Estrogen Represses Tgfbr1 and Bmpr1a Expression Via Estrogen Receptor Beta In
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Spemann Organizer Transcriptome Induction by Early Beta-Catenin, Wnt
Spemann organizer transcriptome induction by early PNAS PLUS beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis Yi Dinga,b,1, Diego Plopera,b,1, Eric A. Sosaa,b, Gabriele Colozzaa,b, Yuki Moriyamaa,b, Maria D. J. Beniteza,b, Kelvin Zhanga,b, Daria Merkurjevc,d,e, and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095-1662; cDepartment of Medicine, University of California, Los Angeles, CA 90095-1662; dDepartment of Microbiology, University of California, Los Angeles, CA 90095-1662; and eDepartment of Human Genetics, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) The earliest event in Xenopus development is the dorsal accumu- Wnt8 mRNA leads to a dorsalized phenotype consisting entirely of lation of nuclear β-catenin under the influence of cytoplasmic de- head structures without trunks and a radial Spemann organizer terminants displaced by fertilization. In this study, a genome-wide (9–11). Similar dorsalizing effects are obtained by incubating approach was used to examine transcription of the 43,673 genes embryos in lithium chloride (LiCl) solution at the 32-cell stage annotated in the Xenopus laevis genome under a variety of con- (12). LiCl mimics the early Wnt signal by inhibiting the enzymatic ditions that inhibit or promote formation of the Spemann orga- activity of glycogen synthase kinase 3 (GSK3) (13), an enzyme nizer signaling center. -
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
Familial Juvenile Polyposis Syndrome with a De Novo Germline Missense Variant in BMPR1A Gene: a Case Report Qing Liu, Mengling Liu, Tianshu Liu and Yiyi Yu*
Liu et al. BMC Medical Genetics (2020) 21:196 https://doi.org/10.1186/s12881-020-01135-6 CASE REPORT Open Access Familial juvenile polyposis syndrome with a de novo germline missense variant in BMPR1A gene: a case report Qing Liu, Mengling Liu, Tianshu Liu and Yiyi Yu* Abstract Background: Juvenile polyposis syndrome (JPS) is a rare autosomal dominant hereditary disorder characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract with an increased risk of colorectal cancer. Germline mutations in two genes, SMAD4 and BMPR1A, have been identified to cause JPS. Case presentation: Here, we report a germline heterozygous missense variant (c.299G > A) in exon 3 BMPR1A gene in a family with juvenile polyposis. This variant was absent from the population database, and concluded as de novo compared with the parental sequencing. Further sequencing of the proband’s children confirmed the segregation of this variant with the disease, while the variant was also predicted to have damaging effect based on online prediction tools. Therefore, this variant was classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Conclusions: Germline genetic testing revealed a de novo germline missense variant in BMPR1A gene in a family with juvenile polyposis. Identification of the pathogenic variant facilitates the cancer risk management of at-risk family members, and endoscopic surveillance is recommended for mutation carriers. Keywords: Juvenile polyposis syndrome, BMPR1A gene, De novo germline variant, Missense variant Background two genes, SMAD4 and BMPR1A, have been identi- Juvenile polyposis syndrome (JPS) is a rare autosomal fied to cause JPS [5]. -
The Prevalence of MADH4 and BMPR1A Mutations in Juvenile Polyposis and Absence of BMPR2, BMPR1B, and ACVR1 Mutations
484 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.2004.018598 on 2 July 2004. Downloaded from The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations J R Howe, M G Sayed, A F Ahmed, J Ringold, J Larsen-Haidle, A Merg, F A Mitros, C A Vaccaro, G M Petersen, F M Giardiello, S T Tinley, L A Aaltonen, H T Lynch ............................................................................................................................... J Med Genet 2004;41:484–491. doi: 10.1136/jmg.2004.018598 Background: Juvenile polyposis (JP) is an autosomal dominant syndrome predisposing to colorectal and gastric cancer. We have identified mutations in two genes causing JP, MADH4 and bone morphogenetic protein receptor 1A (BMPR1A): both are involved in bone morphogenetic protein (BMP) mediated signalling and are members of the TGF-b superfamily. This study determined the prevalence of mutations See end of article for in MADH4 and BMPR1A, as well as three other BMP/activin pathway candidate genes in a large number authors’ affiliations ....................... of JP patients. Methods: DNA was extracted from the blood of JP patients and used for PCR amplification of each exon of Correspondence to: these five genes, using primers flanking each intron–exon boundary. Mutations were determined by Dr J R Howe, Department of Surgery, 4644 JCP, comparison to wild type sequences using sequence analysis software. A total of 77 JP cases were University of Iowa College sequenced for mutations in the MADH4, BMPR1A, BMPR1B, BMPR2, and/or ACVR1 (activin A receptor) of Medicine, 200 Hawkins genes. The latter three genes were analysed when MADH4 and BMPR1A sequencing found no mutations. -
Product Data Sheet
KAMIYA BIOMEDICAL COMPANY Rev. 082707 PRODUCT DATA SHEET Product: Bone Morphogenetic Protein Receptor Type IA (BMPR1A), (human recombinant) Cat. No.: BP-026 (10 µg) Synonyms: Reconstitution: BMPR-1A, BMP-R1A, BMPR1A, BMR1A, It is recommended to reconstitute the lyophilized CD292, CD-292, Serine/threonine-protein kinase recombinant human BMPR1A in sterile PBS at receptor R5, SKR5, Activin receptor-like kinase not less than 100 µg/mL, which can then be 3, ALK-3, ACVRLK3, EC 2.7.11.30, CD292 further diluted to other aqueous solutions. antigen. Storage: Background: Lyophilized protein is stable for at least 3 weeks The bone morphogenetic protein (BMP) at room temperature. Long term storage should receptors are a family of transmembrane be below -18 °C, desiccated. Upon serine/threonine kinases that include the type I reconstitution, human recombinant BMPR1A receptors BMPR1A and BMPR1B and the type II should be stored at 4°C between 2-7 days, and receptor BMPR2. These receptors are also for future use below -18°C. For long term closely related to the activin receptors, ACVR1 storage it is recommended to add a carrier and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF- protein (0.1% HSA or BSA). Aliquot to avoid betas and activins transduce their signals freeze/thaw cycles. through the formation of heteromeric complexes with two different types of serine (threonine) Purity: kinase receptors: type I receptors of about 50-55 >90% determined by RP-HPLC, and SDS-PAGE. kDa and type II receptors of about 70-80 kDa. Type II receptors bind ligands in the absence of Biological Activity: type I receptors, but they require their respective Measured by its ability to inhibit recombinant type I receptors for signaling, whereas type I human BMP-2 induced alkaline phosphatase receptors require their respective type II production by C2C12 myogenic cells. -
A Truncated Bone Morphogenetic Protein Receptor Affects Dorsal-Ventral Patterning in the Early Xenopus Embryo ATSUSHI SUZUKI*, R
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10255-10259, October 1994 Developmental Biology A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo ATSUSHI SUZUKI*, R. ScoTT THIESt, NOBORU YAMAJIt*, JEFFREY J. SONGt, JOHN M. WOZNEYt, KAZUO MURAKAMI§, AND NAOTO UENO*1 *Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan; tGenetics Institute Inc., 87 Cambridge Park Drive, Cambridge, MA 02140; tYamanouchi Pharmaceutical Co., Ltd., Tokyo 103, Japan; and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Communicated by Igor B. Dawid, July 13, 1994 ABSTRACT Bone morphogenetic proteins (BMPs), which corresponding proteins are present in developing Xenopus are members of the trnsming growth factor 13 (TGF-I) embryos, and overexpression of BMP4 in the embryos superfamily, have been implicated in bone formation and the enhances the formation of ventral mesoderm (8-11). Animal regulation ofearly development. To better understand the roles cap ectoderm treated with a combination of BMP4 and of BMPs in Xenopus laevis embryogenesis, we have cloned a activin also results in the formation of ventral mesoderm, cDNA coding for a serine/threonine kinase receptor that binds suggesting that BMP-4 is a ventralizing factor that acts by BMP-2 and BMP-4. To analyze its function, we attempted to overriding the dorsalizing signal provided by activin (8, 9). block the BMP signaling pathway in Xenopus embryos by using Therefore, activin and BMP-4 are thought to play important a domint-negative mutant of the BMP receptor. When the roles in the dorsal-ventral patterning of embryonic meso- mutant receptor lacking the putative serine/threonine kinase derm. -
Tumor Promoting Effect of BMP Signaling in Endometrial Cancer
International Journal of Molecular Sciences Article Tumor Promoting Effect of BMP Signaling in Endometrial Cancer Tomohiko Fukuda 1,* , Risa Fukuda 1, Kohei Miyazono 1,2,† and Carl-Henrik Heldin 1,*,† 1 Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; [email protected] (R.F.); [email protected] (K.M.) 2 Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan * Correspondence: [email protected] (T.F.); [email protected] (C.-H.H.); Tel.: +46-18-4714738 (T.F.); +46-18-4714738 (C.-H.H.) † These authors contributed equally to this work. Abstract: The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. -
Flow Reagents Single Color Antibodies CD Chart
CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n -
Follistatin and Noggin Are Excluded from the Zebrafish Organizer
DEVELOPMENTAL BIOLOGY 204, 488–507 (1998) ARTICLE NO. DB989003 Follistatin and Noggin Are Excluded from the Zebrafish Organizer Hermann Bauer,* Andrea Meier,* Marc Hild,* Scott Stachel,†,1 Aris Economides,‡ Dennis Hazelett,† Richard M. Harland,† and Matthias Hammerschmidt*,2 *Max-Planck Institut fu¨r Immunbiologie, Stu¨beweg 51, 79108 Freiburg, Germany; †Department of Molecular and Cell Biology, University of California, 401 Barker Hall 3204, Berkeley, California 94720-3204; and ‡Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages. -
Gene Standard Deviation MTOR 0.12553731 PRPF38A
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut Gene Standard Deviation MTOR 0.12553731 PRPF38A 0.141472605 EIF2B4 0.154700091 DDX50 0.156333027 SMC3 0.161420017 NFAT5 0.166316903 MAP2K1 0.166585267 KDM1A 0.16904912 RPS6KB1 0.170330192 FCF1 0.170391706 MAP3K7 0.170660513 EIF4E2 0.171572093 TCEB1 0.175363093 CNOT10 0.178975095 SMAD1 0.179164705 NAA15 0.179904998 SETD2 0.180182498 HDAC3 0.183971158 AMMECR1L 0.184195031 CHD4 0.186678211 SF3A3 0.186697697 CNOT4 0.189434633 MTMR14 0.189734199 SMAD4 0.192451524 TLK2 0.192702667 DLG1 0.19336621 COG7 0.193422331 SP1 0.194364189 PPP3R1 0.196430217 ERBB2IP 0.201473001 RAF1 0.206887192 CUL1 0.207514271 VEZF1 0.207579584 SMAD3 0.208159809 TFDP1 0.208834504 VAV2 0.210269344 ADAM17 0.210687138 SMURF2 0.211437666 MRPS5 0.212428684 TMUB2 0.212560675 SRPK2 0.216217428 MAP2K4 0.216345366 VHL 0.219735582 SMURF1 0.221242495 PLCG1 0.221688351 EP300 0.221792349 Sundar R, et al. Gut 2020;0:1–10. doi: 10.1136/gutjnl-2020-320805 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut MGAT5 0.222050228 CDC42 0.2230598 DICER1 0.225358787 RBX1 0.228272533 ZFYVE16 0.22831803 PTEN 0.228595789 PDCD10 0.228799406 NF2 0.23091035 TP53 0.232683696 RB1 0.232729172 TCF20 0.2346075 PPP2CB 0.235117302 AGK 0.235416298 -
The Role of the TGF- Co-Receptor Endoglin in Cancer
1 The role of the TGF- co-receptor endoglin in cancer Eduardo Pérez-Gómez1,†, Gaelle del Castillo1, Juan Francisco Santibáñez2, Jose Miguel López-Novoa3, Carmelo Bernabéu4 and 1,* Miguel Quintanilla . 1Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, 28029-Madrid, Spain; 2Institute for Medical Research, University of Belgrado, Belgrado, Serbia; 3Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; 4Centro de Investigaciones Biológicas, CSIC, and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain. E-mails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] † Current address: Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain *Corresponding author 2 ABSTRACT Endoglin (CD105) is an auxiliary membrane receptor of transforming growth factor- (TGF-) that interacts with type I and type II TGF- receptors and modulates TGF- signalling. Mutations in endoglin are involved in Hereditary Hemorrhagic Telangiectasia type I, a disorder characterized by cutaneous telangiectasias, epistaxis (nosebleeds) and major arteriovenous shunts, mainly in liver and lung. Endoglin is overexpressed in the tumor-associated vascular endothelium where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. Recent studies on human and experimental models of carcinogenesis point to an important tumor cell-autonomous role of endoglin by regulating proliferation, migration, invasion and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human carcinogenesis. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years. -
Nodal Signaling Is Required for Mesodermal and Ventral but Not For
© 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 830-842 doi:10.1242/bio.011809 RESEARCH ARTICLE Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava Eric Röttinger1,2,3,*, Timothy Q. DuBuc4, Aldine R. Amiel1,2,3 and Mark Q. Martindale4 ABSTRACT early fate maps of direct and indirect developing hemichordates, are Nodal signaling plays crucial roles in vertebrate developmental similar to those of indirect-developing echinoids (Colwin and processes such as endoderm and mesoderm formation, and axial Colwin, 1951; Cameron et al., 1987; Cameron et al., 1989; Cameron patterning events along the anteroposterior, dorsoventral and left- and Davidson, 1991; Henry et al., 2001). While the bilaterally right axes. In echinoderms, Nodal plays an essential role in the symmetric echinoderm larvae exhibit strong similarities to establishment of the dorsoventral axis and left-right asymmetry, but chordates in axial patterning and germ layer specification events, not in endoderm or mesoderm induction. In protostomes, Nodal adult body plan comparisons in echinoderms have been difficult due signaling appears to be involved only in establishing left-right to their unique adult pentaradial symmetry. However, both the larval asymmetry. Hence, it is hypothesized that Nodal signaling has and adult body plans of enteropneust hemichordates are bilaterally been co-opted to pattern the dorsoventral axis of deuterostomes and symmetric, and larvae from indirect developing hemichordates for endoderm, mesoderm formation as well as anteroposterior such as Ptychodera flava (P. flava) share similarities in patterning in chordates. Hemichordata, together with echinoderms, morphology, axial organization, and developmental fate map with represent the sister taxon to chordates.