PUBLIC OPEN EVENING Outreach — 19 December 2018 — A

Total Page:16

File Type:pdf, Size:1020Kb

PUBLIC OPEN EVENING Outreach — 19 December 2018 — A Institute of Astronomy PUBLIC OPEN EVENING outreach — 19 December 2018 — A Voyager 2 leaves the Solar System TONIGHT’S SPEAKER An artist’s depiction of the Voyager 2 spacecraft entering interstellar space at: this term can be viewed talk schedule for The to join its twin sister, Voyager 1, more than 18 billion kilometres away from Earth. Credit: NASA/JPL-Caltech Mihkel Kama What can the chemistry of a planet tell us about its origins? Our weekly welcome ELCOME to our weekly public Wopen evenings for the 2018/19 season. Each night there will be a VOYAGER 2 has crossed the ‘heli- 2 was in perfect working order, and half-hour talk which begins promptly opause’, making it the second hu- was able to measure a sudden drop at 7.15pm. Please note that the talk man-made object to head out into in the Solar wind on November 5th will be recorded and archived for interstellar space. marking the spacecraft’s transition online streaming. Our Solar System is nestled within into interstellar space. The talk is followed by an oppor- www.ast.cam.ac.uk/public/public_observing/current the ‘heliosphere’, a protective bub- “We’re not seeing the solar wind tunity to observe if (and only if!) the ble caused by the Solar wind, which any more,” said John Richardson, lead weather is clear. The IoA’s historical shields the Solar System from galactic investigator on one of Voyager’s instru- cosmic rays and the interstellar wind. ments. “That means we must be in the Northumberland and Thorrowgood By examining data from Voyager interstellar medium.” Nicola Fox, di- telescopes, along with our modern 2’s plasma sensors, NASA scientists rector of NASA’s heliophysics division, 16-inch telescope, will be open found that the probe crossed over said “We’ve been waiting with bated for observations. In addition, the the heliosphere’s edge – known as the breath for the last couple of months Cambridge Astronomical Association heliopause – on November 5th 2018. for us to be able to see this”. will provide a floorshow outdoors on The probe reported that the Solar wind Interestingly, many of the readings the Observatory lawns, relaying live strength dropped, the magnetic fields taken by Voyager 2 as it crossed into images from their telescopes and from interstellar space got stronger, interstellar space were different to providing a commentary. If we’re un- and there was a marked increase in those taken by Voyager 1 back in 2012. lucky and it’s cloudy, we’ll offer you a the number of galactic cosmic rays This is likely due to the Sun being at a conciliatory cup of tea after the talk (high-energy particles which originate different phase of its 11-year cycle. (with perhaps some more astro-in- from extreme objects far from our “There is still a lot to learn about Solar System). the region of interstellar space imme- formation in the lecture theatre for Voyager 1 (Voyager 2’s sister diately beyond the heliopause” said Ed those who want to stay on). mission) left the heliosphere back in Stone, a Voyager project scientist at 2012. But unfortunately for mission Caltech. Several planned missions in scientists, Voyager 1 was unable to the coming years will be tasked with measure the strength of the Solar examining the heliopause in more de- If you have any questions, suggestions Wind (one way of measuring the edge tail, including the Interstellar Mapping or comments about the IoA Open of the Solar System) due to a previous and Acceleration Probe (IMAP), due to Evenings please contact Matt Bothwell at instrument failure. Luckily, Voyager launch in 2024. [email protected]. @cambridge_astro facebook.com/InstituteOfAstronomy 2 — IOA PUBLIC OPEN EVENING — 19 December 2018 Most distant Solar System object found A TEAM of astronomers have discov- ered the most distant Solar System object seen to date. Officially named 2018 VG18, but appropriately known Credit: Scott Sheppard/David Tholen as “Farout” to its discoverers, the new object is situated 120 astronomical An image of the new object, named “Farout”, captured with the Subaru telescope in Hawaii. units (AU) from the Sun. One AU is defined as the distance between the at the Carnegie Institution for Science take a few years to fully determine its Earth and the Sun – around 150 million in Washington DC. orbit,” said Sheppard. “But it was found km. For reference, the outermost planet Many of the small bodies lurking in in a similar location in the sky to the (Neptune) orbits at around 30 AU, and the distant outskirts of the Solar Sys- other known extreme solar system Pluto’s average distance from the Sun is tem seem to be influenced by a massive objects, suggesting it might have the around 40 AU. yet-unseen planet, nicknamed Planet X. same type of orbit that most of them So, orbiting at a distance of 120 AU, However, it is early days for Farout, and do. The orbital similarities shown by Farout is much, much farther away astronomers haven’t yet measured its many of the known small, distant solar than the familiar planets of the inner orbit with enough accuracy to know if system bodies was the catalyst for our Solar System. All that is known about it too shows signs of being under the original assertion that there is a dis- Farout so far is its size (around 500km influence of a massive missing planet. tant, massive planet at several hundred across) and its colour: pinkish, imply- “2018 VG18 is much more distant astronomical units shepherding these ing that Farout might be covered in ice. and slower moving than any other smaller objects.” The team was led by Scott Sheppard, observed solar system object, so it will Did a nearby supernova cause an ancient extinction? nearby supernova. A new study, led by Brian Thomas at Washburn University in Kansas, con- ducted computer simulations to work out how such a supernova would affect our planet. “I was expecting there to be very little effect at all,” Melott said. The Simeis 147, a supernova results were therefore surprising! Not remnant estimated to be only would the light from the super- around 40,000 years old. nova be bright enough to light up the Credit: Rogelio Bernal Andreo night sky for weeks, the team found that radiation and harmful cosmic rays from the explosion could have disrupt- A NEW study has suggested that a that this gas originated in a series of ed Earth’s climate enough to cause an minor mass extinction event on Earth supernovas in the Scorpius-Centaurus extinction event. around 2.6 million years ago (the Plio- cluster of stars around 2-3 million years “There really hasn’t been any good cene-Pleistocene extinction) may have ago (when the cluster was just 130 light explanation for the marine megafaunal had a cosmic culprit: a nearby superno- years from Earth). extinction,” Melott concluded. “This va, which could have bathed the Earth Secondly, the geological record could be one.” in radiation. shows a large deposit of Iron-60 around There are a few lines of evidence 2.6 million years in the past. Being that point to this conclusion. Firstly, radioactive, any Iron-60 that formed the timing lines up. Our Solar System along with the Earth would be long Joke of the Week is in the middle of a cloud of hot gas gone by now. So the 2.6 million year old around 500 light years across, known deposit must have a cosmic origin – What do you get if you cross Santa Claus with as the ‘Local Bubble’. It is thought such as raining down on Earth after a an alien? A U-F-Ho-Ho-Ho!.
Recommended publications
  • Minor Body Science with the Nancy Grace Roman Space Telescope
    ! Minor Body Science with the Nancy Grace Roman Space Telescope Bryan J. Holler (STScI)*, Stefanie N. Milam (NASA/GSFC), James M. Bauer (U. Maryland), Jeffrey W. Kruk (NASA/GSFC), Charles Alcock (Harvard/CfA), Michele T. Bannister (U. of Canterbury), Gordon L. Bjoraker (NASA/GSFC), Dennis Bodewits (Auburn), Amanda S. Bosh (MIT), Marc W. Buie (SwRI), Tony L. Farnham (UMD), Nader Haghighipour (Hawaii/IfA), Paul S. Hardersen (Unaffiliated), Alan W. Harris (MoreData! Inc.), Christopher M. Hirata (Ohio State), Henry H. Hsieh (PSI, Academica Sinica), Michael S. P. Kelley (U. Maryland), Matthew M. Knight (USNA/U. Maryland), Emily A. Kramer (Caltech/JPL), Andrea Longobardo (INAF/IAPS), Conor A. Nixon (NASA/GSFC), Ernesto Palomba (INAF/IAPS), Silvia Protopapa (SwRI), Lynnae C. Quick (Smithsonian), Darin Ragozzine (BYU), Jason D. Rhodes (Caltech/JPL), Andy S. Rivkin (JHU/APL), Gal Sarid (SETI, Science Systems and Applications, Inc.), Amanda A. Sickafoose (SAAO, MIT), Cristina A. Thomas (NAU), David E. Trilling (NAU), Robert A. West (Caltech/JPL) *Contact information for primary author: Bryan J. Holler (STScI), [email protected], (667) 218-6404 Thematic areas: Ground- and space-based telescopes, Primitive bodies Solar system science with space telescopes There is a long history of solar system observations with space telescope facilities, from the Infrared Astronomical Satellite (IRAS) in the 1980s to present-day facilities such as the Hubble Space Telescope. Some of these facilities include a prominent solar system component as part of the original mission plan (e.g., WISE, JWST), some included this component late in mission design or even after primary operations begin (e.g., HST), and others never intended to support solar system observations until the proper opportunity arose (e.g., Kepler, Chandra).
    [Show full text]
  • The Impact of Star Cluster Environments on Planet Formation
    The Impact of Star Cluster Environments on Planet Formation Rhana Bethany Nicholson A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy June 2019 i Declaration of Authorship I, Rhana Bethany Nicholson, declare that this thesis titled, “The Impact of Star Cluster Environments on Planet Formation” and the work presented in it are my own. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly attributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. • Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: ii To Mum and Dad, for making me do Kumon. iii “For all the tenure of humans on Earth, the night sky has been a companion and an inspiration... At the very moment that humans discovered the scale of the Universe and found that their most unconstrained fancies were in fact dwarfed by the true dimensions of even the Milky Way Galaxy, they took steps that ensured that their descendants would be unable to see the stars at all...” - Carl Sagan, Contact iv Acknowledgements Firstly I must begin by thanking my supervisor, Richard Parker, without whom this thesis would most definitely not exist.
    [Show full text]
  • New Type of Black Hole Detected in Massive Collision That Sent Gravitational Waves with a 'Bang'
    New type of black hole detected in massive collision that sent gravitational waves with a 'bang' By Ashley Strickland, CNN Updated 1200 GMT (2000 HKT) September 2, 2020 <img alt="Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image." class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190516104725-ngc-4485-nasa-super-169.jpg"> Photos: Wonders of the universe Galaxy NGC 4485 collided with its larger galactic neighbor NGC 4490 millions of years ago, leading to the creation of new stars seen in the right side of the image. Hide Caption 98 of 195 <img alt="Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. " class="media__image" src="//cdn.cnn.com/cnnnext/dam/assets/190502151952-0502-wonders-of-the-universe-super-169.jpg"> Photos: Wonders of the universe Astronomers developed a mosaic of the distant universe, called the Hubble Legacy Field, that documents 16 years of observations from the Hubble Space Telescope. The image contains 200,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the Big Bang. Hide Caption 99 of 195 <img alt="A ground-based telescope's view of the Large Magellanic Cloud, a neighboring galaxy of our Milky Way.
    [Show full text]
  • Asteroids Near and Far
    Asteroids Near and Far David J. Tholen Institute for Astronomy University of Hawaii Subaru 20th Anniversary 2019 November 22 Subaru and Near-Earth Asteroids ● Wide, deep imaging one of Subaru's strengths ● One of my earliest uses of Subaru was to look for asteroids interior to the Earth's orbit ● Introduced the term “apohele” to refer to this type of object (to distinguish from Amor, Apollo, Aten near-Earth objects) ● The motivation... Asteroid aphelia circa 2000 The Search for Apohele ● UHAS81 discovered 2004 Dec 13 with Subaru ● Later designated 2004 XZ130 ● At the time of discovery, had the smallest semimajor axis of any known asteroid Orbit of 2004 XZ130 Asteroid aphelia circa 2019 List of Known Apohele Object Aphelion Distance (AU) 2019 AQ3 0.77 2019 LF6 0.79 (418265) 2008 EA32 0.80 2018 JB3 0.88 2013 TQ5 0.89 (164294) 2004 XZ130 0.90 2006 WE4 0.93 2017 YH 0.94 2013 JX28 0.94 (413563) 2005 TG45 0.94 2006 KZ39 0.94 2015 ME131 0.95 2010 XB11 0.95 2014 FO47 0.96 (481817) 2008 UL90 0.96 2017 XA1 0.97 2012 VE46 0.97 (434326) 2004 JG6 0.97 (163693) Atira 0.98 Discovery of Apophis ● Most famous of the objects discovered during the search for Apohele ● Discovered 2004 June 19 UT ● Not a Subaru discovery, yet Subaru played a role that few people know about ● A stack of the three discovery images... Apophis on 2004 June 19 UT Subaru and Apophis ● UHAS55 identified as object of interest in Subaru images taken 2004 June 17 UT ● Motion faster than 90 arcsec/hr at solar elongation of 56 deg ● Attempted to recover on 2004 June 19 UT with Bok 2.29-m
    [Show full text]
  • Trans-Neptunian Space and the Post-Pluto Paradigm
    Trans-Neptunian Space and the Post-Pluto Paradigm Alex H. Parker Department of Space Studies Southwest Research Institute Boulder, CO 80302 The Pluto system is an archetype for the multitude of icy dwarf planets and accompanying satellite systems that populate the vast volume of the solar system beyond Neptune. New Horizons’ exploration of Pluto and its five moons gave us a glimpse into the range of properties that their kin may host. Furthermore, the surfaces of Pluto and Charon record eons of bombardment by small trans-Neptunian objects, and by treating them as witness plates we can infer a few key properties of the trans-Neptunian population at sizes far below current direct-detection limits. This chapter summarizes what we have learned from the Pluto system about the origins and properties of the trans-Neptunian populations, the processes that have acted upon those members over the age of the solar system, and the processes likely to remain active today. Included in this summary is an inference of the properties of the size distribution of small trans-Neptunian objects and estimates on the fraction of binary systems present at small sizes. Further, this chapter compares the extant properties of the satellites of trans-Neptunian dwarf planets and their implications for the processes of satellite formation and the early evolution of planetesimals in the outer solar system. Finally, this chapter concludes with a discussion of near-term theoretical, observational, and laboratory efforts that can further ground our understanding of the Pluto system and how its properties can guide future exploration of trans-Neptunian space.
    [Show full text]
  • Free Astronomy Magazine May-June 2021
    cover EN.qxp_l'astrofilo 28/04/2021 16:52 Page 1 THE FREE MULTIMEDIA MAGAZINE THAT KEEPS YOU UPDATED ON WHAT IS HAPPENING IN SPACE Bi-monthly magazine of scientific and technical information ✶ May-June 2021 IInnggeennuuiittyy’’ss ffiirrsstt fflliigghhtt Magnetic fields at the edge of M87’s black hole imaged Solar System’s most distant known object confirmed • The earliest supermassive black hole and quasar in the Universe • New atmosphere forming on a rocky exoplanet • Shining a new light on dark energy • How to measure the relativistic jet of M87 • Six-exoplanet system challenges theories of how planets form www.astropublishing.com ✶✶www.facebook.com/astropublishing [email protected] colophon EN_l'astrofilo 28/04/2021 16:53 Page 2 Science in School aims to promote inspir- ing science teaching by encouraging communica- tion between teachers, scientists, and everyone else involved in European sci- ence education. Science in School is published by EIROforum, a collaboration between eight European intergovernmen- tal scientific research organisations, of which ESO is a member. The journal addresses science teaching both across Europe and across disciplines: highlighting the best in teaching and cutting-edge research. Read more about Science in School at: http://www.scienceinschool.org/ colophon EN_l'astrofilo 28/04/2021 16:53 Page 3 Ingenuity’s first flight BI-MONTHLY MAGAZINE OF SCIENTIFIC 4 AND TECHNICAL INFORMATION FREELY AVAILABLE THROUGH THE INTERNET Magnetic fields at the edge of M87’s black May-June 2021 12 hole imaged The earliest supermassive black hole and quasar 16 in the Universe New atmosphere forming on a rocky 20 exoplanet A distant galaxy dies as astronomers 24 watch English edition of the magazine lA’ STROFILO Shining a new light on dark 26 energy Editor in chief Michele Ferrara Scientific advisor Prof.
    [Show full text]
  • MERCURY VENUS EARTH MARS Study Skills, Maths Skills and Investigative Every Effort Has Been Made to Contact Exploration Copyright Holders
    URANUS NEPTUNE DISTANCE FROM SUN DISTANCE FROM SUN 2872.5 million km 4495.1 million km LENGTH OF YEAR LENGTH OF YEAR 30,589 Earth days 59,800 Earth days DAY LENGTH DAY LENGTH 17.2 hours 16.1 hours DIAMETER DIAMETER 50,118 km 49,528 km JUPITER SATURN DISTANCE FROM SUN DISTANCE FROM SUN 778.6 million km 1433.5 million km LENGTH OF YEAR LENGTH OF YEAR 4331 Earth days 10,747 Earth days DAY LENGTH DAY LENGTH 9.9 hours 10.7 hours DIAMETER DIAMETER 142,984 km 120,536 km ZOOM IN DISTANCE FROM SUN DISTANCE FROM SUN DISTANCE FROM SUN DISTANCE FROM SUN MERCURY 57.9 million km VENUS 108.2 million km EARTH 149.6 million km MARS 227.9 million km The smallest and closest planet to the LENGTH OF YEAR An almost Earth-sized planet with a LENGTH OF YEAR The only planet to have abundant LENGTH OF YEAR A world that had liquid water long ago, LENGTH OF YEAR Sun, its lack of atmosphere makes 88.0 Earth days dense and cloudy atmosphere that 224.7 Earth days liquid water today and an atmosphere 365.2 Earth days but has changed to a cold, dry climate. 687.0 Earth days Mercury hot by day and cold by night. hides the surface from view. that we can breathe. ROTATION PERIOD ROTATION PERIOD ROTATION PERIOD Mars has canyons, valleys, giant ROTATION PERIOD Mercury rotates exactly three times for To map the surface of Venus from orbit we Earth’s core generates a magnetic field.
    [Show full text]
  • Subaru Telescope —History, Active/Adaptive Optics, Instruments, and Scientific Achievements—
    No. 7] Proc. Jpn. Acad., Ser. B 97 (2021) 337 Review Subaru Telescope —History, active/adaptive optics, instruments, and scientific achievements— † By Masanori IYE*1, (Contributed by Masanori IYE, M.J.A.; Edited by Katsuhiko SATO, M.J.A.) Abstract: The Subaru Telescopea) is an 8.2 m optical/infrared telescope constructed during 1991–1999 and has been operational since 2000 on the summit area of Maunakea, Hawaii, by the National Astronomical Observatory of Japan (NAOJ). This paper reviews the history, key engineering issues, and selected scientific achievements of the Subaru Telescope. The active optics for a thin primary mirror was the design backbone of the telescope to deliver a high-imaging performance. Adaptive optics with a laser-facility to generate an artificial guide-star improved the telescope vision to its diffraction limit by cancelling any atmospheric turbulence effect in real time. Various observational instruments, especially the wide-field camera, have enabled unique observational studies. Selected scientific topics include studies on cosmic reionization, weak/strong gravitational lensing, cosmological parameters, primordial black holes, the dynamical/chemical evolution/interactions of galaxies, neutron star mergers, supernovae, exoplanets, proto-planetary disks, and outliers of the solar system. The last described are operational statistics, plans and a note concerning the culture-and-science issues in Hawaii. Keywords: active optics, adaptive optics, telescope, instruments, cosmology, exoplanets largest telescope in Asia and the sixth largest in the 1. Prehistory world. Jun Jugaku first identified a star with excess 1.1. Okayama 188 cm telescope. In 1953, UV as an optical counterpart of the X-ray source Yusuke Hagiwara,1 director of the Tokyo Astronom- Sco X-1.1) Sco X-1 was an unknown X-ray source ical Observatory, the University of Tokyo, empha- found at that time by observations using an X-ray sized in a lecture the importance of building a modern collimator instrument invented by Minoru Oda.2, 2) large telescope.
    [Show full text]
  • “It's Full of Asteroids!”: Solar System Science with a Large Field of View
    “It’s full of asteroids!”: Solar system science with a large field of view Bryan J. Holler (STScI)*, Stefanie N. Milam (NASA/GSFC), James M. Bauer (U. Maryland), Jeffrey W. Kruk (NASA/GSFC), Charles Alcock (Harvard/CfA), Michele T. Bannister (Queen’s U. Belfast), Gordon L. Bjoraker (NASA/GSFC), Dennis Bodewits (Auburn), Amanda S. Bosh (MIT), Marc W. Buie (SwRI), Tony L. Farnham (UMD), Nader Haghighipour (Hawaii/IfA), Paul S. Hardersen (PSI), Alan W. Harris (MoreData! Inc.), Christopher M. Hirata (Ohio State), Henry H. Hsieh (PSI, Academica Sinica), Michael S. P. Kelley (U. Maryland), Matthew M. Knight (U. Maryland), Emily A. Kramer (Caltech/JPL), Andrea Longobardo (INAF/IAPS), Conor A. Nixon (NASA/GSFC), Ernesto Palomba (INAF/IAPS), Silvia Protopapa (SwRI), Lynnae C. Quick (Smithsonian), Darin Ragozzine (BYU), Vishnu Reddy (Arizona/LPL), Jason D. Rhodes (Caltech/JPL), Andy S. Rivkin (JHU/APL), Gal Sarid (UCF/FSI), Amanda A. Sickafoose (SAAO, MIT), Amy A. Simon (NASA/GSFC), Cristina A. Thomas (NAU), David E. Trilling (NAU), Robert A. West (Caltech/JPL) *Contact information for primary author: Bryan J. Holler (STScI), [email protected], (667) 218-6404 Thematic area: Planetary Systems 1 Solar system science with astrophysics assets There is a long history of solar system observations with space-based astrophysics assets, from the Infrared Astronomical Satellite (IRAS) in the 1980s to present-day facilities such as the Hubble Space Telescope. Some astrophysics assets include a prominent solar system component as part of the original mission plan (e.g., WISE), some include this component late in mission design or even after primary operations begin (e.g., HST), and others never intended to support solar system observations until the proper opportunity arose (e.g., Kepler, Chandra).
    [Show full text]
  • Subaru Telescope--History, Active/Adaptive Optics, Instruments
    Draft version May 25, 2021 Typeset using LATEX twocolumn style in AASTeX63 Subaru Telescope — History, Active/Adaptive Optics, Instruments, and Scientific Achievements— Masanori Iye1 1National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 Japan (Accepted April 27, 2021) Submitted to PJAB ABSTRACT The Subaru Telescopea) is an 8.2 m optical/infrared telescope constructed during 1991–1999 and has been operational since 2000 on the summit area of Maunakea, Hawaii, by the National Astro- nomical Observatory of Japan (NAOJ). This paper reviews the history, key engineering issues, and selected scientific achievements of the Subaru Telescope. The active optics for a thin primary mirror was the design backbone of the telescope to deliver a high-imaging performance. Adaptive optics with a laser-facility to generate an artificial guide-star improved the telescope vision to its diffraction limit by cancelling any atmospheric turbulence effect in real time. Various observational instruments, especially the wide-field camera, have enabled unique observational studies. Selected scientific topics include studies on cosmic reionization, weak/strong gravitational lensing, cosmological parameters, primordial black holes, the dynamical/chemical evolution/interactions of galaxies, neutron star merg- ers, supernovae, exoplanets, proto-planetary disks, and outliers of the solar system. The last described are operational statistics, plans and a note concerning the culture-and-science issues in Hawaii. Keywords: Active Optics, Adaptive Optics, Telescope, Instruments, Cosmology, Exoplanets 1. PREHISTORY Oda2 (2). Yoshio Fujita3 studied the atmosphere of low- 1.1. Okayama 188 cm Telescope temperature stars. He and his school established a spec- troscopic classification system of carbon stars (3; 4) us- 1 In 1953, Yusuke Hagiwara , director of the Tokyo As- ing the Okayama 188cm telescope.
    [Show full text]
  • Astronomy Magazine 2020 Index
    Astronomy Magazine 2020 Index SUBJECT A AAVSO (American Association of Variable Star Observers), Spectroscopic Database (AVSpec), 2:15 Abell 21 (Medusa Nebula), 2:56, 59 Abell 85 (galaxy), 4:11 Abell 2384 (galaxy cluster), 9:12 Abell 3574 (galaxy cluster), 6:73 active galactic nuclei (AGNs). See black holes Aerojet Rocketdyne, 9:7 airglow, 6:73 al-Amal spaceprobe, 11:9 Aldebaran (Alpha Tauri) (star), binocular observation of, 1:62 Alnasl (Gamma Sagittarii) (optical double star), 8:68 Alpha Canum Venaticorum (Cor Caroli) (star), 4:66 Alpha Centauri A (star), 7:34–35 Alpha Centauri B (star), 7:34–35 Alpha Centauri (star system), 7:34 Alpha Orionis. See Betelgeuse (Alpha Orionis) Alpha Scorpii (Antares) (star), 7:68, 10:11 Alpha Tauri (Aldebaran) (star), binocular observation of, 1:62 amateur astronomy AAVSO Spectroscopic Database (AVSpec), 2:15 beginner’s guides, 3:66, 12:58 brown dwarfs discovered by citizen scientists, 12:13 discovery and observation of exoplanets, 6:54–57 mindful observation, 11:14 Planetary Society awards, 5:13 satellite tracking, 2:62 women in astronomy clubs, 8:66, 9:64 Amateur Telescope Makers of Boston (ATMoB), 8:66 American Association of Variable Star Observers (AAVSO), Spectroscopic Database (AVSpec), 2:15 Andromeda Galaxy (M31) binocular observations of, 12:60 consumption of dwarf galaxies, 2:11 images of, 3:72, 6:31 satellite galaxies, 11:62 Antares (Alpha Scorpii) (star), 7:68, 10:11 Antennae galaxies (NGC 4038 and NGC 4039), 3:28 Apollo missions commemorative postage stamps, 11:54–55 extravehicular activity
    [Show full text]
  • January 2019 BRAS Newsletter
    Monthly Meeting January 14th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Speaker: Jim Gutierrez, Sunspots, Hot Spots and Relativity What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Comet and Asteroid News Light Pollution Committee Report “Free The Milky Way” Campaign Recent BRAS Forum Entries Messages from the HRPO Science Academy Friday Night Lecture Series Globe at Night Adult Astronomy Courses Total Lunar Eclipse Observing Notes – Ara – The Alter & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society January 2019 © 2019 President’s Message First off, I thank you for placing your trust in me for another year. Another thanks goes out to Scott Cadwallader and John R. Nagle for fixing the Library Telescope. The telescope was missing a thumbnut witch Orion Telescope replaced, Scott and John, put the thumbnut back on and reset the collimation. Let’s don’t forget the Total Lunar Eclipse coming up this January 20th. See HRPO announcement below. We are planning 2019 and hope to have an enjoyable year for our members. I’d like to find more opportunity to point our telescopes at the night sky. If there is anything you’d like to see, do, or wish to offer let us know. Our webmaster has set up a private forum: "BRAS Members Only" Group/Section to the "Baton Rouge Astronomical Society Forum" (http://www.brastro.org/phpBB3/). The plan is to use this Group/Section to get additional information to members and get feedback from members without the need of flooding everyone's inbox.
    [Show full text]