<<

Hadron- Transition in High Density Short Range Dynamics of Nuclear Forces

Probing -Nucleon Interactions at < 1fm and their influence on the nuclear structure at short distances.

- Intermediate – short distance tensor forces

- Isospin dependence of the tensor forces

- NN repulsive core

- Hadron-quark transition in the core

- non-nucleonic components, hidden color, gluons Introduction to Nuclear Forces

- 1904 Plum pudding model J.J. Thompson

- 1911 Discovery of Atomic Nuclei E. Rutherford, Philosophical Magazine Series 6, Vol .21, 1911 “…such large deflexion can not be made of large number of small deviaons…. ….. deflexion is due to single atomic encounter……” - 1913 Rutherford-Bohr model of

8 Size of the atom: 10 cm ⇠ 13 Size of the nucleus: 10 cm ⇠ Mass of the atom: 99.98% from the nucleus Introduction to Nuclear Forces

- 1919 discovery of E. Rutherford - 1931 discovery of deuterium H. Urey - 1932 Discovery of neutron J. Chadwick - 1932 pn model of the nucleus: W.Heisenberg, D.D. Iwanenko Nuclear Physics from the properes of N-N interacon

- 1939 Quadrupole moment of the deuteron: Kellogg, Rabi, Ramsey, Zakharias 13 - range of the NN force 10 cm ⇠ - intensity of interaction 1500 times of electromagnetic ⇠ - strong dependence on spin orientation Constructing NN Potentials V 2N V c V l2L2 V tS V lsL · S vls2 L · S 2 e2 R = + + 12 + + ( ) Vcoul = 4⇡r - NN force is attractive: Nuclei are Stable

“If the two-body forces are everywhere attractive and if many-body forces are neglected then the nucleon pairs are sufficiently close to take advantaged of attractive interactions and a collapsed state of nuclear matter results “ G. Breit and E.P. Wigner, Phys. Rev. 53, 998 (1938). Jastrow 1951 assumed the existence of the infinite hard core to explain the angular distribution of pp cross section at 340 MeV (r0=0.6fm)

Non-monotonic NN central potential with the repulsive core was introduced: Brueckner & Watson 1953 to obtain nuclear density saturation. Modern NN Potentials

2N 2N 2N 2N V = VEM + Vπ + VR 2N c l2 2 t ls ls2 2 VR = V + V L + V S12 + V L · S + v (L · S) i V = Vint,R + Vcore −1 r−r0 V = 1+e a core ! " 60’s Hans Bethe 1961: More intellectual energy is spent on nuclear physics than on all other issues taken together during enre human history. VNN,MeV 15 000

10 000

5000

0.2 0.4 0.6 0.8 r,Fm Nuclear Forces and Field Theory

- 1935 meson exchange model: H. Yukawa

- Predicted meson with around 150 MeV :

- 1947 meson discovered: C.F. Powel

- 1943-1945 – most probably seen by: Artem Alikhanian ⇡+ µ+ + ⌫ Aragats Cosmic Ray Staon ! µ Field Theory of & Mesons 1947- Pomeranchuk, Landau - 1950's

2 2 ↵em(µ ) ↵em(Q )= 2 2 1 ↵em(µ ) ln Q 3⇡ µ2 3⇡ 277 Q = m e 2↵ 10 GeV e ⇠ Infinite interacon occurs at transferred momenta approx 500 MeV/c or at internucleon distances 1~Fm.

It seems we have a problem about which Nature is not aware of Y.Pomeranchuk

All formal quantum field theories with Yukawa type interacons contain the problem of the ``Zero Charge'’ Pomeranchuk, Sudakov, Ter-Marrosyan, Phys. Rev. 1956

Phenomenological One-Boson-Exchange Models Quantum Chromodynamics

M. Gell-Mann - 1973 QCD was established as Yang-Mills theory: H. Fritzcsh H. Leutwhiller Quantum Chromodynamics QCD: Asymptotic Freedom

D.Gross D. Politzer - 1973 Coupling constant renormalization: F.Wilczek 2 2 α(M ) αs(Q )= 11− 2 2 3 Nf 2 Q 1+ 4π αs(M )ln M 2

2 2 ↵em(µ ) ↵em(Q )= 2 2 1 ↵em(µ ) ln Q 3⇡ µ2 NN Interaction in QCD: Pauli Blocking

15 000

Pauli Blocking 10 000

5000

0.2 0.4 0.6 0.8

Contradicts Observations: will predict masses not more than 0.1 - 0.6 Solar mass NN Interaction in QCD: Lattice Calculation

600 100 1 3S0 500 S1 50 OPEP 400

300 0

(r) [MeV] 200 C V 100 -50 0.0 0.5 1.0 1.5 2.0 0 0.0 0.5 1.0 1.5 2.0 r [fm] NN Interaction in QCD: Effective Theories

k 1 M ⌧ NN Interaction in QCD: Perturbative QCD

Hidden Color Vc, MeV 15 000 Intrinsic strangeness/charm

10 000

5000

0.2 0.4 0.6 0.8 r 6q 1 4 4 T =0,S=1 = 9 NN + 45 + 5 CC q q q ~80% hidden color Harvey 76, …. Brodsky,Ji, Lepage, PRL 83 6q 1 4 4 T =0,S=1 = 9 NN + 45 + 5 CC q q q

CC ⌘ NC NC

The NN core can be due to the orthogonality of

=0 h Nc,Nc | N,N i II. From NN Interaction to Nuclear & Nuclear Matter Structure

“Standard” Nuclear Physics Approach A-body Schroedinger equation interacting through NN -potential

2 1 ri + V (x x ) (x , ,x )=E (x , ,x ) 2 2m 2 i j 3 1 ··· A 1 ··· A i i,j X X 4 5

2 rN V (x) (x)=E (x) 2m HF N N N h i Hartree-Fock potential will smear out main properties NN potential 1990s Asymptotics of high momentum component of nuclear A -start with A-body Schroedinger equation interacting through NN -potential

2 1 r i + V (x x ) (x , ,x )=E (x , ,x ) 2 2m 2 i j 3 1 ··· A 1 ··· A i i,j X X 4 5 3 1 V (q) (k , ,k q, ,k +q, ,k ) d q 2 ij A 1 i j A (2⇡)3 i=j ··· ··· ··· (k , k , k )= 6 A 1 n A R P A k2 ··· ··· i 2m EB i=1 N P p2 k = p, EB, ki q = p q 0 q p, k + q k + p 0 k k p 2m ⇡ ! ⇡ j ⇡ j ⇡ ! i ⇡ j ⇡

(1) VNN(p) (k1, ,ki = p, ,kj p, ,kA) 2 f(k1, 0 0 ) A ··· ··· ⇡ ··· ⇠ p ··· ··· ··· Amado, 1976 (2) 1 VNN(q)VNN(p) 3 A ( p, ) p2 (p q)2 d q ··· ··· ⇠ R n -- IF: VNN = q with n>1 and is finite range qmin

(2) V (p) 1 dq A ( p, ) p2 qn ··· ··· ⇠ qmin R (2) (1) A A Frankfurt, Strikman 1988 ⌧ Frankfurt, MS, Strikman 2008

Yerevan Physics Instute 4 GeV

Jefferson Lab 6 GeV Brookhaven Naonal Lab, 15 GeV 1. Short-Range Correlations in Nuclei -- The same is true for relativistic equations as: Bethe-Salpeter or Weinberg Infinite Momentum Frame equations

(1) VNN(p) -- From (k1, ,ki = p, ,kj p, ,kA) 2 f(k1, 0 0 ) follows A ··· ··· ⇡ ··· ⇠ p ··· ··· ··· for large k>kF ermi

Frankfurt, Strikman Phys. nA(k) aNN(A)nNN(k) Rep, 1988 ⇡ Day,Frankfurt, Strikman, MS, Phys. Rev. C 1993

Egiyan et al, 2002,2006 - Experimental observations Fomin et al, 2011 Day, Frankfurt, MS, Strikman, PRC 1993 Egiyan, et al PRC 2004 6 3He 12 C 3 0

/2) 6 D 4 63 He Cu

/A)/( 3 A ( 0 6 9Be 197 Au 3

0 0.8 1 1.2 1.4 1.6 1.8 1 1.2 1.4 1.6 1.8 2 x x Fomin et al PRL 2011 Day, Frankfurt, MS, Frankfurt, MS, Strikman, 1. Extraction of a2(A,Z) for wide range of Nuclei Strikman, PRC 1993 IJMP A 2008

Fomin et al PRL 2011 a2’s as relave probability of 2N SRCs

Table 1: The results for a2(A, y) A y This Work Frankfurt et al Egiyan et al Famin et al 3He 0.33 2.07 0.08 1.7 0.3 2.13 0.04 4He 0 3.51±0.03 3.3±0.5 3.38 0.2 3.60±0.10 9Be 0.11 3.92±0.03± ± 3.91±0.12 12C 0 4.19±0.02 5.0 0.5 4.32 0.4 4.75±0.16 27Al 0.037 4.50±0.12 5.3±0.6 ± ± 56Fe 0.071 4.95±0.07 5.6±0.9 4.99 0.5 64Cu 0.094 5.02±0.04± ± 5.21 0.20 197Au 0.198 4.56±0.03 4.8 0.7 5.16±0.22 ± ± ± 2. Dominance of the (pn) component of SRC

for large k>k n (k) a (A)n (k) F ermi A ⇡ NN NN Theorecal analysis of BNL Data

E. Piasetzky, MS, L. Frankfurt, M. Strikman,J.Watson PRL , 2006

P =0.056 0.018 Direct Measurement at JLab R.Subdei, et al Science , 2008 pp/pn ± 10 2 pn

pp/np from [ 12 C(e,e’pp) / 12 C(e,e’pn) ] /2 pp/2N from [ 12 C(e,e’pp) / 12 C(e,e’p) ] /2 Factor of 20 np/2N from 12 C(e,e’pn) / 12 C(e,e’p) 12 12 10 np/2N from C(p,2pn) / C(p,2p) SRC Pair Fraction (%) pp Expected 4 (Wigner counting) 0.3 0.4 0.5 0.6 Missin g Momentum [ GeV/c ] Theoretical Interpretation

(1) VNN(p) (k1, ,ki = p, ,kj p, ,kA) 2 f(k1, 0 0 ) A ··· ··· ⇡ ··· ⇠ p ··· ··· ··· n (k) a (A)n (k) A ⇡ NN NN

150 V, MeV 100 Vc

50

0

-50

-100

VT

-150 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 r,fm Explanaon lies in the dominance of the tensor part in the NN interacon

V (r) V ( r)+V (r) S (r)+V L S NN c t · 12 LS · S12 = 3(1 rˆ)(2 rˆ) 12 S12 pp =0 | · · Isospin 1 states M.S, Abrahamyan, Frankfurt,Strikman PRC,2005 S12 nn =0 S |pn =0 12| S pn =0Isospin 0 states 12| ⇥

3He Explanaon lies in the dominance of the tensor part in the NN interacon

V (r) V ( r)+V (r) S (r)+V L S NN c t · 12 LS · S12 = 3(1 rˆ)(2 rˆ) 12 S12 pp =0 | · · Isospin 1 states Sciavilla, Wiringa, Pieper, Carlson PRL,2007 S12 nn =0 S |pn =0 5 12 10 4 AV18/UIX He | 4 104 AV6 ’ He S12 pn =0Isospin 0 states AV4 ’ 4He )

6 3 | ⇥ 10 AV18 2H

102 (q,Q=0) (fm 1 NN 10

100

10-1

01234 5 q (fm -1) - Dominance of pn short range correlations as compared to pp and nn SRCS 2006-2008s - Dominance of NN Tensor as compared to the NN Central Forces at <= 1fm

2011- present - Two New Properties of High Momentum Component

- Energetic in Neutron Rich Nuclei 3. Momentum sharing properties of Nuclear High Momentum Component

nA(p) a (A) n (p) at p>kF ⇠ NN · NN -- Dominance of pn Correlations (neglecting pp and nn SRCs) n (p) n (p) n (p) NN ⇡ pn ⇡ (d)

nA(p) a (A) n (p) ⇠ pn · d a (A) a (A) a (A) 2 ⌘ NN ⇡ pn - Define momentum distribution of proton & neutron Z A Z nA(p)= nA(p)+ nA(p) A p A n A 3 np/n(p)d p =1 - Define 600 R 600 Z A Z A 3 A 3 In = n (p)d p Ip = np (p)d p A n A kZF kZF - and observe that in the limit of no pp and nn SRCs

Ip = In Z A Z - Neglecting CM motion of SRCs nA(p) nA(p) A p ⇡ A n First Property: Approximate Scaling Relation -if contribuons by pp and nn SRCs are neglected and the pn SRC is assumed at rest MS,arXiv:1210.3280 Phys. Rev. C 2014 - for k 600 MeV/c region: ⇠ F

x nA(p) x nA(p) p · p ⇡ n · n

Z A Z where xp = A and xn = A . Realistic 3He Wave Function: Faddeev Equation

-3 10 3 1/2 nd 10 2

10 xpnp 1 x n . -1 n n x n(p), GeV 10 -2 10 -3 10 MS,PRC 2014 -4 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p , GeV/c

1.4

Ratio 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p , GeV/c Be9 Variational Monte Carlo Calculation: Robert Wiringa 2013 hp:// www.phy.anl.gov/theory/research/momenta/

9 Be(c) - AV18/UIX 10 3

10 2

n 10 1 p

10 0

10 -1 (k) 10 -2

10 -3

10 -4

10 -5

-6 10 0 1 2 3 4 5 6 7 8 9 10 k (fm -1 ) B10 Variational Monte Carlo Calculation: Robert Wiringa 10 Be - AV18/UIX 10 3

10 2

n 10 1 p

10 0

10 -1 (k) 10 -2

10 -3

10 -4

10 -5

-6 10 0 2 4 6 8 10 k (fm -1 ) Second Property: Inverse Fractional Dependence of High Momentum Component a (A, y) a (A, 0) f(y) with f(0) = 1 and f(1) = 0 NN ⇡ NN · n n i f( xp xn )=1 bi xp xx with bi =0 | | j=1 | | j=1 P P n i In the limit bi xp xx 1 Momentum distribuons of p & n are inverse j=1 | | ⌧ P proporonal to their fracons

A 1 n (p) a2(A, y) nd(p) p/n ⇡ 2xp/n · Predictions: High Momentum Fractions MS,arXiv:1210.3280,2012 Phys. Rev. C 2014

1 1 3 P (A, y)= a2(A, y) nd(p)d p p/n 2xp/n kF R y = x x | p n| A Pp(%) Pn(%) 12 20 20 27 23 22 56 27 23 197 31 20 Predictions: Minority Component has larger high momentum

MS,arXiv:1210.3280,2017 fraction: Phys. Rev. C 2014

Checking for He3 Energetic Neutron Energetic Neutron (Neff & Horiuchi) p p Ekin = 14 MeV (p= 157 MeV/c) Ekin = 13.97 MeV

n En = 18.74 MeV Ekin = 19 MeV (p= 182 MeV/c) kin MS,arXiv:1210.3280 VMC Estimates: Robert Wiringa Phys. Rev. C 2014 Table 1: Kinetic energies (in MeV) of proton and neutron Ay Ep En Ep En kin kin kin kin 8He 0.50 30.13 18.60 11.53 6He 0.33 27.66 19.06 8.60 9Li 0.33 31.39 24.91 6.48 3He 0.33 14.71 19.35 -4.64 3H 0.33 19.61 14.96 4.65 8Li 0.25 28.95 23.98 4.97 10Be 0.2 30.20 25.95 4.25 7Li 0.14 26.88 24.54 2.34 9Be 0.11 29.82 27.09 2.73 11B 0.09 33.40 31.75 1.65 Symmetric Nuclei Asymmetric Nuclei n(p) low momentum

p high momentum p n n

kF p

1 2 Kp = Kn kF =(3⇡ ⇢N ) 3 Convenonal Theory: Kn >Kp (Shell Model, HF, HO Ab Inio)

Asymmetric Nuclei Neutron Stars

New Predicons

1. Per nucleon, more protons are in high momentum tail p n p n

2. Kin Energy Inversion K >K p n ? Protons my completely populate the high momentum tail

- Experimental Verification of Momentum Sharing Effects

- pn dominance persist for heavy nuclei

O. Hen, MS, L, Weinstein et.al. Science, 2014

- verifying excess/suppression of high momentum protons/neutrons in neutron rich nuclei - measuring proton and neutron momentum dependences separately Preliminary Meytal, Weizmann workshop March,2017 - New Properties of High Momentum MS,arXiv:1210.3280.2012 Distribution of Nucleons in Asymmetric Nuclei Phys. Rev. C 2014

- Protons are more Energetic in M. McGauley, MS Neutron Rich High Density Nuclear Matter arXiv:1102.3973,2011

O. Hen, et.al. - First Experimental Indication Science, 2014,

R.B. Wiringa et al, - Confirmed by VMC calculations for A<12 Phys. Rev. C 2014

W. Dickhoff et al - For Nuclear Matter Phys. Rev. C 2014 - For Medium/Heavy Nuclei J. Ryckebusch, W.Cosyn M. Vanhalst., J.Phys 2015 O.Arles, M.S. - In Light-Cone Approximation: Phys. Rev. C 2016 Implications/Predictions for Nuclear Physics and Astrophysics - more/less protons/neutrons per nucleon in neutron rich nuclei - protons are extremely energetic in Neutron Stars - protons are more modified in neutron rich nuclei - u- are more modified than d-quarks in large A Nuclei

Experimental Implications: - Flavor Dependence of EMC effect - A dependence of NuTev Anomaly - u/d modification can be checked in neutrino-nuclei or pvDIS processes Implication for High Density Asymmetric Nuclear Matter Implications: For Nuclear Matter

1 1 3 P (A, y)= a2(A, y) nd(p)d p p/n 2xp/n kF R

1 7 For xp = 9 and y = 9 2 1 and using kF,N =(3 xN ⇥) 3 1 7 For xp = 9 and y = 9 1 a2(,y) 3 2 3 P (,y)= nd(k)d k and using kF,N =(3 xN ⇥) p/n 2xp/n kF R

1 0.9

Fractions 0.8 protons

0.7

0.6 0.5 0.4

0.3 0.2

0.1 neutrons

1 2 3 4 5 6 7 8 9 10 /0 Implication for asymmetric nuclear matter

0.12 0.12 n(k) n(k) 0.1 n 0.1 p

0.08 0.08

0.06 0.06

0.04 0.04

0.02 0.02

0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 k, GeV/c k, GeV/c Asymmetric Nuclear Matter Calculations A.Rios, A. Polls and W. H. Dickhoff, Phys. Rev. C 2014

CD-Bonn Av18 N3LO 2 2 x =0.5 1.8 p -3 1.8 x =0.4 p ρ=0.16 fm 1.6 x =0.3 1.6 p T=5 MeV 1.4 xp=0.2 1.4 (k) (k)

p x =0.1 p 1.2 p 1.2 1 1

(k)/n 0.8 0.8 (k)/n n n

n 0.6 0.6 n 0.4 0.4 0.2 0.2 0 0 1/3 1/3 p

1.6 1.6 p 1.4 1.4 (k) x (k) x p 1.2 1.2 p /n /n 1/3

1/3 1 1 n n 0.8 0.8 (k) x (k) x 0.6 0.6 n n n n 0.4 0.4 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 Momentum, k [MeV] Momentum, k [MeV] Momentum, k [MeV] Some Possible Implications of our Results

Cooling of Neutron Star: Large concentration of the protons above the Fermi momentum will allow the 1 condition for Direct URCA processes pp +pe >pn to be satisfied even if xp < 9 . This will allow a situation in which intensive cooling of the neutron stars will 1 be continued well beyond the critical point xp = 9 .

Superfluidity of Protons in the Neutron Stars:

Transition of protons to the high momentum spectrum will smear out the energy gap which will remove the superfluidity condition for the protons. This will also result in significant changes in the mechanism of generation of neutron star magnetic fields. Protons in the Neutron Star Cores: The concentration of protons in the high momentum tail will result in proton 3 3 densities ⇢p pp kF,p. This will result in an equilibrium condition with ”neutron skin”⇠ e↵ect in which large concentration of protons will populate the core rather than the crust of the neutron star. This situation may provide very di↵erent dynamical conditions for generation of magnetic fields of the stars.

Isospin Locking and Large Masses of Neutron Stars With an increase of the densities more and more protons move to the high momentum tail where they are in short range tensor correlations with neutrons. In this case on will expect that high density nuclear matter will be dominated by configurations with quantum numbers of tensor correlations S = 1 and I = 0. In such scenario protons and neutrons at large densities will be locked in the NN iso- singlet state. Such situation will double the threshold of inelastic excitation from NN N to NN (NN⇤) transition thereby sti⇥ening the equation of the state.! This situation! my explain the observed neutron star masses in Ref.[?] which are in agreement with the calculation of equation state that include only nucleonic degrees of freedom Is the Observed Effects Universal for Two Component Asymmetric Fermi Systems? - Start with Two Component Asymmetric Degenerate Fermi Gas - Asymmetric: ⇢1 << ⇢2

- Switch on the short-range interacon between two-component

- While interacon between each components is weak

- Spectrum of the small component gas will strongly deform

Cold Possible Experiment with Trapped Atoms II. Probing Hadron-Quark Transiton

Variable that describes hadron-quark transition: momentum fraction of the nucleon carried by the quark x

For isolated nucleon x< 1

One can find quark with x> 1 in NN system if momentum flows from one nucleon to other - x > 1 requires a momentum transfer from the nearby nucleon or the quark from the nearby nucleon. - x>1 “super-fast quarks”

Considering Deep Inelastic scattering from nuclei Q2 Bjorken x = 2mN ⌫ SuperFast quarks – probes extreemly short distances in nuclei

W 2 m2 p p = m 1 x x N N Dynamical:QCD evolution Kinematic min ⌘ z N Q2

2 ⇣ Q2 = 10 (GeV/c)h , x=1 i⌘ -0 2 Q2 = 10 (GeV/c) , x=1.5 2 2 -0.2 Q = 15 (GeV/c) , x=1 2 2 [GeV/c] Q = 15 (GeV/c) , x=1.5 -0.4 initial p -0.6

-0.8

-1

-1.2

-1.4

-1.6

-1.8 1 1.5 2 2.5 3 W [GeV] - Dynamics of generation of superfast quarks in nuclei

1. Convoluon NN Model 2. Six-Quark Model γ∗ γ∗ X d N 2 N x 2 d2α 2 x 10 F2D = F , q ∼ (1 − ) F2d = ! ρd (α, pt)F2N ( α ,Q ) α d pt 2 (6 ) 2 x

x xN = ↵ MS in progress 3. Hard Gluon Exchange q , t x 3 k3 t p x2, k2 1 t t p x’, k’ x1f,k1f d 1 1 x1, t k1 r t t y1f,l1f y1,l1 y , t p 2 l 2 t 2 y3, l 3

d↵ d2p A = 2 ↵ 2(2⇡)3 hX1,h2 Z h1 (k , ⌘ ; k , ⌘ ; k , ⌘ ) h2 (l , ; l , ; l , ) h1,h2,md (p ,p ) H N 1 1 2 2 3 3 N 1 1 2 2 3 3 d 1 2 (⌘1f ,⌘1),(1f ,1) 3 3 3 8 x1 2(2⇡) y1 2(2⇡) 9 (1 ↵) 2(2⇡) <⌘X1,1 = p p p : ; q , t x 3 k3 t p x2, k2 1 t t p x’, k’ x1f,k1f d 1 1 x1, t k1 r t t y1f,l1f y1,l1 y , t p 2 l 2 t 2 y3, l 3

d2l 8↵ F (x ,Q2)= x e2 dx dy 1f,t QCD f (x ,Q2)f (y ,l2 ) 2d Bj Bj i 1 1 2(2⇡)3 l4 i 1 j 1 1f,t ⇥ i,j 1f,t X Z 2 2 2 1 xBj d(↵,pt) d↵ d pt 1 ⇥(x1 + y1 xBj) 2 3 2 y1 x1 + y1 2 ↵(1 ↵) 2(2⇡) (2⇡) 3  hX1,h2 Z 4 5 2 p where x = Q . Bj 2mN ⌫ 1 /2 2d

F -1 2 2 10 Q =20GeV -2 10 6q -3 10 hgex -4 10

-5 10

-6 10 NN -7 10

-8 10

-9 10 0.4 0.6 0.8 1 1.2 1.4 1.6 x d(e,e/ )X 1 /A d 2

F -1 10 Convolution -2 10

-3 x = 1 10

-4 10 6q -5 10 hgex x = 1.5 -6 10

-7 10 0 2 4 6 8 10 12 14 16 18 20 Q2, GeV2 In high density nuclear matter

q , t x 3 k3 t p x2, k2 1 t t p x’, k’ x1f,k1 NN 1 1 f x1, t k1 r t t y1f,l1f y1,l1 y , t p 2 l 2 t 2 y3, l 3 Conclusions and Outlook - We observe two new properties of high momentum distribution of proton and neutron in nuclei - Predicting more energetic/virtual protons in neutron reach matter - May have strong implication for protons in neutron stars Cooling & Magnetic Fields - Superfast quark distributions may allow verify the dynamics of quark-hadron transition

- JLAB12, LHC, GSI, JINR