute of Experimental Medical Research, Oslo University Hospital, Ullevål, Oslo, Norway 3 Center for Heart Failure Research and K.G. Jebsen Cardiac Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway © Helge R. Røsjø, 2012 Series of dissertations submitted to the Faculty of Medicine, University of Oslo No. 1333 ISBN 978-82-8264-359-7 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Inger Sandved Anfinsen. Printed in Norway: AIT Oslo AS. Produced in co-operation with Unipub. The thesis is produced by Unipub merely in connection with the thesis defence. Kindly direct all inquiries regarding the thesis to the copyright holder or the unit which grants the doctorate. Contents Supported by ......................................................................................................................... 4 Acknowledgments ................................................................................................................ 5 Abbreviations ........................................................................................................................ 8 List of papers in thesis: ....................................................................................................... 10 Introduction ....................................................................................................................... -
Chromogranin a Dependent Upon Interaction with Biogenesis in Mast
Secretogranin III Directs Secretory Vesicle Biogenesis in Mast Cells in a Manner Dependent upon Interaction with Chromogranin A This information is current as of October 4, 2021. Prerna Prasad, Angel A. Yanagihara, Andrea L. Small-Howard, Helen Turner and Alexander J. Stokes J Immunol 2008; 181:5024-5034; ; doi: 10.4049/jimmunol.181.7.5024 http://www.jimmunol.org/content/181/7/5024 Downloaded from References This article cites 42 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/181/7/5024.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 4, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Secretogranin III Directs Secretory Vesicle Biogenesis in Mast Cells in a Manner Dependent upon Interaction with Chromogranin A1 Prerna Prasad,2*§ Angel A. Yanagihara,2‡ Andrea L. Small-Howard,2* Helen Turner,2,3*† and Alexander J. -
030320 the Chromogranin–Secretogranin Family
The new england journal of medicine review article mechanisms of disease The Chromogranin–Secretogranin Family Laurent Taupenot, Ph.D., Kimberly L. Harper, M.D., and Daniel T. O’Connor, M.D. From the Department of Medicine (L.T., eurons and neuroendocrine cells contain membrane- K.L.H., D.T.O.) and the Center for Molecular delimited pools of peptide hormones, biogenic amines, and neurotransmit- Genetics (D.T.O.), University of California n at San Diego, La Jolla; and the Veterans ters with a characteristic electron-dense appearance on transmission electron Affairs San Diego Healthcare System, San microscopy (Fig. 1). These vesicles, which are present throughout the neuroendocrine Diego, Calif. (L.T., K.L.H., D.T.O.). Address system1,2 and in a variety of neurons, store and release chromogranins and secretogranins reprint requests to Dr. O’Connor at the 3,4 Department of Medicine (9111H), Univer- (also known as “granins”), a unique group of acidic, soluble secretory proteins. The sity of California at San Diego, 3350 La Jolla three “classic” granins are chromogranin A, which was first isolated from chromaffin Village Dr., San Diego, CA 92161, or at cells of the adrenal medulla5,6; chromogranin B, initially characterized in a rat pheochro- [email protected]. mocytoma cell line7; and secretogranin II (sometimes called chromogranin C), which 8,9 N Engl J Med 2003;348:1134-49. was originally described in the anterior pituitary. Four other acidic secretory pro- Copyright © 2003 Massachusetts Medical Society. teins were later proposed for membership in the granin family10: secretogranin III (or 1B1075),11 secretogranin IV (or HISL-19),12 secretogranin V (or 7B2),13 and secretogra- nin VI (or NESP55).14 In this article, we review aspects of the structures, biochemical properties, and clin- ical importance of granins, with particular emphasis on chromogranin A, the granin that was discovered first and that has been studied most extensively. -
Resolvin D3 Is Dysregulated in Arthritis and Reduces Arthritic Inflammation Hildur H
Resolvin D3 Is Dysregulated in Arthritis and Reduces Arthritic Inflammation Hildur H. Arnardottir, Jesmond Dalli, Lucy V. Norling, Romain A. Colas, Mauro Perretti and Charles N. Serhan This information is current as of September 27, 2021. J Immunol published online 17 August 2016 http://www.jimmunol.org/content/early/2016/08/17/jimmun ol.1502268 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/08/17/jimmunol.150226 Material 8.DCSupplemental Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 17, 2016, doi:10.4049/jimmunol.1502268 The Journal of Immunology Resolvin D3 Is Dysregulated in Arthritis and Reduces Arthritic Inflammation Hildur H. Arnardottir,* Jesmond Dalli,*,1 Lucy V. Norling,† Romain A. Colas,*,1 Mauro Perretti,† and Charles N. Serhan* Uncontrolled inflammation is a unifying component of many chronic inflammatory diseases, such as arthritis.