Nitric Oxide and Asthma

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide and Asthma Archives of Disease in Childhood 1995; 72: 259-262 259 CURRENT TOPIC Arch Dis Child: first published as 10.1136/adc.72.3.259 on 1 March 1995. Downloaded from Nitric oxide and asthma Bozhena Zoritch Since nitric oxide (NO) was first described as Role ofNO as vasodilator endothelium derived relaxing factor (EDRF),I NO dependent vasodilator tone is entirely there has been compelling evidence that NO is locally regulated and as such is probably one of involved in very many biological processes.2-9 the simplest and most fundamental of adaptive It has at least four roles in the lungs.3 These are mechanism in the cardiovascular system. as a pulmonary vasodilator, bronchodilator, Endothelium dependent relaxation was non-adrenergic non-cholinergic transmitter, demonstrated in many vascular preparations, and inflammatory mediator. There are three including veins, arteries, and microvessels.'5 types of NO synthase, the enzyme catalysing However, while the arteries and arterioles are the formation of NO - endothelial, neuronal in a continuous state ofNO mediated vasodila- (both known as constitutive or cNOs), and tion, basal release of NO does not control the macrophage or inducible (iNOs) forms (fig resting tone of peripheral veins, although it 1).8 Agonists activate cNOs by an increase in may have an effect in central veins. Endothelial calcium ion (Ca2+) concentration resulting in NO synthesis influences the adhesion and release of NO in seconds.10 iNOs is part of the aggregation of platelets and leucocytes. immune system and is induced by cytokines, Endothelial dysfunction, either genetic or endotoxin, and lipopolysaccharide resulting in acquired, can lead to cardiovascular disease formation of larger amounts of NO.11 including atherosclerosis, essential and preg- However, this reaction involves gene transcrip- nancy induced hypertension.6 In the lung, tion, and is therefore much slower, resulting in pulmonary vessels also synthesise NO continu- increased production ofNO over several hours ously and this seems to be important for or even days. It can be blocked by glucocorti- maintaining blood flow within the lungs and costeroids. Once formed, NO activates soluble matching ventilation to perfusion.'6 Reduced guanylyl cyclase (sGG) after binding to its NO release may be the mechanism under- http://adc.bmj.com/ haem moiety to initiate a three dimensional lying hypoxic pulmonary vasoconstriction. change in the shape of the enzyme which Inhalation of NO can have a therapeutic effect increases its activity and consequently the pro- in diseases associated with pulmonary vaso- duction of cyclic guanosine 3'5'monophos- constriction.'7-'9 NO was first used in adult University of phate (cGMP).12 13 The rise in cGMP results respiratory distress syndrome as a pulmonary Deparment of Child in relaxation of smooth muscle but the mech- vasodilator.20 In 1992 two groups in North Health, Southampton anism by which this happens is unknown. America used NO in treating persistent fetal on September 25, 2021 by guest. Protected copyright. General Hospital, When produced in large quantities, NO is Tremona Road, circulation successfully without causing Southampton involved in tissue damagecnannand cell death. hypotension or methaemoglobinaemia.21 22 It S016 6YD Inactivation of enzymes containing transition is already recognised that NO is an alternative Correspondence to: metals, including mitochondrial enzymes, is to extracorporeal membrane oxygenation in Dr Zoritch. one of the proposed toxic effects. 4 selected cases. NO in higher concentrations can have adverse influences on capillary permeability, Vasodilator Cytokines Steroids causing oedema and plasma leak. In inflamma- tory lung conditions, such as asthma, induc- A Receptor B receptor lInhibitors tion of NOs in endothelium as well as epithelium may contribute to hyperaemia of L-arginine ^, + , L-arginine Induction mucosa, airway narrowing, and broncho- cNsN Ca2NO constriction. L-citrulline L-Citrullif' Endothelial cell NO Endothelial cell Epithelial cell NO as a bronchodilator Glyceryl trinitrate and sodium nitroprusside, whose vasodilator activity is partly mediated sGC) by NO production, relax airway smooth mus- cGMP GTP cle in vitro, resulting in an increase in sGC Relaxation Smooth muscle cell activity and increase in cGMP.23 It has been proposed that the epithelial lining produces an Figure 1 (A) cNOs is activated by a rise in Ca2+ in response to activation to a surface epithelial derived relaxing factor, which is receptor. (B) iNOs is induced by cytokines or lipopolysaccharide resulting in larger similar to EDRF, but is not certain to be amounts ofNOformation (from Barnes and BelvisP). GTP=guanosine triphosphate. NO.24 There is some evidence that relaxation 260 Zoritch of precontracted guinea pig trachea is induced hydroxyl radicals.32 High concentration of NO by NO.2526 In asthma, the high concentration may have effects on DNA and be genotoxic and ofNO produced by iNOs in epithelial cells may cytotoxic.33 Arch Dis Child: first published as 10.1136/adc.72.3.259 on 1 March 1995. Downloaded from suppress the activity of cNOs, and cause enhancement in intracellular calcium concen- tration and airway constriction. The histamine Role ofNO as neurotransmitter and carbachol induced increase in cGMP pro- There is increasing evidence that NO may duction in the respiratory system has been function as a neurotransmitter of inhibitory shown to be an L-arginine dependent process.26 non-adrenergic non-cholinergic (NANC) It could be speculated that the epithelial layer, nerves or purinergic pathways as they were by releasing NO, acts as a negative feedback sys- previously described34 (fig 2). NO appears to tem to histamine induced contractions. In account for the bronchodilator NANC response asthma, high concentrations of NO produced in vitro in human central and peripheral by inducible NO synthases in inflammatory or airways. Nerves containing NOs appear to epithelial cells may downregulate the activity of supply bronchial vessels, airway smooth muscle, cNOs. This may disturb the breaking mech- and submucosal glands. Parasympathetic, anism that prevents enhanced airway constric- sympathetic, and sensory ganglia supplying the tions. Damage or removal of epithelium airways also contain NOs. NOs inhibitors increases smooth muscle responsiveness.27 In potentiate the cholinergic neural response asthma, epithelium is often damaged which may by acting as a functional antagonist to also affect production of NO by cNOs which acetylcholine in airway smooth muscle. would contribute to bronchospasm.28 Airway There is evidence that NO modulates reflex responsiveness to histamine is increased bronchoconstriction.35 Bronchodilator NANC after intratracheal inoculation of parainfluenza nerves are the only neural bronchodilator type 3 virus and can be blocked by inhaling pathway in the human airway. L-arginine.29 Therefore, it is likely that the The question for research is whether there is deficiency in endogenous NO production any defect in those nerves in diseased airways. after a viral infection is due to a dysfunction of There is some evidence for this. Although the cNOs. A challenging hypothesis is that NANC responses in tissues from patients with bronchial hyperresponsiveness may be sup- mild asthma were not altered, responses were pressed by blocking the activity of the inducible significantly reduced from patients with cystic form of NOs by using glucocorticosteroids. fibrosis.36 Further information is needed on This would prevent downregulation of cNOs by the NANC neural bronchodilator pathway to iNOs. The effect of NO as a bronchodilator in unravel whether it has a part to play in the humans has been disappointing. High concen- pathophysiology of early asthma in children. trations of inhaled NO (>20 000 parts per Persson et al demonstrated that NO in billion) caused an increase in airway resistance exhaled air increased with exercise in healthy in healthy subjects.30 An alternative might be to volunteers.37 It would be of value to study the http://adc.bmj.com/ manipulate release of neuronal NO which change of NO concentration in exercise should give selective bronchodilatation. This induced asthma to establish if there is any might be particularly effective in wheezy infants abnormality in the modulation of broncho- who respond poorly to P agonists or in chronic constriction in response to exercise in obstructive pulmonary disease. However, there asthmatics. Perhaps the bronchoconstriction are potential dangers ofinhaling NO in the pres- produced during exercise in subjects with ence of oxygen because of the formation of asthma and cystic fibrosis is due to the on September 25, 2021 by guest. Protected copyright. nitrate and nitrous and nitric acid which may increased NO release. increase airway responsiveness and in high con- Active smoking decreases the amount of centration may cause pulmonary oedema.31 NO in exhaled air in healthy people.38 The Peroxynitrite may generate tissue damaging regulation of NO synthesis by neuronal cNOs may be impaired in children whose mothers smoke in pregnancy and who were exposed Airway smooth to passive smoking in infancy which may muscle cell predispose them to wheezing illnesses. Peripheral nerve NO-cysteine complex A L-Citrulline Role of NO as an inflammatory mediator Macrophages express iNOs after exposure to * L-arginine / NO --w NO0 cytokines, in particular tumour necrosis factor- 1 ct, interferon y, and interleukin- 1 l as well as NOs endotoxins. Thus NO contributes
Recommended publications
  • Nitric Oxide, the Biological Mediator of the Decade: Fact Or Fiction?
    Eur Respir J 1997; 10: 699–707 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10030699 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Number 14 in this Series Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans. Unit of Critical Care, National Heart & ERS Journals Ltd 1997. Lung Institute, Royal Brompton Hospital, ABSTRACT: Nitric oxide (NO), an atmospheric gas and free radical, is also an London, UK. important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions Correspondence: T.W. Evans with other biological molecules such as reactive oxygen species are well charac- Royal Brompton Hospital Sydney Street terized. NO modulates pulmonary and systemic vascular tone through its vasodila- London SW3 6NP tor property. It has antithrombotic functions and mediates some consequences of UK the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynam- Keywords: Acute respiratory distress syn- ic changes in sepsis. drome Within the lungs, a diminution of NO production is implicated in pathological hypoxic pulmonary vasoconstriction states associated with pulmonary hypertension, such as acute respiratory distress nitric oxide syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ven- nitric oxide synthase tilation-perfusion mismatch. However, it may have deleterious effects through mod- pulmonary hypertension ulating hypoxic pulmonary vasoconstriction.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • 682.Full.Pdf
    Endogenous and nitrovasodilator-induced release of NO in the airways of end-stage cystic fibrosis patients To the Editors: blood pressure changes recorded, as described previously [8] and in the online supplementary material. A variety of isoforms of nitric oxide (NO) synthases are constitutively expressed in human airway and vascular Nearly undetectable levels of NO were found in CF patients endothelial cells continuously generating NO. NO plays an representing an output of 7.6¡6 ppb over 30 s. This is in important role in regulating lung function in health and contrast to patients presented for routine open heart surgery disease including modulation of pulmonary vascular resis- (91.4¡21 ppb over 30 s; fig. 1). Representative traces are tance, airway calibre and host defence. Production of NO and shown in figure 1A and C of the online supplementary its consumption by fluid-phase reactions can be detected and material. monitored in the exhaled air, providing an important window There was a significant increase in gas-phase NO above baseline to assess the dynamics of NO metabolism in health and levels by 250 mg GTN boluses in CF patients (36.7¡6ppb), inflammatory lung conditions, asthma in particular [1]. which was comparable to that seen in control patients with A series of milestone studies uncovered a relative deficiency of routine open heart surgery (48.7¡4 ppb; fig. 1). Representative pulmonary NO availability in cystic fibrosis (CF), a severe traces of GTN-induced exhaled NO are presented in figure 1B chronic inflammatory lung disease with studies generally and D of the online supplementary material.
    [Show full text]
  • Soluble Guanylate Cyclase As an Alternative Target for Bronchodilator
    Soluble guanylate cyclase as an alternative target for PNAS PLUS bronchodilator therapy in asthma Arnab Ghosha, Cynthia J. Koziol-Whiteb, Kewal Asosingha, Georgina Chenga, Lisa Ruplea, Dieter Gronebergc, Andreas Friebec, Suzy A. A. Comhaira, Johannes-Peter Staschd, Reynold A. Panettieri Jr.b, Mark A. Aronicaa,e, Serpil C. Erzuruma,e,1, and Dennis J. Stuehra,1 aDepartment of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; bRutgers Institute for Translational Medicine & Science, Rutgers University, New Brunswick, NJ 08901; cInstitute of Vegetative Physiology, Universität Würzburg, Wuerzburg 97070, Germany; dPharma Research Centre, Bayer Pharma AG, D-42096 Wuppertal, Germany; and eRespiratory Institute, Cleveland Clinic, Cleveland, OH 44195 Edited by Louis J. Ignarro, University of California, Los Angeles School of Medicine, Beverly Hills, CA, and approved March 11, 2016 (received for review December 10, 2015) Asthma is defined by airway inflammation and hyperresponsive- S1). Graded doses of the slow-release NO donor DETA/NO ness, and contributes to morbidity and mortality worldwide. Although [3,3-Bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene] produced bron- bronchodilation is a cornerstone of treatment, current bronchodilators chodilation in human PCLS similar to what was induced by a become ineffective with worsening asthma severity. We investigated standard β-agonist bronchodilator, Formoterol (Fig. 1B). In ad- an alternative pathway that involves activating the airway smooth dition, having a NO donor (sodium nitroprusside, SNP) present at a muscle enzyme, soluble guanylate cyclase (sGC). Activating sGC by its subeffective concentration made the preconstricted human small natural stimulant nitric oxide (NO), or by pharmacologic sGC agonists airways more responsive to lower doses of the β-agonist broncho- – – BAY 41 2272 and BAY 60 2770, triggered bronchodilation in normal dilator Isoproterenol (Fig.
    [Show full text]
  • Cardiovascular and Pulmonary Effects of NOS Inhibition in Endotoxemic Conscious Rats Subjected to Swimming Training
    Available online at www.sciencedirect.com Life Sciences 81 (2007) 1301–1308 www.elsevier.com/locate/lifescie Cardiovascular and pulmonary effects of NOS inhibition in endotoxemic conscious rats subjected to swimming training Aida Mehanna a, Daniele Cristina Vitorino a, Carolina Panis b, Eleonora Elisia Abra Blanco a, ⁎ Phileno Pinge-Filho b, Marli Cardoso Martins-Pinge a, a Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil b Pathological Sciences, State University of Londrina, Londrina, PR, Brazil Received 8 March 2007; accepted 12 September 2007 Abstract Sepsis is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors, impaired tissue perfusion, and multiple organ failure. During exercise training (ET), dynamic cardiovascular adjustments take place to maintain proper blood pressure and adjust blood supply to different vascular beds. The aim of this study was to investigate whether ET protects against the cardiovascular abnormalities induced by LPS, a model of experimental endotoxemia, and to evaluate the role of nitric oxide (NO) in pulmonary edema. Wistar rats were subjected to swimming training (up to 1 h/day, 5 days/week for 4 weeks) after which their femoral artery and vein were catheterized. LPS (5 mg/kg, i.v.), injected in control (C) and trained animals (ET), promoted 3 distinct phases in mean arterial pressure (MAP) and heart rate (HR). After ET the alterations in MAP were attenuated. The ET animals showed a lower pulmonary edema index (PEI) after LPS (C=0.65±0.01; ET=0.60±0.02), which was attenuated after treatment with aminoguanidine in both groups (C=0.53±0.02; ET=0.53±0.02, pb0.05).
    [Show full text]
  • Can Exhaled NO Be Used As a Marker of Airway Inflammation?
    Copyright ©ERS Journals Ltd 1998 Eur Respir J 1998; 12: 1248–1249 European Respiratory Journal DOI: 10.1183/09031936.98.12061248 ISSN 0903 - 1936 Printed in UK - all rights reserved EDITORIAL Can exhaled NO be used as a marker of airway inflammation? G. Hedenstierna, M. Högman The story of endogenously produced nitric oxide (NO) patients with bronchiectasis demonstrate increased expired began in 1980 when FURCHGOTT and ZAWADSKI [1] showed that NO, despite signs of active inflammation [11]. the vascular endothelium produces a powerful vaso-dilat- Why is an increase in exhaled NO not seen in the pres- ing substance which they called endothelium-derived ence of airway inflammation? One possible explanation is relaxing factor (EDRF). Seven years later it was identified lack of upregulation of inducible NOS. Support for this as NO [2, 3]. That such a simple molecule could exert so view was found in patients with cystic fibrosis [16]. Im- powerful effects was met by some scepticism, but was paired diffusion from the inflammatory cells through deb- soon a proven fact. A rapidly increasing list of publica- ris, oedema and mucus into the airway lumen, or increased tions established NO as a vasodilator, bronchodilator, neu- scavenging of NO are other, perhaps more likely, mecha- rotransmitter and an important component of the immune nisms, as discussed by HO et al. [11]. There are also other system [4], The detection of endogenously produced NO conditions of lung tissue inflammation that do not have in- in expired gas by GUSTAFSSON et al. [5] in 1991 was an impor- creased exhaled NO, as, for example, in adult respiratory tant discovery, indicating a new way of analysing endog- distress syndrome (ARDS) [17] and airway inflammation enously produced NO.
    [Show full text]
  • Oral L-Arginine Supplementation in Cystic Fibrosis Patients: a Placebo-Controlled Study
    Eur Respir J 2005; 25: 62–68 DOI: 10.1183/09031936.04.00086104 CopyrightßERS Journals Ltd 2005 Oral L-arginine supplementation in cystic fibrosis patients: a placebo-controlled study H. Grasemann*, C. Grasemann#, F. Kurtz*, G. Tietze-Schillings", U. Vester* and F. Ratjen* ABSTRACT: Exhaled nitric oxide (eNO) is decreased in cystic fibrosis (CF). The effect of oral L- AFFILIATIONS arginine, the precursor of enzymatic nitric oxide (NO) formation, on airway NO in patients with CF *Children’s Hospital #Dept of Human Genetics was studied. "Dept of Pharmacy, University of -1 In a pilot study, oral L-arginine was given in a single dose of 200 mg?kg body weight to eight Duisburg-Essen, Essen, Germany. healthy controls and eight CF patients. Subsequently, the same L-arginine dose was given to 10 patients with CF (five females) t.i.d. for 6 weeks in a randomised double-blind placebo-controlled CORRESPONDENCE H. Grasemann crossover study. Children’s Hospital A single dose of oral L-arginine resulted in a 5.5-fold increase of L-arginine in plasma and a 1.3- University of Essen fold increase of L-arginine in sputum after 2 h. Maximum eNO, within 3 h of L-arginine intake, Hufeland Str. 55 increased significantly in both CF patients (5.4¡2.1 ppb versus 8.3¡3.5 ppb) and controls D-45122 Essen Germany ¡ ¡ L (18.0 8.1 ppb versus 26.4 12.3 ppb). Supplementation of -arginine for 6 weeks resulted in a Fax: 49 2017235983 sustained increase in eNO compared to placebo (9.7¡5.7 ppb versus 6.3¡3.1 ppb).
    [Show full text]
  • Exposure to Traffic-Related Air Pollution and Changes in Exhaled Nitric Oxide and DNA Methylation in Arginase and Nitric Oxide Synthase in Children with Asthma N
    Ji et al. Environmental Health (2021) 20:12 https://doi.org/10.1186/s12940-020-00678-8 RESEARCH Open Access Exposure to traffic-related air pollution and changes in exhaled nitric oxide and DNA methylation in arginase and nitric oxide synthase in children with asthma N. Ji1, M. Fang1, A. Baptista2, C. Cepeda1, M. Greenberg2, I. Colon Mincey3, P. Ohman-Strickland1, F. Haynes1, N. Fiedler1, H. M. Kipen1 and R. J. Laumbach1* Abstract Background: Traffic-related air pollution (TRAP) has been associated with increased risk of airway inflammation in children with asthma. While epigenetic changes could potentially modulate TRAP-induced inflammatory responses, few studies have assessed the temporal pattern of exposure to TRAP, epigenetic changes and inflammation in children with asthma. Our goal was to test the time-lag patterns of personal exposure to TRAP, airway inflammation (measured as fractional exhaled nitric oxide, FeNO), and DNA methylation in the promoter regions of genes involved in nitric oxide synthesis among children with asthma. Methods: We measured personal exposure to black carbon (BC) and FeNO for up to 30 days in a panel of children with asthma. We collected 90 buccal cell samples for DNA methylation analysis from 18 children (5 per child). Methylation in promoter regions of nitric oxide synthase (NOS1, NOS2A, NOS3) and arginase (ARG1, ARG2) was assessed by bisulfite pyrosequencing. Linear-mixed effect models were used to test the associations of BC at different lag periods, percent DNA methylation at each site and FeNO level. Results: Exposure to BC was positively associated with FeNO, and negatively associated with DNA methylation in NOS3.
    [Show full text]
  • Pulmonary Hypertension and the Nitric Oxide System
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1461 Pulmonary Hypertension and the Nitric Oxide System DAN HENROHN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0325-3 UPPSALA urn:nbn:se:uu:diva-347767 2018 Dissertation presented at Uppsala University to be publicly examined in Enghoffsalen, Akademiska sjukhuset, Ingång 50 bv, Uppsala, Tuesday, 12 June 2018 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in Swedish. Faculty examiner: Professor, MD John Pernow (Department of Medicine, Karolinska Institutet, Stockholm, Sweden). Abstract Henrohn, D. 2018. Pulmonary Hypertension and the Nitric Oxide System. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1461. 83 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0325-3. Pulmonary hypertension (PH) is a pathophysiological state associated with several medical conditions, leading to progressive rise in pulmonary vascular resistance (PVR) and right ventricular failure. The clinical PH classification encompasses five main World Health Organization (WHO) groups; pulmonary arterial hypertension (PAH), PH due to left heart disease, PH due to lung diseases and/or hypoxia, chronic thromboembolic PH, and PH with unclear multifactorial mechanisms. Nitric oxide (NO) is a potent vasodilator. Impaired NO production via the classical L-arginine-NO synthase (NOS) pathway has been implicated in PH. Phosphodiesterase-5 (PDE5) inhibitors augment NO signalling, and are considered as one of the cornerstone treatments in PAH. The studies in this thesis aim at to explore and expand the understanding of the NO system in patients with PH. In paper I, we found that PAH patients (WHO group 1) have lower bronchial NO flux compared to healthy controls and patients with PH (WHO group 2–4).
    [Show full text]
  • Exhaled Nitric Oxide in Systemic Sclerosis Lung Disease
    Hindawi Canadian Respiratory Journal Volume 2017, Article ID 6736239, 8 pages https://doi.org/10.1155/2017/6736239 Research Article Exhaled Nitric Oxide in Systemic Sclerosis Lung Disease Natalie K. Kozij,1 John T. Granton,1 Philip E. Silkoff,2 John Thenganatt,1 Shobha Chakravorty,3 and Sindhu R. Johnson4 1 University Health Network Pulmonary Hypertension Programme, Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada 2Department of Medicine, Temple University, Philadelphia, PA, USA 3University Health Network Pulmonary Hypertension Programme, Toronto General Hospital, Toronto, ON, Canada 4University Health Network Pulmonary Hypertension Programme, Toronto General Hospital, Toronto Scleroderma Program, Toronto Western Hospital, Mount Sinai Hospital, Department of Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada Correspondence should be addressed to Sindhu R. Johnson; [email protected] Received 28 September 2016; Revised 9 December 2016; Accepted 9 January 2017; Published 14 February 2017 Academic Editor: Djuro Kosanovic Copyright © 2017 Natalie K. Kozij et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Exhaled nitric oxide (eNO) is a potential biomarker to distinguish systemic sclerosis (SSc) associated pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD). We evaluated the discriminative validity, feasibility, methods of eNO measurement, and magnitude of differences across lung diseases, disease-subsets (SSc, systemic lupus erythematosus), and healthy-controls. Methods. Consecutive subjects in the UHN Pulmonary Hypertension Programme were recruited. Exhaled nitric oxide was measured at 50 mL/s intervals using chemiluminescent detection.
    [Show full text]
  • And D-Arginine on Exhaled Nitric Oxide in Steroid Naive Asthma Thorax: First Published As 10.1136/Thx.56.8.602 on 1 August 2001
    602 Thorax 2001;56:602–606 EVect of nebulised L- and D-arginine on exhaled nitric oxide in steroid naive asthma Thorax: first published as 10.1136/thx.56.8.602 on 1 August 2001. Downloaded from D C Chambers, J G Ayres Abstract Nitric oxide (NO) is found in increased Background—Nitric oxide (NO) is a prod- amounts in the exhaled breath of patients with uct of the enzyme nitric oxide synthase asthma and has been implicated in the (NOS) and is found in normal and pathophysiology of the disease.12NO is a gase- asthmatic human airways. The adminis- ous product of the enzyme nitric oxide tration of L-arginine results in an increase synthase (NOS), of which there are both in airway NO production in asthmatic constitutive (nNOS and eNOS) and inducible subjects. This is thought to occur because (iNOS) isoforms. The substrate for NOS is the L-arginine is the substrate for NOS. How- amino acid L-arginine,and the enzyme is stereo- ever, studies in the systemic vasculature isomer specific, suggesting that D-arginine will suggest that other mechanisms may be not act as a substrate for NOS. responsible. The administration, either by nebulisation or Methods—Eight patients with steroid orally, of L-arginine induces an increase in NO production in the respiratory tracts of normal naive asthma each received 2.5 g 34 and asthmatic subjects. L-arginine also pre- L-arginine, 2.5 g D-arginine, and 2.0% saline by ultrasonic nebuliser on separate vents methacholine induced bronchoconstric- tion in isolated guinea pig tracheal segments days in a randomised, single blind man- 5 ner.
    [Show full text]
  • Measurement of Exhaled Nitric Oxide in Children, 2001
    Copyright #ERS Journals Ltd 2002 Eur Respir J 2002; 20: 223–237 European Respiratory Journal DOI: 10.1183/09031936.02.00293102 ISSN 0903-1936 Printed in UK – all rights reserved ERS ATS STATEMENT Measurement of exhaled nitric oxide in children, 2001 E. Baraldi and J.C. de Jongste on behalf of the Task Force Members of the Task Force: E. Baraldi, J.C. de Jongste, B. Gaston, (Chairmen); K. Alving, P.J. Barnes, H. Bisgaard, A. Bush, C. Gaultier, H. Grasemann, J.F. Hunt, N. Kissoon, G.L. Piacentini, F. Ratjen, P. Silkoff, S. Stick This statement was approved by the European Respiratory Society Executive Committee (November 2001) and the American Thoracic Society Board of Directors (March 2002). CONTENTS The biology of nitric oxide in paediatric airways. 224 reservoir . .....................228 Nitric oxide synthases ..................224 Off-line tidal breathing into a collection bag . 228 Cellular sources of exhaled nitric oxide......224 Off-line single exhalations with constant flow Anatomical sites of nitric oxide formation . 224 using biofeedback or dynamic-flow restrictor: Biological relevance of exhaled nitric oxide. 224 the off-line method of choice .............229 Genetics of the neuronal nitric oxide synthase Exhaled nitric oxide in infants . .............229 pathway in asthma . ..................225 Tidal breathing techniques . .............229 Nitric oxide and lung development. ......225 Single-breath technique .................230 Nasal nitric oxide production . ..........225 Nasalnitricoxidemeasurements.............230 Single-breath on-line measurement ..........225 Nasal nitric oxide measurements with The problems of applying the single-breath on-line constant flow . .....................230 method to preschool children . ..........226 Nasal nitric oxide measurements with Practical measures that can facilitate the single- variable flow .
    [Show full text]