First Record of Micrurus Lemniscatus Carvalhoi Roze, 1967 (Serpentes: Elapidae) from Espírito Santo State, Southeastern Brazil

Total Page:16

File Type:pdf, Size:1020Kb

First Record of Micrurus Lemniscatus Carvalhoi Roze, 1967 (Serpentes: Elapidae) from Espírito Santo State, Southeastern Brazil Herpetology Notes, volume 10: 391-393 (2017) (published online on 06 July 2017) First Record of Micrurus lemniscatus carvalhoi Roze, 1967 (Serpentes: Elapidae) from Espírito Santo State, Southeastern Brazil Thiago Marcial de Castro1,*, Jane C. F. de Oliveira2, Rodrigo Castellari Gonzalez3, Felipe Franco Curcio4 and Darlan Tavares Feitosa5 Micrurus lemniscatus (Linnaeus, 1758) is a triad- In Brazil, Micrurus lemniscatus is the most widely patterned coral snake species widespread in most distributed triad coral snake (Silva Jr. et al., 2016). Brazilian biomes (to the exception of Pantanal wetlands; Micrurus l. carvalhoi ranges predominantly throughout see Silva Jr. et al., 2016), and also known from western central-eastern Brazil, with records from the states of Argentina and eastern Paraguay. The nominal species Alagoas, Bahia, Goiás, Mato Grosso do Sul, Minas contains three subspecies (M. l. lemniscatus, M. l Gerais, Paraíba, Paraná, Pernambuco, Rio Grande do carvalhoi, and M. l. helleri; see Pires et al., 2014 and Norte, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, Silva Jr. et al., 2016) defined on the basis of colouration São Paulo, Sergipe, and Tocantins (Campbell and features and triads counts. Micrurus l. carvalhoi can be Lamar, 1989; Giraudo and Scrochii, 2002; Pires, 2011; distinguished from M. l. lemniscatus by the presence of irregular black spots on the red rings, black spots on the tips of dorsals of the white rings, which may occasionally form incomplete transversal bands, as well as a lower number of subcaudals (Roze, 1967; Pires et al., 2014). Micrurus l.carvalhoi differs from M. l. helleri by the number of dorsal and ventral scales (see Table 1 for comparative meristics data). 1 Centro Universitário São Camilo, Rua São Camilo de Lellis, 1, Paraíso, 29304-910, Cachoeiro de Itapemirim, ES, Brazil. 2 Departamento de Ecologia, Instituto de Biologia Roberto de Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, 20550-019, Rio de Janeiro, RJ, Brazil. 3 Departamento de Vertebrados, Setor de Herpetologia, Universidade Federal do Rio de Janeiro, Museu Nacional, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil. 4 Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade de Mato Grosso, Av. Fernando Correa da Costa, Boa Esperança, Cuiabá, MT, Brasil 5 Curso de Biologia, Escola de Ciências Agrárias e Biológicas, Figure 1. Known geographic distribution of Micrurus Pontifícia Universidade Católica de Goiás, Avenida Engler, lemniscatus carvalhoi (red points on the left frame) and the 286-316 – Parque Atheneu, CEP 74885-460 Goiânia, Goiás, new record in the Municipality of Linhares and Presidente Brazil. Kennedy (red stars), Espírito Santo state, Brazil. Modified * Corresponding author e-mail: [email protected] from Silva Jr. et al. (2016). 1 392 Thiago Marcial de Castro et al. TableTable 1. 1.Meristic Meristic andand morphometric morphometric data ondata Micrurus on Micrurus lemniscatus lemniscatus carvalhoi Roze, carvalhoi 1967 collected Roze, during 1967 the collected present study during compared the presentto study comparedthe data ofto Silvathe data Jr. et ofal. Silva(2016) Jr. for et Micrurus al. (2016) l. carvalhoi, for Micrurus M. l. lemniscatus l. carvalhoi, and M. Micrurus l. helleri. l. lemniscatus and Micrurus l. helleri. MBML4025 MNRJ26576 MNRJ26577 MNRJ26578 M. l. carvalhoi M. l. lemniscatus M. l. helleri Meristic Data this study this study this study this study Silva Jr. et al. (2016) Silva Jr. et al. (2016) Silva Jr. et al. (2016) Sex Male Male Male Male - - - Body triads 11 15 14 12 ♂10-15/♀9-16 ♂9-16/♀8-14 ♂8-14/♀8-13 Tail triads 1+1/3 1+1/3 1+1/3 1+1/3 ♂♀1+1/3-2 ♂♀1+1/3-2 ♂♀1+2/3-1 Snout-vent length 412 586 581 508 ♂231-1550/♀210-1230 ♂197-11280/♀209-1070 ♂202-993/♀200-1220 Tail length 41 49 50 45 ♂16.2-100.9/♀17.3-84 ♂20.126.8/♀10.3-119.7 ♂17.8-103.8/♀15.2-100 Ventrals 237 220 260 218 ♂224-263/♀229-270 ♂225-268/♀232-277 ♂225-263/♀233-263 Subcaudals 28 23 26 23 ♂23-39/♀24-38 ♂30-43/♀28-48 ♂30-48/♀31-42 Figure 2. Specimem of Micrurus lemniscatus carvalhoi collected in the municipalities of Presidente Kennedy (A) and Linhares (B), Espírito Santo state. Pictures on the right show the typical black spots of the species found in the four collected specimens (C, D, E, F). Photos: Thiago Marcial de Castro. Wallach et al., 2014; Silva et al., 2016). Despite its wide M. l. carvalhoi in Espírito Santo state, filling the gap in distribution, M. lemniscatus carvalhoi had never been the distribution range between Bahia, Minas Gerais, and recorded from the State of Espírito Santo, Southeastern Rio de Janeiro. Brazil. We here present two new occurrence records of First Record of Micrurus lemniscatus carvalhoi from Espírito Santo State, Brazil 393 During field expeditions and surveys of the Muriaé; Silva Jr.et al., 2016), 310 kms from the nearest herpetofauna of Espírito Santo (ES), we recorded locality in Rio de Janeiro state (-22.7867° S, -43.3131° two specimens of M. l. carvalhoi in the municipality W, Duque de Caxias; Silva Jr. et al. 2016) and 165 kms of Linhares (northern ES), and two specimens in the from the nearest locality in Bahia state (-17.7144° S, - municipality of Presidente Kennedy (southern ES) 39.5112° W, Caravelas; Silva Jr. et al. 2016). As M. l. (Figure 1). The study area in Linhares is located on a carvalhoi is also found in the neighbouring states, we coastal plain in the vicinity of the Vale Natural Reserve assume that the absence of records from Espírito Santo (-19.1523° S, -39.8918° W, Datum = WGS84, elevation was a result of a lack of systematic surveys and long- 15 m asl). In the municipality of Presidente Kennedy, term research in this region (e.g. Gonzalez et al., 2014, the study area is located in the region of Campo Novo, Castro and Oliveira, 2017). within an anthropogenic landscape dominated by pastures and forest fragments (-21.0801° S, -40.9497° Acknowledgments. JCFO and RCG thank the Brazilian National W, Datum = WGS84, elevation 18 m asl). Specimens Council for Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico— collection was authorized by permits IEMA 020/2016 CNPq) respectively for a postdoctoral and doctoral fellowships and SISBIO 52838-1, and vouchers were deposited (PROCESSES 502457/2014-9 and 142370/2014-2). in the Instituto Nacional da Mata Atlântica, Museu de Biologia Professor Mello Leitão (MBML) in Santa References Teresa, Espírito Santo state, Brazil (MBML 4025) and in the Museu Nacional in Rio de Janeiro state (MNRJ), Campbell, J.A., Lamar, W.W. (1989): The venomous reptiles of Latin America, 1nd Edition. New York, USA, Cornell University Brazil (MNRJ26576, MNRJ26577 and MNRJ26578). Press. In Linhares, one specimen was collected on November Castro, T.M., Oliveira, J.C.F. ( 2017): Range extension of Lygophis th 12 2016 (SVL = 581 mm, male, catalogue number meridionalis (Schenkel, 1901) (Reptilia: Squamata: Dipsadidae, MNRJ26577) and the other was collected on November Xenodontinae) to Espírito Santo state, Southeastern Brazil. 16th 2016 (SVL = 412 mm, male, catalogue number Check List 13: 1–4. MBML4025). Both specimens were collected manually Giraudo, A.R., Scrocchi, G. (2002): Argentinian snakes: an annotated checklist. Smithsonian Herpetological Information and were active by day, foraging in the leaf litter. In Service 132: 1–53. Presidente Kennedy, one specimen was found dead on Gonzalez, R.C., Silva-Soares, T., Castro, T.M., Bérnils, R.S. (2014). th the highway at Campo Novo, on August 17 2016 (SVL Review of the geographic distribution of Micrurus decoratus = 586 mm, male, catalogue number MNRJ26576), (Jan, 1858) (Serpentes: Elapidae). Phyllomedusa 13: 29–39. while the second one was collected on November Pires, M.G., Silva Jr., N.J., Feitosa, D.T., Prudente, A.L.C., Pereira 10th 2016 (SVL = 508 mm, male, catalogue number filho, G.A., Zaher, H. (2014). A new species of triadal coral MNRJ26578) (Figure 2). Specimens were identified snake of the genus Micrurus Wagler, 1824 (Serpentes: Elapidae) from northeastern Brazil. Zootaxa 3811: 569–584. through comparisons with the data provided by Silva Roze, J.A. (1967). A check list of the New World venomous coral Jr. et al. (2016). snakes (Elapidae), with descriptions of new forms. American Regarding features of colour pattern, specimens from Museum Novitates, 2287: 1– 60. Espírito Santo have the black bands of triads similar in Silva Jr., N.J., Pires, M.G., Feitosa, D.T. (2016): Diversidade length, while the white bands are shorter than the black das cobras-corais do Brasil. In: As cobras-corais do Brasil bands and the red bands are distinctively longer than – Biologia, Taxonomia, Venenos e Envenenamentos, p. 80–167. the black bands. No complete horseshoe-shaped mark Silva Jr., J., Ed., Goiás, BR, Editora da PUC. Wallach, V., Williams, K.L., Boundy, J. (2014): Snakes of the is present on the mental region of any of our vouchers; world: A catologue of living and extinct species. Florida, USA, nonetheless, all specimens exhibit incomplete markings CRC Press. resembling the typical horseshoe pattern reaching up to the fourth supralabial (Figure 2). All meristic and morphometric data obtained from our vouchers agree with the variation attributed to M. l. carvalhoi (Table 1). Our records of M. l. carvalhoi from the state of Espírito Santo lie approximately 150 kms from the nearest recorded locality of the subspecies in the neighbouring Accepted by Hendrik Müller state of Minas Gerais (-21.1857° S, -42.3859° W, .
Recommended publications
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Micrurus Lemniscatus (Large Coral Snake)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Micrurus lemniscatus (Large Coral Snake) Family: Elapidae (Cobras and Coral Snakes) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Large coral snake, Micrurus leminiscatus. [http://www.flickr.com/photos/lvulgaris/6856842857/, downloaded 4 December 2012] TRAITS. The large snake coral has a triad-type pattern, i.e. the black coloration is in clusters of three. The centre band of the triad is wider than the outer ones and is separated by wide white or yellow rings (Schmidt 1957). The red band is undisturbed and bold and separates the black triads. The snout is black with a white crossband (Fig. 1). The triad number may vary from 9-13 on the body and the tail may have 1-2. The physical shape and the structure of the body of the large coral snake show a resemblance to the colubrids. It is the dentition and the formation of the maxillary bone that distinguishes the two, including the hollow fangs. The largest Micrurus lemniscatus ever recorded was 106.7 cm; adults usually measure from 40-50 cm (Schmidt 1957). The neck is not highly distinguishable from the rest of the body as there is modest narrowing of that area behind the neck giving the snake an almost cylindrical, elongated look. Dangerously venomous. UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY. The large coral snake is mostly found in South America, east of the Andes, southern Columbia, Ecuador, Peru, and Bolivia, the Guianas and Brazil, it is uncommon in Trinidad.
    [Show full text]
  • MAINTENANCE of RED-TAIL CORAL SNAKE (Micrurus Mipartitus)
    ACTA BIOLÓGICA COLOMBIANA http://www.revistas.unal.edu.co/index.php/actabiol SEDE BOGOTÁ FACULTAD DE CIENCIAS ARTÍCULODEPARTAMENTO DE DE INVESTIGACIÓN/RESEARCH BIOLOGÍA ARTICLE MAINTENANCE OF RED-TAIL CORAL SNAKE (Micrurus mipartitus) IN CAPTIVITY AND EVALUATION OF INDIVIDUAL VENOM VARIABILITY Mantenimiento en cautiverio de la coral rabo de ají (Micrurus mipartitus) y evaluación en la variabilidad individual de su veneno Ana María HENAO DUQUE1; Vitelbina NÚÑEZ RANGEL1,2. 1 Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias. Universidad de Antioquia UdeA. Carrera 50A nº. 63-65. Medellín, Colombia. 2 Escuela de Microbiología. Universidad de Antioquia UdeA; Calle 70 nº. 52-21, Medellín, Colombia. For correspondence. [email protected] Received: 8th July 2015, Returned for revision: 30th November 2015, Accepted:17th January 2016. Associate Editor: Martha Lucia Ramírez. Citation/Citar este artículo como: Henao Duque AM, Núñez Rangel V. Maintenance of red-tail coral snake (Micrurus mipartitus) in captivity and evaluation of individual venom variability. Acta biol. Colomb. 2016;21(3):593-600. DOI: http://dx.doi.org/10.15446/abc.v21n3.51651 ABSTRACT Red-tail coral snake (Micrurus mipartitus) is a long and thin bicolor coral snake widely distributed in Colombia and is the coral that causes the majority of accidents in the Andean region, so it is important to keep this species in captivity for anti-venom production and research. However, maintaining this species in captivity is very difficult because it refuses to feed, in addition to the high mortality rate due to maladaptation syndrome. In this study a force feeding diet, diverse substrates for maintenance and a milking technique were evaluated.
    [Show full text]
  • By a Nine-Banded Armadillo (Dasypus Novemcinctus) in Santa Rosa National Park, Costa Rica
    Edentata: in press Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org FIELD NOTE Predation of a Central American coral snake (Micrurus nigrocinctus) by a nine-banded armadillo (Dasypus novemcinctus) in Santa Rosa National Park, Costa Rica Eduardo CarrilloA and Todd K. FullerB,1 A Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, Apdo. 1350, Heredia, Costa Rica. E-mail: [email protected] B Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA. E-mail: [email protected] 1 Corresponding author Abstract We describe the manner in which a nine-banded armadillo (Dasypus novemcinctus) killed a Cen- tral American coral snake (Micrurus nigrocinctus) that it subsequently ate. The armadillo repeatedly ran towards, jumped, flipped over in mid-air, and landed on top of the snake with its back until the snake was dead. Keywords: armadillo, behavior, food, predation, snake Depredación de una serpiente de coral de América Central (Micrurus nigrocinctus) por un armadillo de nueve bandas (Dasypus novemcinctus) en el Parque Nacional Santa Rosa, Costa Rica Resumen En esta nota describimos la manera en que un armadillo de nueve bandas (Dasypus novemcinc- tus) mató a una serpiente de coral de América Central (Micrurus nigrocinctus) que posteriormente comió. El armadillo corrió varias veces hacia adelante, saltó, se dio vuelta en el aire y aterrizó sobre la serpiente con la espalda hasta que la serpiente estuvo muerta. Palabras clave: armadillo, comida, comportamiento, depredación, serpiente Nine-banded armadillos (Dasypus novemcinc- The ~4-kg nine-banded armadillo is distributed tus) feed mostly on arthropods such as beetles, ter- from the southeast and central United States to Uru- mites, and ants, but also consume bird eggs and guay and northern Argentina, Granada, Trinidad “unusual items” such as fruits, fungi, and small verte- and Tobago, and the Margarita Islands (Loughry brates (McBee & Baker, 1982; Wetzel, 1991; Carrillo et al., 2014).
    [Show full text]
  • Climbing Behaviour in Micrurus Altirostris (Cope, 1860) (Serpentes, Elapidae) from an Atlantic Rainforest in Southern Brazil
    Herpetology Notes, volume 11: 437-439 (2018) (published online on 24 May 2018) Climbing behaviour in Micrurus altirostris (Cope, 1860) (Serpentes, Elapidae) from an Atlantic rainforest in southern Brazil Manoela Alberton Getelina1,*, Gilcinéia dos Santos2, Ivanice Busatto2, Rodrigo Ceratto Bortoluzzi3 and Marcelo Carvalho da Rocha3 Coralsnakes are the only neotropical representatives in Derrubadas Municipality, Rio Grande do Sul State, of the family Elapidae (Campbell and Lamar, 2004) and Brazil. The individual was sitting immobile on the the genus Micrurus Wagler 1824 is the most diverse forest floor. The animal was captured to verify the sex of the family (Roze, 1996; Uetz, 2014). Micrurus and released immediately after the verification. The M. altirostris (Cope, 1860) is a fossorial coralsnake altirostris started fleeing into the forest and, when it was (Giraudo, 2001) that occurs in southern Brazil (Paraná, touched again, started climbing into the low branches of Santa Catarina and Rio Grande do Sul States), Uruguay, nearby Piperaceae and Bambusaceae bushes (2.5 cm off northeastern Argentina (Misiones, Corrientes and Entre the ground). After climbing to a height of ~83 cm, the Rios Provinces) and eastern Paraguay (Silva and Sites, M. altirostris waited in the branches until the “menace 1999) and uses subterranean galleries for foraging of attack” stopped (about 1 minute), then started moving and shelter. It is active both at night and during the slowly back to the ground. day (Bernarde, 2012) and like many other fossorial Machado et al. (2005) reported a M. altirostris actively elapids, is commonly found before rains (Campbell and foraging in a tree 1.5 m above the ground.
    [Show full text]
  • South American Coral Snake) Venom Assessed in Vitro and Neutralization by Antivenom
    Peripheral neurotoxicity of Micrurus lemniscatus lemniscatus (South American coral snake) venom assessed in vitro and neutralization by antivenom Rafael S. Florianoa, Raphael Schezaro-Ramosa, Nelson J. Silva Jr.b, Fábio Bucaretchic Edward G. Rowand and Stephen Hyslopa,* aDepartamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil. bDepartamento de Biologia, Pontifícia Universidade Católica de Goiás (PUC-GO), Rua 232, 128, 74605-140, Goiânia, GO, Brazil. cDepartamento de Pediatria e Centro de Informação e Assistência Toxicológica de Campinas (CIATox), Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil. dStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, 161, G4 0RE, Glasgow, UK Short title: Neurotoxicity of M. l. lemniscatus venom *Corresponding author: S. Hyslop ([email protected]), Tel.: +55 19 3521-9536 Acknowledgments: RSF was supported by a post-doctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo – Brasil (FAPESP, grant no. 2014/24409-8) and RSR was supported by a PhD studentship from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES, grant no. 02-P-4572/2018, Finance code 001). NJS and SH are supported by research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq, grant nos. 309320/2016-0 and 310547/2014-8, respectively). 1 Abstract We investigated the effect of South American coral snake (Micrurus lemniscatus lemniscatus) venom on neurotransmission in vertebrate nerve-muscle preparations in vitro.
    [Show full text]
  • Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis Bivirgatus
    toxins Article Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus Daniel Dashevsky 1,2 , Darin Rokyta 3 , Nathaniel Frank 4, Amanda Nouwens 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 2 Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia 3 Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA; [email protected] 4 MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA; [email protected] 5 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] * Correspondence: [email protected], Tel.: +61-7-336-58515 Abstract: The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C.
    [Show full text]
  • A New Colour Morph of Calliophis Bibroni (Squamata: Elapidae) and Evidence for Müllerian Mimicry in Tropical Indian Coralsnakes
    Herpetology Notes, volume 10: 209-217 (2017) (published online on 25 April 2017) A new colour morph of Calliophis bibroni (Squamata: Elapidae) and evidence for Müllerian mimicry in Tropical Indian coralsnakes Dileep Kumar Raveendran1, V. Deepak2, Eric N. Smith3 and Utpal Smart3,* Abstract. Meristic and molecular data provide evidence for an exceptional multi-chromatic defensive strategy in an Indian coralsnake, Calliophis bibroni from the state of Kerala. We propose a mimicry hypothesis involving a combination of an ontogenetic colour shift at maturity, from initial Müllerian mimicry with a subtropical Indian coralsnake Sinomicrurus macclellandii, to one of two very different adult dorsal colours: 1) an aposematic pattern resembling that of the sympatric tropical Indian coralsnake Calliophis castoe or 2) a cryptic dark brown colouration. To this end, we succinctly juxtapose the rich body of work on mimicry in New World elapids to that of their Old World counterparts in an attempt to address the exciting yet unexplored prospect of investigating mimicry, crypsis and aposematism in Old World coralsnakes. Key Words. Aposematism, crypsis, Indian coralsnakes, genetic distance, meristics, mimicry Introduction Müllerian co-mimics benefit from sharing the same signal since this reduces the number of individuals that Animal colouration provides many functions; the most have to be sacrificed per prey species to educate local important among them is probably predator avoidance predators of a given aposematic colouration (Müller, and deterrence. Camouflage, or crypsis, blends animals 1879). Furthermore, possibly to balance prey-predator into their environment while deimatism surprises and dynamics, some mimics may replicate the colours confuses predators with the display of startling colour or patterns of dangerous models which lack bright, patterns.
    [Show full text]
  • The Venomous Snakes of Texas Health Service Region 6/5S
    The Venomous Snakes of Texas Health Service Region 6/5S: A Reference to Snake Identification, Field Safety, Basic Safe Capture and Handling Methods and First Aid Measures for Reptile Envenomation Edward J. Wozniak DVM, PhD, William M. Niederhofer ACO & John Wisser MS. Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 (Wozniak) City Of Pearland Animal Control, 2002 Old Alvin Rd. Pearland, Texas 77581 (Niederhofer) 464 County Road 949 E Alvin, Texas 77511 (Wisser) Corresponding Author: Edward J. Wozniak DVM, PhD, Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 [email protected] ABSTRACT: Each year numerous emergency response personnel including animal control officers, police officers, wildlife rehabilitators, public health officers and others either respond to calls involving venomous snakes or are forced to venture into the haunts of these animals in the scope of their regular duties. North America is home to two distinct families of native venomous snakes: Viperidae (rattlesnakes, copperheads and cottonmouths) and Elapidae (coral snakes) and southeastern Texas has indigenous species representing both groups. While some of these snakes are easily identified, some are not and many rank amongst the most feared and misunderstood animals on earth. This article specifically addresses all of the native species of venomous snakes that inhabit Health Service Region 6/5s and is intended to serve as a reference to snake identification, field safety, basic safe capture and handling methods and the currently recommended first aide measures for reptile envenomation.
    [Show full text]
  • Snakebite by Micrurus Averyi (Schmidt, 1939) in the Brazilian Amazon Basin: Case Report
    Toxicon 141 (2018) 51e54 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Review Snakebite by Micrurus averyi (Schmidt, 1939) in the Brazilian Amazon basin: Case report Iran Mendonça da Silva a, b, Jorge Contreras Bernal a, b, Pedro Ferreira Gonçalves Bisneto b, Antonio^ Magela Tavares b, Valeria Mourao~ de Moura a, b, Claudio S. Monteiro-Junior a, b, * Rima Raad a, b, Paulo Sergio Bernarde c, Jacqueline de Almeida Gonçalves Sachett a, b, , Wuelton Marcelo Monteiro a, b a Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil b Instituto de Pesquisa Clínica Carlos Borborema, Fundaçao~ de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil c Laboratorio de Herpetologia, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil article info abstract Article history: Micrurus snakes, commonly known as coral snakes, are responsible for 0.4% of the snakebites enve- Received 22 September 2017 nomings in Brazil. In this report, we describe a case of envenoming by Micrurus averyi, the black-headed Received in revised form coral snake, recorded in the western Brazilian Amazon. To the best of our knowledge, this is the first 20 November 2017 published case perpetrated by this species. The major complaint of the patient was an intense local pain Accepted 23 November 2017 and paresthesia. Examination of the bite site revealed edema extending from the left foot up the left leg Available online 24 November 2017 that was accompanied by erythema involving the foot and distal third of the leg. Systemic signs at admission included nausea and drooling.
    [Show full text]
  • From Four Sites in Southern Amazonia, with A
    Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 4, n. 2, p. 99-118, maio-ago. 2009 Squamata (Reptilia) from four sites in southern Amazonia, with a biogeographic analysis of Amazonian lizards Squamata (Reptilia) de quatro localidades da Amazônia meridional, com uma análise biogeográfica dos lagartos amazônicos Teresa Cristina Sauer Avila-PiresI Laurie Joseph VittII Shawn Scott SartoriusIII Peter Andrew ZaniIV Abstract: We studied the squamate fauna from four sites in southern Amazonia of Brazil. We also summarized data on lizard faunas for nine other well-studied areas in Amazonia to make pairwise comparisons among sites. The Biogeographic Similarity Coefficient for each pair of sites was calculated and plotted against the geographic distance between the sites. A Parsimony Analysis of Endemicity was performed comparing all sites. A total of 114 species has been recorded in the four studied sites, of which 45 are lizards, three amphisbaenians, and 66 snakes. The two sites between the Xingu and Madeira rivers were the poorest in number of species, those in western Amazonia, between the Madeira and Juruá Rivers, were the richest. Biogeographic analyses corroborated the existence of a well-defined separation between a western and an eastern lizard fauna. The western fauna contains two groups, which occupy respectively the areas of endemism known as Napo (west) and Inambari (southwest). Relationships among these western localities varied, except between the two northernmost localities, Iquitos and Santa Cecilia, which grouped together in all five area cladograms obtained. No variation existed in the area cladogram between eastern Amazonia sites. The easternmost localities grouped with Guianan localities, and they all grouped with localities more to the west, south of the Amazon River.
    [Show full text]
  • Biological and Molecular Properties of Yellow Venom of the Amazonian Coral Snake Micrurus Surinamensis
    Rev Soc Bras Med Trop 50(3):365-373, May-June, 2017 doi: 10.1590/0037-8682-0408-2016 Major Article Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis Fabiana da Rocha Oliveira[1], Maria das Dores Nogueira Noronha[2] and Jorge Luis Lopez Lozano[2] [1]. Laboratório de Ecologia e Biotecnologia de Microrganismos da Amazônia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil. [2]. Centro de Ofidismo da Amazônia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brasil. Abstract Introduction: The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. Methods: Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. Results and Conclusions: Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml) in mice. Keywords: Micrurus
    [Show full text]