Meteoritics & Planetary Science 38, Nr 6, 871–885 (2003) Abstract available online at http://meteoritics.org Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars Victoria E. HAMILTON, 1* Philip R. CHRISTENSEN, 2 Harry Y. McSWEEN, Jr., 3 and Joshua L. BANDFIELD 2 1Hawai’i Institute of Geophysics and Planetology, University of Hawai’i, Honolulu, Hawai’i 96822, USA 2Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287–6305, USA 3Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996–1410, USA *Corresponding author. E-mail:
[email protected] (Received 18 October 2002; revision accepted 28 April 2003) Abstract–The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALHA77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite-like compositions are not present at or above TES detectability limits over most of the planet’s dust-free regions. However, we have confidently identified local-scale (100s–1000s km 2) concentrations of olivine- and orthopyroxene-bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma.