energies Article Drag Reduction by Laminar Flow Control Nils Beck 1,*, Tim Landa 2, Arne Seitz 3, Loek Boermans 4, Yaolong Liu 1 ID and Rolf Radespiel 2 1 Aeronautics Research Center Niedersachsen (NFL), TU Braunschweig, Hermann-Blenk-Straße 27, 38108 Braunschweig, Germany;
[email protected] 2 Institute of Fluid Mechanics (ISM), TU Braunschweig, Hermann-Blenk-Straße 37, 38108 Braunschweig, Germany;
[email protected] (T.L.);
[email protected] (R.R.) 3 Institute of Aerodynamics and Flow Technology (DLR-AS), German Aerospace Center, Lilienthalplatz 7, 38108 Braunschweig, Germany;
[email protected] 4 Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands;
[email protected] * Correspondence:
[email protected]; Tel.: +49-531-391-66662 Received: 20 December 2017; Accepted: 15 January 2018; Published: 20 January 2018 Abstract: The Energy System Transition in Aviation research project of the Aeronautics Research Center Niedersachsen (NFL) searches for potentially game-changing technologies to reduce the carbon footprint of aviation by promoting and enabling new propulsion and drag reduction technologies. The greatest potential for aerodynamic drag reduction is seen in laminar flow control by boundary layer suction. While most of the research so far has been on partial laminarization by application of Natural Laminar Flow (NLF) and Hybrid Laminar Flow Control (HLFC) to wings, complete laminarization of wings, tails and fuselages promises much higher gains. The potential drag reduction and suction requirements, including the necessary compressor power, are calculated on component level using a flow solver with viscid/inviscid coupling and a 3D Reynolds-Averaged Navier-Stokes (RANS) solver.