Newsletter July-August-2019 Volume 7, Issue 1 : Patron : Prin

Total Page:16

File Type:pdf, Size:1020Kb

Newsletter July-August-2019 Volume 7, Issue 1 : Patron : Prin Sir P. T. Sarvajanik College of Science, Surat Department of Mathematics Mthematics Newsletter July-August-2019 Volume 7, Issue 1 : Patron : Prin. Dr. Pruthul R. Desai : Editorial Board : Dr. K. J. Chauhan, Dr. J. M. Desai, Ms. K. J. Contractor, Ms. P. D. Dave This newsletter is meant for private circulation only D. R. Kaprekar Early Life Kaprekar received his secondary Born: 17 January 1905 in Dahanu, school education in Thane and Maharashtra, India studied at Fergusson College in Died: 1986 (aged 81) in Devlali, Pune. In 1927 he won the Wrangler Maharashtra, India R. P. Paranjpe Mathematical Prize for an original piece of work in mathematics. He attended the University of Mumbai, receiving his bachelor's degree in 1929. Having never received any formal postgraduate training, for his entire career (1930– 1962) he was a schoolteacher at Nashik in Maharashtra, India. He published extensively, writing about such topics as recurring decimals, magic squares, and integers with Mthematics Newsletter Page 1 special properties. He is also known Kaprekar constant as "Ganitanand" (गणितानंद) In 1949, Kaprekar discovered an Mathematical Work interesting property of the number 6174, which was subsequently Working largely alone, Kaprekar named the Kaprekar constant. He discovered a number of results in showed that 6174 is reached in the number theory and described limit as one repeatedly subtracts the various properties of numbers. In highest and lowest numbers that addition to the Kaprekar constant can be constructed from a set of four and the Kaprekar numbers which digits that are not all identical. were named after him, he also described self- numbers or Devlali Thus, starting with 1234, we have numbers, the Harshad numbers and 4321 − 1234 = 3087, then Demlo numbers. He also constructed certain types of magic 8730 − 0378 = 8352, and squares related to the Copernicus 8532 − 2358 = 6174. magic square. Initially his ideas were not taken seriously by Indian Repeating from this point onward mathematicians, and his results leaves the same number (7641 − were published largely in low-level 1467 = 6174). mathematics journals or privately In general, when the operation published, but international fame converges it does so in at most seven arrived when Martin Gardner wrote iterations. about Kaprekar in his March 1975 column of Mathematical Games for A similar constant for 3 digits is 495. Scientific American. Today his name However, in base 10 a single such is well-known and many other constant only exists for numbers of mathematicians have pursued the 3 or 4 digits; for more digits (or 2), study of the properties he the numbers enter into one of discovered. several cycles. Mthematics Newsletter Page 2 Kaprekar number 27282728² = 7441984744 + 1984 = 2728 52925292² = 2800526428 + 005264 = 5292 Another class of numbers Kaprekar described are the Kaprekar 857143857143² = 734694122449734694 numbers. A Kaprekar number is a + 122449 = 857143 positive integer with the property Devlali or Self number that if it is squared, then its representation can be partitioned In 1963, Kaprekar defined the into two positive integer parts property which has come to be known as self- numbers, which are whose sum is equal to the original integers that cannot be generated by number. taking some other number and (e.g. 45, since 452 = 2025, and 20 + adding its own digits to it. For 25 = 45 , also 9, 55, 99 etc.) example, 21 is not a self- number, However, note the restriction that since it can be generated from the two numbers are positive; for 15: 15 + 1 + 5 = 21. But 20 is a self- number, since it cannot be example, 100 is not a Kaprekar generated from any other integer. number even though 1002 = He also gave a test for verifying this 10000, and 100 + 00 = 100. This property in any number. These are operation, of taking the rightmost sometimes referred to as Devlali digits of a square, and adding it to numbers (after the town where he the integer formed by the leftmost lived); though this appears to have digits, is known as the Kaprekar been his preferred designation, the operation. term self-number is more widespread. Sometimes these are Some examples of Kaprekar also designated Colombian numbers numbers in base 10, besides the after a later designation. numbers 9, 99, 999,…, are (sequence A006886 in OEIS): Harshad number Kaprekar also described the Number Square Decomposition Harshad numbers which he named 703703² = 494209494 + 209 = 703 harshad, meaning "giving joy" Mthematics Newsletter Page 3 (Sanskrit harsha, joy +da taddhita light, nor did Einstein need Statistics pratyaya, causative); these are for the theory defined by the property that they are divisible by the sum of their of relativity. Thermodynamics and digits. Thus 12, which is divisible by quantum mechanics are 1 + 2 = 3, is a Harshad number. fundamentally statistical, but lots of These were later also called Niven progress could have been made in numbers after a 1977 lecture on these areas without Statistics. The these by the Canadian second law of thermodynamics is an mathematician Ivan M. Niven. observable fact; ditto the two-slit Numbers which are Harshad in all experiment and various bases (only 1, 2, 4, and 6) are called experimental results revealing the all-Harshad numbers. Much work nature of the atom. has been done on Harshad numbers, What about the A-bomb and, almost and their distribution, frequency, certainly, the H-bomb? Maybe these etc. are a matter of considerable would never have been invented interest in number theory today.∎ without Statistics – but, on balance, A world without Statistics I think most people would feel that the world would be a better place -Andrew Gelman without these particular developments. Not so long ago, I was asked by a reporter for a quote regarding the At a more applied level, Statistics importance of Statistics. This got me helped to win the Second World War thinking: Is Statistics really that – most notably in cracking the important? Would a world without Enigma code, but also in various Statistics be much different from the operational research efforts. And it one we have now? is my impression that “our” Statistics were better than “their” What would be missing? Science Statistics. So that is something. would be pretty much OK. Newton did not need Statistics for his But where would civilian theories of gravity, motion, and technology be without Statistics? I Mthematics Newsletter Page 4 am not sure. Without Statistics we But, on balance, I doubt these would would not have modern quality be huge mistakes, and the big ones control, so maybe we would still be would eventually get caught with driving around in AMC Gremlins and careful record-keeping – even the like. That is a scary thought, but without statistical inference and not a huge deal. adjustments. In a world without Statistics, would Of course, without Statistics, the study of quantum physics have biologists would not be able to progressed far enough so that sequence the gene, and I assume transistors were invented? That they would be much slower at would make a difference in my life. developing tools such as tests that No transistors mean no blogging – allow you to check for chromosomal and I guess we could forget about abnormalities in amnio. other unequivocally beneficial technological innovations such as I doubt all these things add up to modern pacemakers, hearing aids, much yet, but I guess there is cochlear implants, and Microsoft’s promise for the future. Clippy. Statistics is also necessary for a lot Modern biomedicine uses lots of of drug development – right now my Statistics, but would medicine be so colleagues and I are working on a much worse without it? I do not pharmacodynamics model of dosing think so – at least not yet. You do not – but, again, without any of this, it is need Statistics to see that penicillin not clear the world would be so works, nor to see that mosquitoes much different. transmit disease and that nets keep Take another one: polling. You mosquitoes out. cannot do that well without Statistics. But would a world Without Statistics, I assume that without polling be so horrible? I various mistakes would get into the think polling is generally a good system – ineffective treatments that thing – I agree with George Gallup people think are effective. that measurement of public opinion Mthematics Newsletter Page 5 is an important part of the modern experimentation and inference to democratic process – but I would get p-values for tabloid-bait not want to hang too much of the scientific papers; its use by Google benefits of Statistics on this one use. and Amazon to perfect their techniques for squeezing money out A deeper understanding of their customers; or, at best, to test Perhaps the most important a medical treatment that increases contribution of Statistics comes not survival rate for some rare disease from the direct use of statistical by two percentage points. methods in science and technology, But Statistics is central to how we but rather in helping us learn about think about the world. I still think the world. Statisticians from Francis that it is much Bayesian inference, Galton and Ronald Fisher onwards and the rest: here I am simply have used Statistics to give us a talking about the nature of much deeper understanding of correlation and variation. human and biological variation. I For a humbler example, consider the cannot see how any non-statistical, baseball historian and statistician mechanistic model of the world Bill James. Baseball is a silly could reproduce that level of example, to be sure, but the point is understanding. Forget about p- values, So here is one strong benefit to see how much understanding has to the formal study of Statistics: been gained in this area through without Statistics, there would still Statistical measurement and be numbers, along with people comparison.
Recommended publications
  • Guidance Via Number 40: a Unique Stance M
    Sci.Int.(Lahore),31(4),603-605, 2019 ISSN 1013-5316;CODEN: SINTE 8 603 GUIDANCE VIA NUMBER 40: A UNIQUE STANCE M. AZRAM 7-William St. Wattle Grove, WA 6107, USA. E-mail: [email protected] ABSTRACT: The number Forty (40) is a mysterious number that has a great significance in Mathematics, Science, astronomy, sports, spiritual traditions and many cultures. Historically, many things took place labelled with number 40. It has also been repeated many times in Islam. There must be some significantly importance associated with this magic number 40. Only Allah knows the complete answer. Since Muslims are enjoined to establish good governance through a just sociomoral order (or a state) wherein they could organise their individual and collective life in accordance with the teachings of the Qur’an and the Sunnah of the Prophet (SAW). I have gathered together some information to find some guideline via significant number 40 to reform our community by eradicating corruption, exploitation, injustice and evil etc. INTRODUCTION Muslims are enjoined to establish good governance through a just sociomoral order (or a state) wherein they could organise their individual and collective life in accordance with the teachings of the Qur’an and the Sunnah of the pentagonal pyramidal number[3] and semiperfect[4] .It is the expectation of the Qur’an that its number which have fascinated mathematics .(ﷺ) Prophet 3. 40 is a repdigit in base 3 (1111, i.e. 30 + 31 + 32 + 33) adherents would either reform the earth (by eradicating , Harshad number in base10 [5] and Stormer number[6]. corruption, exploitation, injustice and evil) or lay their lives 4.
    [Show full text]
  • Monthly Science and Maths Magazine 01
    1 GYAN BHARATI SCHOOL QUEST….. Monthly Science and Mathematics magazine Edition: DECEMBER,2019 COMPILED BY DR. KIRAN VARSHA AND MR. SUDHIR SAXENA 2 IDENTIFY THE SCIENTIST She was an English chemist and X-ray crystallographer who made contributions to the understanding of the molecular structures of DNA , RNA, viruses, coal, and graphite. She was never nominated for a Nobel Prize. Her work was a crucial part in the discovery of DNA, for which Francis Crick, James Watson, and Maurice Wilkins were awarded a Nobel Prize in 1962. She died in 1958, and during her lifetime the DNA structure was not considered as fully proven. It took Wilkins and his colleagues about seven years to collect enough data to prove and refine the proposed DNA structure. RIDDLE TIME You measure my life in hours and I serve you by expiring. I’m quick when I’m thin and slow when I’m fat. The wind is my enemy. Hard riddles want to trip you up, and this one works by hitting you with details from every angle. The big hint comes at the end with the wind. What does wind threaten most? I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? This riddle aims to confuse you and get you to focus on the things that are missing: the houses, trees, and fish. 3 WHY ARE AEROPLANES USUALLY WHITE? The Aeroplanes might be having different logos and decorations. But the colour of the aeroplane is usually white.Painting the aeroplane white is most practical and economical.
    [Show full text]
  • Large and Small Gaps Between Consecutive Niven Numbers
    1 2 Journal of Integer Sequences, Vol. 6 (2003), 3 Article 03.2.5 47 6 23 11 Large and small gaps between consecutive Niven numbers Jean-Marie De Koninck1 and Nicolas Doyon D¶epartement de math¶ematiques et de statistique Universit¶e Laval Qu¶ebec G1K 7P4 Canada [email protected] [email protected] Abstract A positive integer is said to be a Niven number if it is divisible by the sum of its decimal digits. We investigate the occurrence of large and small gaps between consecutive Niven numbers. 1 Introduction A positive integer n is said to be a Niven number (or a Harshad number) if it is divisible by the sum of its (decimal) digits. For instance, 153 is a Niven number since 9 divides 153, while 154 is not. Niven numbers have been extensively studied; see for instance Cai [1], Cooper and Kennedy [2], Grundman [5] or Vardi [6]. Let N(x) denote the number of Niven numbers · x. Recently, De Koninck and Doyon proved [3], using elementary methods, that given any " > 0, x log log x x1¡" ¿ N(x) ¿ : log x Later, using complex variables as well as probabilistic number theory, De Koninck, Doyon and K¶atai [4] showed that x N(x) = (c + o(1)) ; (1) log x 1Research supported in part by a grant from NSERC. 1 where c is given by 14 c = log 10 ¼ 1:1939: (2) 27 In this paper, we investigate the occurrence of large gaps between consecutive Niven numbers. Secondly, denoting by T (x) the number of Niven numbers n · x such that n + 1 is also a Niven number, we prove that x log log x T (x) ¿ : (log x)2 We conclude by stating a conjecture.
    [Show full text]
  • Special Pythagorean Triangle in Relation with Pronic Numbers
    International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 8 - August 2019 Special Pythagorean Triangle In Relation With Pronic Numbers S. Vidhyalakshmi1, T. Mahalakshmi2, M.A. Gopalan3 1,2,3(Department of Mathematics, Shrimati Indra Gandhi College, India) Abstract: 2* Area This paper illustrates Pythagorean triangles, where, in each Pythagorean triangle, the ratio Perimeter is a Pronic number. Keywords: Pythagorean triangles,Primitive Pythagorean triangle, Non primitive Pythagorean triangle, Pronic numbers. Introduction: It is well known that there is a one-to-one correspondence between the polygonal numbers and the sides of polygon. In addition to polygon numbers, there are other patterns of numbers namely Nasty numbers, Harshad numbers, Dhuruva numbers, Sphenic numbers, Jarasandha numbers, Armstrong numbers and so on. In particular, refer [1-17] for Pythagorean triangles in connection with each of the above special number patterns. The above results motivated us for searching Pythagorean triangles in connection with a new number pattern. This paper 2* Area illustrates Pythagorean triangles, where, in each Pythagorean triangle, the ratio is a Pronic number. Perimeter Method of Analysis: Let Tx, y, z be a Pythagorean triangle, where x 2pq , y p2 q2 , z p2 q2 , p q 0 (1) Denote the area and perimeter of Tx, y, z by A and P respectively. The mathematical statement of the problem is 2A nn 1 , pronic number of rank n (2) P qp q nn 1 (3) It is observed that (3) is satisfied by the following two sets of values of p and q: Set 1: p 2n 1, q n Set 2: p 2n 1, q n 1 However, there are other choices for p and q that satisfy (3).
    [Show full text]
  • Fermat Pseudoprimes
    1 TWO HUNDRED CONJECTURES AND ONE HUNDRED AND FIFTY OPEN PROBLEMS ON FERMAT PSEUDOPRIMES (COLLECTED PAPERS) Education Publishing 2013 Copyright 2013 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599732572 ISBN: 978-1-59973-257-2 1 INTRODUCTION Prime numbers have always fascinated mankind. For mathematicians, they are a kind of “black sheep” of the family of integers by their constant refusal to let themselves to be disciplined, ordered and understood. However, we have at hand a powerful tool, insufficiently investigated yet, which can help us in understanding them: Fermat pseudoprimes. It was a night of Easter, many years ago, when I rediscovered Fermat’s "little" theorem. Excited, I found the first few Fermat absolute pseudoprimes (561, 1105, 1729, 2465, 2821, 6601, 8911…) before I found out that these numbers are already known. Since then, the passion for study these numbers constantly accompanied me. Exceptions to the above mentioned theorem, Fermat pseudoprimes seem to be more malleable than prime numbers, more willing to let themselves to be ordered than them, and their depth study will shed light on many properties of the primes, because it seems natural to look for the rule studying it’s exceptions, as a virologist search for a cure for a virus studying the organisms that have immunity to the virus.
    [Show full text]
  • Properties of 2020
    Properties of 2020 freeman66 February 2, 2020 Abstract This document provides some properties of 2020. If you have a good one, feel free to let me know! Also, note that the properties in each section go from easy to interesting to overkill. Note that the ones that look weird and/or are overkill are likely from OEIS, so I'm not weird OEIS is. 1 Algebra 1.1 Operations on 2020 p p 20202 is 4080400 and 20203 is 8242408000. 2020 is 44:9444101085 and 3 2020 = 12:6410686485. ln 2020 is 7:6108527903953 and log10 2020 is 3:3053513694466. sin 2020 is 0.044061988343923, 1 cos 2020 is -0.99902879897588, and tan 2020 is -0.044104822993183. 2020 has period 4. 1.2 Time 2020 seconds is equal to 33 minutes, 40 seconds. 2020 is a leap year. 2020 has 53 Wednesdays and Thursdays. The previous year this occurs was 1992, and the next is 2048. 1.3 Triangular Numbers P22 2020 is equal to k=3 Tk, where Tk is the kth triangular number. Also, T5 + T30 + T55 = 2020. 1.4 Heptagonal Numbers The alternating sum of the first 40 heptagonal numbers is 2020. 1.5 Sequences A sequence that starts with 4 then adds 1, then 2, then 3, and so on contains 2020. Also, in the 2 P1 xi i=1 2 1 k 14 1−xi product f(x) = Π (1 + 4 · x ), x has coefficient 2020. Also, in the expansion of 2 , k=1 1 xi Πi=1 2 1−xi 51 n the coefficient of x is 2020.
    [Show full text]
  • Copyrighted Material
    11194_Darling_c01_f.qxd 6/10/04 9:56 AM Page 3 A abacus The Chinese suan pan differs from the European aba- A counting frame that started out, several thousand years cus in that the board is split into two decks, with two ago, as rows of pebbles in the desert sands of the Middle beads on each rod in the upper deck and five beads, rep- East. The word appears to come from the Hebrew âbâq resenting the digits 0 through 4, on each rod in the bot- (dust) or the Phoenician abak (sand) via the Greek abax, tom. When all five beads on a rod in the lower deck are which refers to a small tray covered with sand to hold the moved up, they’re reset to the original position, and one pebbles steady. The familiar frame-supporting rods or bead in the top deck is moved down as a carry. When wires, threaded with smoothly running beads, gradually both beads in the upper deck are moved down, they’re emerged in a variety of places and mathematical forms. reset and a bead on the adjacent rod on the left is moved In Europe, there was a strange state of affairs for more up as a carry. The result of the computation is read off than 1,500 years. The Greeks and the Romans, and then from the beads clustered near the separator beam the medieval Europeans, calculated on devices with a between the upper and lower decks. In a sense, the aba- place-value system in which zero was represented by an cus works as a 5-2-5-2-5-2...–based number system in empty line or wire.
    [Show full text]
  • MATHCOUNTS Bible Completed I. Squares and Square Roots: from 1
    MATHCOUNTS Bible Completed I. Squares and square roots: From 12 to 302. Squares: 1 - 50 12 = 1 262 = 676 22 = 4 272 = 729 32 = 9 282 = 784 42 = 16 292 = 841 52 = 25 302 = 900 62 = 36 312 = 961 72 = 49 322 = 1024 82 = 64 332 = 1089 92 = 81 342 = 1156 102 = 100 352 = 1225 112 = 121 362 = 1296 122 = 144 372 = 1369 132 = 169 382 = 1444 142 = 196 392 = 1521 152 = 225 402 = 1600 162 = 256 412 = 1681 172 = 289 422 = 1764 182 = 324 432 = 1849 192 = 361 442 = 1936 202 = 400 452 = 2025 212 = 441 462 = 2116 222 = 484 472 = 2209 232 = 529 482 = 2304 242 = 576 492 = 2401 25 2 = 625 50 2 = 2500 II. Cubes and cubic roots: From 13 to 123. Cubes: 1 -15 13 = 1 63 = 216 113 = 1331 23 = 8 73 = 343 123 = 1728 33 = 27 83 = 512 133 = 2197 43 = 64 93 = 729 143 = 2744 53 = 125 103 = 1000 153 = 3375 III. Powers of 2: From 21 to 212. Powers of 2 and 3 21 = 2 31 = 3 22 = 4 32 = 9 23 = 8 33 = 27 24 = 16 34 = 81 25 = 32 35 = 243 26 = 64 36 = 729 27 = 128 37 = 2187 28 = 256 38 = 6561 29 = 512 39 = 19683 210 = 1024 310 = 59049 211 = 2048 311 = 177147 212 = 4096 312 = 531441 IV. Prime numbers from 2 to 109: It also helps to know the primes in the 100's, like 113, 127, 131, ... It's important to know not just the primes, but why 51, 87, 91, and others are not primes.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • (OSLO) Is Proud to Announce an Exhibition of New Works by Ann Cathrin November Høibo
    STANDARD (OSLO) is proud to announce an exhibition of new works by Ann Cathrin November Høibo. “IN MATHEMATICS - 36 is both the square of 6 and a triangular number, making it a square triangular number. It is the smallest square triangular number other than 1, and it is also the only triangular number other than 1 whose square root is also a triangular number. It is also a circular number - a square number that ends with the same integer by itself (6×6=36). - It is also a 13-gonal number. - It is the smallest number n with exactly 8 solutions to the equation φ(x) = n. Being the smallest number with exactly 9 divisors, 36 is a highly composite number. Adding up some subsets of its divisors (e.g., 6, 12 and 18) gives 36, hence 36 is a semiperfect number. - This number is the sum of a twin prime (17 + 19), the sum of the cubes of the first three positive integers, and also the product of the squares of the first three positive integers. - 36 is the number of degrees in the interior angle of each tip of a regular pentagram. - The thirty-six officers problem is a mathematical puzzle. - The number of possible outcomes (not summed) in the roll of two distinct dice. - 36 is the largest numeric base that some computer systems support because it exhausts the numerals, 0-9, and the letters, A-Z. See Base 36. - The truncated cube and the truncated octahedron are Archimedean solids with 36 edges. - 36 is a Harshad number in bases 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16 (and 9 other bases).
    [Show full text]
  • Consecutive Factorial Base Niven Numbers
    CONSECUTIVE FACTORIAL BASE NIVEN NUMBERS PAUL DALENBERG AND TOM EDGAR Abstract. We prove that there are no consecutive runs of five or more factorial base Niven numbers. Moreover, we construct an infinite family of collections of four consecutive factorial base Niven numbers. 1. Introduction A Niven (or Harshad) number is a number that is evenly divisible by its (base 10) sum of digits. For instance, we see that 36 is a Niven number because 3 + 6 = 9 and 36 is divisible by 9. More generally, we say a b-Niven number is a number that is evenly divisible by its base-b sum of digits. See A005349, AA049445, AA064150, and A064438 in [1] for a various sequences of base-b Niven numbers. Cooper and Kennedy [3] proved that there does not exist a run of 21 consecutive Niven numbers and they constructed an infinite family of sets of 20 consecutive Niven numbers. Grundman [4] generalized the work of Cooper and Kennedy to b-Niven numbers, proved that there does not exist a run of 2b+1 consecutive b-Niven numbers, and conjectured that there always is a set of 2b consecutive b-Niven numbers. Grundman's conjecture was proved by Wilson [8] who also provided reasonable bounds on the smallest set of 2b consecutive b-Niven numbers (see [7] and [2] as well). The definition of Niven numbers extends to other methods of representing integers. For instance, Cooper and Ray [6] showed that the set of Zeckendorf-Niven numbers has asymptotic density 0; Zeckendorf-Niven numbers are those divisible by their sum of digits when written in the Zeckendorf representation where a number is represented as a sum of distinct, non- consecutive Fibonacci numbers (see A014417 in [1]).
    [Show full text]
  • [Project Work] 2016-17 Icse Computer Applications Assignment -2
    [PROJECT WORK] 2016-17 ICSE COMPUTER APPLICATIONS ASSIGNMENT -2 Question 1: Write a Program in Java to input a number and check whether it is a Pronic Number or Heteromecic Number or not. Pronic Number : A pronic number, oblong number, rectangular number or heteromecic number, is a number which is the product of two consecutive integers, that is, n (n + 1). The first few pronic numbers are: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 … etc. Question 2: Write a Program in Java to input a number and check whether it is a Harshad Number or Niven Number or not.. Harshad Number : In recreational mathematics, a Harshad number (or Niven number), is an integer (in base 10) that is divisible by the sum of its digits. Let’s understand the concept of Harshad Number through the following example: The number 18 is a Harshad number in base 10, because the sum of the digits 1 and 8 is 9 (1 + 8 = 9), and 18 is divisible by 9 (since 18 % 9 = 0) The number 1729 is a Harshad number in base 10, because the sum of the digits 1 ,7, 2 and 9 is 19 (1 + 7 + 2 + 9 = 19), and 1729 is divisible by 19 (1729 = 19 * 91) The number 19 is not a Harshad number in base 10, because the sum of the digits 1 and 9 is 10 (1 + 9 = 10), and 19 is not divisible by 10 (since 19 % 10 = 9) The first few Harshad numbers in base 10 are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200 etc.
    [Show full text]