MAINTENANCE of RED-TAIL CORAL SNAKE (Micrurus Mipartitus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herpetological Information Service No
Type Descriptions and Type Publications OF HoBART M. Smith, 1933 through June 1999 Ernest A. Liner Houma, Louisiana smithsonian herpetological information service no. 127 2000 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. Introduction Hobart M. Smith is one of herpetology's most prolific autiiors. As of 30 June 1999, he authored or co-authored 1367 publications covering a range of scholarly and popular papers dealing with such diverse subjects as taxonomy, life history, geographical distribution, checklists, nomenclatural problems, bibliographies, herpetological coins, anatomy, comparative anatomy textbooks, pet books, book reviews, abstracts, encyclopedia entries, prefaces and forwords as well as updating volumes being repnnted. The checklists of the herpetofauna of Mexico authored with Dr. Edward H. Taylor are legendary as is the Synopsis of the Herpetofalhva of Mexico coauthored with his late wife, Rozella B. -
Exploration of Immunoglobulin Transcriptomes from Mice
A peer-reviewed version of this preprint was published in PeerJ on 24 January 2017. View the peer-reviewed version (peerj.com/articles/2924), which is the preferred citable publication unless you specifically need to cite this preprint. Laustsen AH, Engmark M, Clouser C, Timberlake S, Vigneault F, Gutiérrez JM, Lomonte B. 2017. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus. PeerJ 5:e2924 https://doi.org/10.7717/peerj.2924 Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus Andreas H Laustsen Corresp., 1, 2 , Mikael Engmark 1, 3 , Christopher Clouser 4 , Sonia Timberlake 5 , Francois Vigneault 4, 6 , José María Gutiérrez 7 , Bruno Lomonte 7 1 Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark 2 Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark 3 Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark 4 Juno Therapeutics, Seattle, Washington, United States of America 5 Finch Therapeutics, Somerville, Massachusetts, United States of America 6 AbVitro, Boston, MA, United States of America 7 Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica Corresponding Author: Andreas H Laustsen Email address: [email protected] Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. -
WHO Guidance on Management of Snakebites
GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. -
Micrurus Nigrocinctus) by a Nine-Banded Armadillo (Dasypus Novemcinctus) in Santa Rosa National Park, Costa Rica
Edentata 19 (2018): 67–69 DOI: 10.2305/IUCN.CH.2018.EDENTATA-19-1.9.en Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org FIELD NOTE Predation of a Central American coral snake (Micrurus nigrocinctus) by a nine-banded armadillo (Dasypus novemcinctus) in Santa Rosa National Park, Costa Rica Eduardo CarrilloA & Todd K. FullerB,1 A Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Apdo. 1350, Heredia, Costa Rica. E-mail: [email protected] B Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA. E-mail: [email protected] 1 Corresponding author Abstract We describe the manner in which a nine-banded armadillo (Dasypus novemcinctus) killed a Cen- tral American coral snake (Micrurus nigrocinctus) that it subsequently ate. The armadillo repeatedly ran towards, jumped, flipped over in mid-air, and landed on top of the snake with its back until the snake was dead. Keywords: armadillo, behavior, food, predation, snake Depredación de una serpiente de coral de América Central (Micrurus nigrocinctus) por un armadillo de nueve bandas (Dasypus novemcinctus) en el Parque Nacional Santa Rosa, Costa Rica Resumen En esta nota describimos la manera en que un armadillo de nueve bandas (Dasypus novemcinc- tus) mató a una serpiente de coral de América Central (Micrurus nigrocinctus) que posteriormente comió. El armadillo corrió varias veces hacia adelante, saltó, se dio vuelta en el aire y aterrizó sobre la serpiente con la espalda -
Micrurus Lemniscatus (Large Coral Snake)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Micrurus lemniscatus (Large Coral Snake) Family: Elapidae (Cobras and Coral Snakes) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Large coral snake, Micrurus leminiscatus. [http://www.flickr.com/photos/lvulgaris/6856842857/, downloaded 4 December 2012] TRAITS. The large snake coral has a triad-type pattern, i.e. the black coloration is in clusters of three. The centre band of the triad is wider than the outer ones and is separated by wide white or yellow rings (Schmidt 1957). The red band is undisturbed and bold and separates the black triads. The snout is black with a white crossband (Fig. 1). The triad number may vary from 9-13 on the body and the tail may have 1-2. The physical shape and the structure of the body of the large coral snake show a resemblance to the colubrids. It is the dentition and the formation of the maxillary bone that distinguishes the two, including the hollow fangs. The largest Micrurus lemniscatus ever recorded was 106.7 cm; adults usually measure from 40-50 cm (Schmidt 1957). The neck is not highly distinguishable from the rest of the body as there is modest narrowing of that area behind the neck giving the snake an almost cylindrical, elongated look. Dangerously venomous. UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY. The large coral snake is mostly found in South America, east of the Andes, southern Columbia, Ecuador, Peru, and Bolivia, the Guianas and Brazil, it is uncommon in Trinidad. -
First Record of Micrurus Lemniscatus Carvalhoi Roze, 1967 (Serpentes: Elapidae) from Espírito Santo State, Southeastern Brazil
Herpetology Notes, volume 10: 391-393 (2017) (published online on 06 July 2017) First Record of Micrurus lemniscatus carvalhoi Roze, 1967 (Serpentes: Elapidae) from Espírito Santo State, Southeastern Brazil Thiago Marcial de Castro1,*, Jane C. F. de Oliveira2, Rodrigo Castellari Gonzalez3, Felipe Franco Curcio4 and Darlan Tavares Feitosa5 Micrurus lemniscatus (Linnaeus, 1758) is a triad- In Brazil, Micrurus lemniscatus is the most widely patterned coral snake species widespread in most distributed triad coral snake (Silva Jr. et al., 2016). Brazilian biomes (to the exception of Pantanal wetlands; Micrurus l. carvalhoi ranges predominantly throughout see Silva Jr. et al., 2016), and also known from western central-eastern Brazil, with records from the states of Argentina and eastern Paraguay. The nominal species Alagoas, Bahia, Goiás, Mato Grosso do Sul, Minas contains three subspecies (M. l. lemniscatus, M. l Gerais, Paraíba, Paraná, Pernambuco, Rio Grande do carvalhoi, and M. l. helleri; see Pires et al., 2014 and Norte, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, Silva Jr. et al., 2016) defined on the basis of colouration São Paulo, Sergipe, and Tocantins (Campbell and features and triads counts. Micrurus l. carvalhoi can be Lamar, 1989; Giraudo and Scrochii, 2002; Pires, 2011; distinguished from M. l. lemniscatus by the presence of irregular black spots on the red rings, black spots on the tips of dorsals of the white rings, which may occasionally form incomplete transversal bands, as well as a lower number of subcaudals (Roze, 1967; Pires et al., 2014). Micrurus l.carvalhoi differs from M. l. helleri by the number of dorsal and ventral scales (see Table 1 for comparative meristics data). -
Micrurus Mipartitus Feeding on Oscaecilia Polyzona - 199-202
NOTA CIENTÍFICA Fernández-Roldán et al. First record of Micrurus mipartitus feeding on Oscaecilia polyzona - 199-202 FIRST RECORD OF PREDATION OF MICRURUS MIPARTITUS (SERPENTES: ELAPIDAE) ON OSCAECILIA POLYZONA (GYMNOPHIONA: CAECILIIDAE) IN COLOMBIA PRIMER REGISTRO DE DEPREDACIÓN DE MICRURUS MIPARTITUS (SERPENTES: ELAPIDAE) EN OSCAECILIA POLYZONA (GYMNOPHIONA: CAECILIIDAE) EN COLOMBIA Juan David Fernández-Roldán1,*, Guido Fabian Medina-Rangel2,3 & Yeny R. López-Perilla2 1Laboratorio de Anfibios, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. 2Grupo de Morfología y Ecología Evolutiva, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. 3Grupo Biodiversidad y Conservación, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. Correspondence: : [email protected] Received: 2021-01-07. Accepted: 2021-04-07. Resumen.— Las cecilias y las serpientes de coral son animales evasivos que rara vez se encuentran durante el trabajo de campo de un herpetólogo. Es bien sabido que estas serpientes se alimentan de otros vertebrados vermiformes como las lagartijas amphisbaenidas, cecilias y otras serpientes que pueden o no, ser de su misma especie. Por el contrario, las cecilias presentan un mayor vacío de información sobre su dieta y demás aspectos de historia natural ya que sus hábitos fosoriales impiden acceder a esta información. Reportamos el primer registro de Micrurus mipartitus depredando a Oscaecilia polyzona, uno de los caeciliidos menos conocidos del país, esto en base a una fotografía tomada en Cimitarra, Santander, Colombia. Esta foto nos permite incluir a O. polyzona dentro de la dieta de M. mipartitus. Palabras clave.— Cecilias, Comportamiento, Dieta, Elápidos, Historia Natural, Serpientes de Coral. Abstract.— Caecilians and coral snakes are evasive animals that are rarely encountered by herpetologists during their fieldwork. -
By a Nine-Banded Armadillo (Dasypus Novemcinctus) in Santa Rosa National Park, Costa Rica
Edentata: in press Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org FIELD NOTE Predation of a Central American coral snake (Micrurus nigrocinctus) by a nine-banded armadillo (Dasypus novemcinctus) in Santa Rosa National Park, Costa Rica Eduardo CarrilloA and Todd K. FullerB,1 A Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Apdo. 1350, Heredia, Costa Rica. E-mail: [email protected] B Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA. E-mail: [email protected] 1 Corresponding author Abstract We describe the manner in which a nine-banded armadillo (Dasypus novemcinctus) killed a Cen- tral American coral snake (Micrurus nigrocinctus) that it subsequently ate. The armadillo repeatedly ran towards, jumped, flipped over in mid-air, and landed on top of the snake with its back until the snake was dead. Keywords: armadillo, behavior, food, predation, snake Depredación de una serpiente de coral de América Central (Micrurus nigrocinctus) por un armadillo de nueve bandas (Dasypus novemcinctus) en el Parque Nacional Santa Rosa, Costa Rica Resumen En esta nota describimos la manera en que un armadillo de nueve bandas (Dasypus novemcinc- tus) mató a una serpiente de coral de América Central (Micrurus nigrocinctus) que posteriormente comió. El armadillo corrió varias veces hacia adelante, saltó, se dio vuelta en el aire y aterrizó sobre la serpiente con la espalda hasta que la serpiente estuvo muerta. Palabras clave: armadillo, comida, comportamiento, depredación, serpiente Nine-banded armadillos (Dasypus novemcinc- The ~4-kg nine-banded armadillo is distributed tus) feed mostly on arthropods such as beetles, ter- from the southeast and central United States to Uru- mites, and ants, but also consume bird eggs and guay and northern Argentina, Granada, Trinidad “unusual items” such as fruits, fungi, and small verte- and Tobago, and the Margarita Islands (Loughry brates (McBee & Baker, 1982; Wetzel, 1991; Carrillo et al., 2014). -
Climbing Behaviour in Micrurus Altirostris (Cope, 1860) (Serpentes, Elapidae) from an Atlantic Rainforest in Southern Brazil
Herpetology Notes, volume 11: 437-439 (2018) (published online on 24 May 2018) Climbing behaviour in Micrurus altirostris (Cope, 1860) (Serpentes, Elapidae) from an Atlantic rainforest in southern Brazil Manoela Alberton Getelina1,*, Gilcinéia dos Santos2, Ivanice Busatto2, Rodrigo Ceratto Bortoluzzi3 and Marcelo Carvalho da Rocha3 Coralsnakes are the only neotropical representatives in Derrubadas Municipality, Rio Grande do Sul State, of the family Elapidae (Campbell and Lamar, 2004) and Brazil. The individual was sitting immobile on the the genus Micrurus Wagler 1824 is the most diverse forest floor. The animal was captured to verify the sex of the family (Roze, 1996; Uetz, 2014). Micrurus and released immediately after the verification. The M. altirostris (Cope, 1860) is a fossorial coralsnake altirostris started fleeing into the forest and, when it was (Giraudo, 2001) that occurs in southern Brazil (Paraná, touched again, started climbing into the low branches of Santa Catarina and Rio Grande do Sul States), Uruguay, nearby Piperaceae and Bambusaceae bushes (2.5 cm off northeastern Argentina (Misiones, Corrientes and Entre the ground). After climbing to a height of ~83 cm, the Rios Provinces) and eastern Paraguay (Silva and Sites, M. altirostris waited in the branches until the “menace 1999) and uses subterranean galleries for foraging of attack” stopped (about 1 minute), then started moving and shelter. It is active both at night and during the slowly back to the ground. day (Bernarde, 2012) and like many other fossorial Machado et al. (2005) reported a M. altirostris actively elapids, is commonly found before rains (Campbell and foraging in a tree 1.5 m above the ground. -
South American Coral Snake) Venom Assessed in Vitro and Neutralization by Antivenom
Peripheral neurotoxicity of Micrurus lemniscatus lemniscatus (South American coral snake) venom assessed in vitro and neutralization by antivenom Rafael S. Florianoa, Raphael Schezaro-Ramosa, Nelson J. Silva Jr.b, Fábio Bucaretchic Edward G. Rowand and Stephen Hyslopa,* aDepartamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil. bDepartamento de Biologia, Pontifícia Universidade Católica de Goiás (PUC-GO), Rua 232, 128, 74605-140, Goiânia, GO, Brazil. cDepartamento de Pediatria e Centro de Informação e Assistência Toxicológica de Campinas (CIATox), Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil. dStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, 161, G4 0RE, Glasgow, UK Short title: Neurotoxicity of M. l. lemniscatus venom *Corresponding author: S. Hyslop ([email protected]), Tel.: +55 19 3521-9536 Acknowledgments: RSF was supported by a post-doctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo – Brasil (FAPESP, grant no. 2014/24409-8) and RSR was supported by a PhD studentship from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES, grant no. 02-P-4572/2018, Finance code 001). NJS and SH are supported by research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq, grant nos. 309320/2016-0 and 310547/2014-8, respectively). 1 Abstract We investigated the effect of South American coral snake (Micrurus lemniscatus lemniscatus) venom on neurotransmission in vertebrate nerve-muscle preparations in vitro. -
Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis Bivirgatus
toxins Article Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus Daniel Dashevsky 1,2 , Darin Rokyta 3 , Nathaniel Frank 4, Amanda Nouwens 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 2 Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia 3 Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA; [email protected] 4 MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA; [email protected] 5 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] * Correspondence: [email protected], Tel.: +61-7-336-58515 Abstract: The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. -
The Venomous Coral Snakes (Genus Micrurus ) of Costa Rica
Rev. Biol. Trop., 21(2) : 295,349, 1974 The venomous coral snakes (genus Micrurus ) of Costa Rica by Jay M. Savage'::' and James L. Vial' " (Received fur publication july 10, 1973) ASSTR ACT: Four species of vcnomous coral snakes (Micmm.r) occur in Costa Rica. The single bicolor species, M. mil'arti!",.,. has previously been defined >l.S [\VO suhsp«'ies; however, vari,¡tions in diagnostic chaucters clemonstrate a c¡¡nal sbift that precluJes recognition of geograpbic races. Presencc of rhe tricolor M. c!:1rki is concluded f ram but a single Costa Rican specimen, a.lthough the species is otherwise ddinite1y known fwm adjacent areas in Panamá. Variation among tricolor coral snakes a!lied to M. lIigl'Ocillctll.r suggests the presence of three populations that occupy southwcstern Padfic Costa RiGI, northwestern Pacific Costa Rica ane! western Nicaragua, and Atlantic lowhlnd Costa Rica. Gntdual intergradation in the Pacific low lanels, as well II.S more complex intergradin,l( patterns in the Meseta Central ;¡.nd Arenal rcgions ane! over a broae! arca of Nicaragua, elimi03te the value of subspecific Jesignations. Wherc M. fligrocillctuJ occurs sym patrlcally with populations of the dosel)' rdatt-d M. ,,¡¡e ni, they can be wlll>istently Jistinguished by diffen:nces in bcad cap patterns ami se¡;mm tal counts. MicrNfflJ' (I·/lefli is composed of tbree allopatric populations in the Atlantic lowlands of Costa Rica anel Nicaragua, the south\l'estc'rn Pacific lowJands of Costa Rica and adjacent sUllthwestern Panalllól, and Pacific Becaust lowland Darién in t�lStern Panama. of limited infonnatjon on variatian among these populations we prder not to apply the trinomials.