Gonioscopy and Other Techniques for Assessing the Anterior Chamber

Total Page:16

File Type:pdf, Size:1020Kb

Gonioscopy and Other Techniques for Assessing the Anterior Chamber What Am I Seeing?: Answers to Gonioscopy Questions Nate Lighthizer, O.D., F.A.A.O. Associate Professor, Oklahoma College of Optometry Assistant Dean of Clinical Care Chief of Specialty Care Clinics Chief of Electrodiagnostics Clinic Director of Continuing Education [email protected] Material provided, in part, by Dr. Doug Penisten Angle Anatomy “I Can’t See This Sh@%” Iris Insertion Ciliary Body (Band) Scleral Spur Trabecular Meshwork Schwalbe’s Line Gonioscopic view History of Gonioscopy How do you see the angle? Use either Direct lens – use a contact lens with specific anterior curvature that will overcome critical angle Indirect – use a mirror to overcome the critical angle Direct Gonioscopy Koeppe lens is the gold standard in direct gonioscopy Usually used for pediatric patients in association with a hand held slit lamp (gonioscope + focal illuminator) Provides 15X to 20X mag Indirect Gonioscopy Two major types Goldmann Three Mirror lens Zeiss four-mirror lens AKA Posner AKA Sussman without the handle Gonioscopy Is the gold standard for assessing the drainage apparatus of the eye Gonioscopy should be performed on all patients at least once a year? CPT code 92020…MCR reimb = ~$25 Gonioscopy Used to distinguish one type of glaucoma from the other Mainly open from closed angle glaucoma Also angle recession and others Optics of Gonioscopy Instructing and Counseling the Patient “Why and How” Preparing the Lens Insertion Techniques Types of Goniolenses 6 mirror lens! Indentation Gonioscopy Laser peripheral iridotomy (LPI) How likely is this patient to develop glaucoma? How do we predict whether she will progress? How effective is LPI? What do we do if LPI fails? Iridotomy indications Acute angle closure glaucoma Asymptomatic angle closure glaucoma Prophylaxis for primary angle closure suspect (“narrow angles”) How narrow is too narrow? How aggressive should we be? How do we measure the angle? Gonioscopy vs newer technologies (i.e. anterior segment OCT) Gonioscopy Advantages: view synechiae, angle recession, pigment levels, NVA Disadvantages: subjective CTAS-O Advantages: objective, noninvasive Disadvantages: no view of pigment, synechiae, NVA How do we measure the angle? Gonioscopy: Underutilized, according to chart review studies and Medicare billing data Remains gold standard for angle measurement How do we classify the angle? Based on chronicity Acute Subacute Chronic Based on glaucomatous damage Primary angle closure suspect Primary angle closure Primary angle closure glaucoma Additional concepts: intermittent, latent, creeping angle closure A Simplified Classification Scheme 1. Anatomically narrow (PACS) – Indentation gonioscopy opens angle – Normal IOP – Heightened suspicion 2. Anterior synechiae and/or elevated IOP (PAC) – Minimal natural history data 3. Closed angles and glaucomatous damage (PACG) (Fourth category: Acute symptomatic angle closure) How narrow is too narrow? Gonioscopy: iridotrabecular contact in at least 180 degrees Iridotrabecular contact = failure to see posterior meshwork AS- OCT: angle opening is less than 5-10 degrees Visante: use lens vault measurement A Simplified Classification Scheme 1. Anatomically narrow (PACS) – Indentation gonioscopy opens angle – Normal IOP – Heightened suspicion 2. Anterior synechiae and/or elevated IOP (PAC) – Minimal natural history data 3. Closed angles and glaucomatous damage (PACG) (Fourth category: Acute symptomatic angle closure) When to recommend prophylactic LPI Narrow angle (next slide), and presence of any: Peripheral anterior synechiae Elevated IOP Optic nerve damage Family history Narrow angle without any of these: discuss risks, involve patient in decision Slit-Lamp Setup Tips on Set-up Position mirror at 12:00. (I always view inferior angle first to get my landmarks.) To begin, keep gonio lens oriented straight (i.e., not tilted) Put light on mirror before you go to the oculars. I rest my hand on the patient’s head. Elbow rest if needed. Appreciating and Anticipating the Anterior Chamber Morphology Start with the “Big View” First Low Mag and Iris Conformation Illuminating the Angle Optical “Corneal Wedge” Getting the Wedge and Variations of the Wedge Presentation Set-up for Wedge Illumination very bright Slit very narrow and vertical Move illumination angle a few degrees to the right or left. (Not straight ahead) May have to move light left or right until optimal position found. Most clinicians will view the optical “corneal wedge” once – in the inferior angle. Using the landmarks found in the inferior angle, the other three quadrants can be evaluated. If needed, the wedge can also be viewed in the superior angle. (Cannot be done in lateral angles) Angle Anatomy “Clinical Variations on a Theme” Angle Anatomy Iris Insertion Ciliary Body (Band) Scleral Spur Trabecular Meshwork Schwalbe’s Line Ciliary Body (Band) Visibility – “Width” Pigmentation Scleral Spur Trabecular Meshwork Schwalbe’s Line Identifying Angle Structures – Two Basic Techniques Posterior to Anterior Anterior (Optical Wedge) to Posterior Quiz Time – 3 presentations What’s the most posterior structure seen? A. Schwalbe’s line B. TM C. Scleral spur D. CB band What’s the most posterior structure seen? A. Schwalbe’s line B. TM C. Scleral spur D. CB band What’s the most posterior structure seen? A. Schwalbe’s line B. TM C. Scleral spur D. CB band Recording Your Findings St. Andrew’s Cross Essential Findings to Record Most Posterior Anatomical Feature of Angle Seen Rating of Angle Conformation, i.e., the Angle “Openness” Other Significant Findings, ex., pigment Rating of Angle Conformation Spaeth’s angular width of the angle recess Spaeth’s configuration of the iris OR Steep (s) Regular (r) Queer (q) Spaeth’s insertion grading Pigmentation Spaeth grading B15b 2+ptm Trabecular meshwork (B) 15 degree angle Anterior bowing of iris (b) 2+ pigment in tm (2+ptm) Describes open but somewhat narrow angle with moderate pigmentation and a bowed iris Shaffer classification Techniques for Removing Lens Different Angle Presentations What is the most common cause of narrow angle glaucoma? A. Plateau Iris Syndrome B. Pupillary Block C. Malignant Glaucoma D. POAG E. Phacomorphic glaucoma Pupillary Block vs. Plateau Iris Syndrome Plateau Iris Syndrome Development of residual angle closure after patent Laser Peripheral Iridotomy (LPI) Flat iris plane Deep anterior chamber Narrow angle due to anterior insertion of iris root Dilation, being in a dark environment often promotes bunching of peripheral iris in the angle Consider the demographics 20 -50 year old Caucasian females seem to be the most prominent demographic Plateau Iris Syndrome Angle Recession Angle recession Pigment Dispersion Syndrome Pigment dispersion Peripheral anterior synechiae Quiz Time – 3 presentations What would you record? A. Schwalbe’s line – 1+ pigment B. TM – 1+ pigment C. Scleral spur – 1+ pigment D. CB band – 1+ pigment Iris processes Pigmented Schwalbe’s line – AKA Sampaolesi’s line TM Gray CB What would you record? A. Schwalbe’s line – 1+ pigment B. TM – 1+ pigment C. Scleral spur – 1+ pigment D. CB band – 1+ pigment Sampaolesi's Line, pig glaucoma pt. Iris processes Gray CB What would you record? A. Schwalbe’s line B. TM C. Scleral spur D. CB band Gray CB Open angle with blood in Schlemm's canal What would you record? A. Schwalbe’s line B. TM C. Scleral spur D. CB band A hint of CB Lightly pigmented TM Lightly pigmented Schwalbe’s line Normal iris vessels www.gonioscopy.org.
Recommended publications
  • Non-Invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Xie et al., J Clin Exp Ophthalmol 2017, 8:4 g u y o J Ophthalmology DOI: 10.4172/2155-9570.1000672 ISSN: 2155-9570 Research Article Open Access Non-invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension: The Beijing Intracranial and Intraocular Pressure Study Xiaobin Xie1,2, Weiwei Chen3,4, Zhen Li5, Ravi Thomas3,6,7, Yong Li8, Junfang Xian8, Diya Yang4, Huaizhou Wang4, Jun Feng1, Shoukang Zhang1, Lixia Zhang1, Ruojin Ren9 and Ningli Wang3,4* 1Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, China 2Post-doctoral Research Station Affiliated to the Chinese Academy of Chinese Medical Sciences, Beijing, China 3Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, China 4Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China 5Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China 6Queensland Eye Institute, 140 Melbourne Street, South Brisbane 4101, Queensland, Australia 7University of Queensland, Brisbane, Australia 8Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China 9State University of New York College of Optometry, New York, United States *Corresponding author: Ningli Wang, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Dongjiaominxiang Street, Dongcheng District, Beijing 100730, China, Tel: +8610-5826-9968; Fax: +8610-5826-9920; E-mail: [email protected] Received date: July 19, 2017; Accepted date: August 10, 2017; Published date: June 30, 2017 Copyright: © 2017 Xie X, et al.
    [Show full text]
  • Optical Coherence Tomography (OCT) Anterior Segment of the Eye
    Corporate Medical Policy Optical Coherence Tomography (OCT) Anterior Segment of the Eye File Name: optical_coherence_tomography_(OCT)_anterior_segment_of_the_eye Origination: 2/2010 Last CAP Review: 6/2021 Next CAP Review: 6/2022 Last Review: 6/2021 Description of Procedure or Service Optical Coherence Tomography Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. OCT creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging a t a resolution of 6 to 25 μm. The Stratus OCT, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante OCT and AC Cornea OCT use a 1.3-μm wavelength light source designed specifically for imaging the a nterior eye segment. Light of this wa velength penetrates the sclera, a llowing high-resolution cross- sectional imaging of the anterior chamber (AC) angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh resolution OCT can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers. Applications of OCT OCT of the anterior eye segment is being eva luated as a noninvasive dia gnostic and screening tool with a number of potential a pplications.
    [Show full text]
  • Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
    9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL:
    [Show full text]
  • Bilateral Acute Angle Closure Glaucoma After Hyperopic LASIK Correction
    Saudi Journal of Ophthalmology (2009) 23, 215– 217 King Saud University Saudi Journal of Ophthalmology www.ksu.edu.sa www.sciencedirect.com CASE REPORT Bilateral acute angle closure glaucoma after hyperopic LASIK correction Essam A. Osman, MD *, Ahmed A. Alsaleh, MD, Turki Al Turki, MD, Saleh A. AL Obeidan, MD Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia Received 25 May 2009; accepted 13 July 2009 Available online 24 October 2009 KEYWORDS Abstract Acute angle closure glaucoma is unexpected complication following laser in situ ker- Acute glaucoma; atomileusis (LASIK). We are reporting a 49-years-old lady that was presented to the emergency Hyperopia; department with acute glaucoma in both eyes soon after LASIK correction. Diagnosis was made LASIK on detailed clinical history and examination, slit lamp examination, intraocular pressure measure- ment and gonioscopy. Laser iridotomy in both eyes succeeded in controlling the attack and normal- izing the intraocular pressure (IOP) more than 6 months of follow-up. Prophylactic laser iridotomy is essential for narrow angle patients before LASIK surgery if refractive laser surgery is indicated. ª 2009 King Saud University. All rights reserved. 1. Introduction Paciuc et al. reported a case of unilateral acute angle clo- sure glaucoma 1 year after hyperopic LASIK correction (Paci- Primary angle closure glaucoma (PACG) is a vision-threaten- uc et al., 2000). However, we are reporting a case of bilateral ing type of glaucoma. A high prevalence of PACG has been re- acute glaucoma soon after LASIK correction. LASIK surgery ported in the Asian region (Kunimatsu, 2007). Angle closure is the most popular form of laser eye surgery, in which an oph- glaucoma soon after LASIK procedure is an unexpected thalmic surgeon reshapes the cornea using an excimer laser complication.
    [Show full text]
  • Post-Miosis Changes in the Anterior Chamber Structures in Primary and Lens-Induced Secondary Chronic Angle- Closure Glaucoma
    Int J Ophthalmol, Vol. 12, No. 4, Apr.18, 2019 www.ijo.cn Tel: 8629-82245172 8629-82210956 Email: [email protected] ·Brief Report· Post-miosis changes in the anterior chamber structures in primary and lens-induced secondary chronic angle- closure glaucoma Mu Li1, Xiao-Qin Yan1, Gai-Yun Li1,2, Hong Zhang1 1Department of Ophthalmology, Tongji Hospital, Tongji INTRODUCTION Medical College, Huazhong University of Science and laucoma was a leading cause of irreversible blindness Technology, Wuhan 430030, Hubei Province, China G worldwide[1-2], and could be categorized into two types: 2Retinal Department, Shanxi Eye Hospital, Taiyuan 030002, angle-closure glaucoma (ACG) and open angle glaucoma. In Shanxi Province, China Asian, ACG is more prevalent than open angle glaucoma[3-5]. In Co-first authors: Mu Li and Xiao-Qin Yan terms of ACG, it could be divided into primary and secondary Correspondence to: Gai-Yun Li. No.100, Fudong Street, types. For the pathogenesis of primary ACG, besides the Taiyuan 030002, Shanxi Province, China. [email protected]; non-pupillary block mechanisms[6-11], the major mechanism Hong Zhang. No.1095, Jiefang Road, Wuhan 430030, Hubei was pupillary block[12-13]. As an initial option for primary Province, China. [email protected] ACG treatment, miotics could induce the contraction of the Received: 2018-04-13 Accepted: 2018-12-05 sphincter pupillae, which could then pull the peripheral iris away from the trabecular meshwork and therefore reopen Abstract the angle, and finally decrease intraocular pressure (IOP) and ● To evaluate post-miosis changes in the anterior chamber control the progression of glaucoma.
    [Show full text]
  • Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients with Initial Parafoveal Scotoma and Peripheral Nasal Step
    Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients With Initial Parafoveal Scotoma and Peripheral Nasal Step EUNJOO YOO, CHUNGKWON YOO, TAE-EUN LEE, AND YONG YEON KIM PURPOSE: To compare retinal vessel diameters (RVDs) LTHOUGH INTRAOCULAR PRESSURE (IOP) IS THE between open-angle glaucoma (OAG) patients with most important and only known modifiable risk initial parafoveal scotoma (PFS) and those with initial pe- A factor for glaucoma,1–4 not all patients with ripheral nasal step (PNS). glaucoma show elevated IOP. The Collaborative Normal- DESIGN: Retrospective, cross-sectional study. Tension Glaucoma study reported that 20% of the patients METHODS: We enrolled 151 eyes of 151 patients with with normal-tension glaucoma (NTG) show visual field OAG (83 with normal-tension glaucoma [NTG] and 68 (VF) deterioration, even after a 30% IOP reduction from with primary open-angle glaucoma [POAG]). The pa- baseline.2 Accumulating evidence indicates that, in addi- tients were categorized into the PFS and PNS groups ac- tion to mechanical factors, vascular pathology plays a role cording to the location of the initial visual field (VF) in open-angle glaucoma (OAG). The relationships between defect. Clinical characteristics and RVD indices—central glaucoma and vascular factors, such as migraine,5,6 optic retinal arteriolar equivalent (CRAE) and central retinal disc hemorrhage,7,8 and vasospasm,9 are well established. venular equivalent (CRVE)—were compared between Furthermore, many reports have suggested that glaucoma it- the groups. Subgroup analyses were conducted in the self is associated with the retinal vasculature. A previous NTG and POAG groups. study showed that retinal vessel diameter (RVD) decreases RESULTS: Forty-six patients had PFS and 105 had significantly with increasing glaucoma stage, independently PNS.
    [Show full text]
  • Bioptics with LASIK Flap First for the Treatment of High Ametropia
    Bioptics With LASIK Flap First for the Treatment of High Ametropia Merab L. Dvali, MD, PhD; Nana A. Tsinsadze, MD, PhD; Bella V. Sirbiladze, MD, PhD ioptics, fi rst described by Zaldivar et al,1 is the treat- ABSTRACT ment of refractive error using phakic intraocular PURPOSE: To report the safety and predictability of an B lens (IOL) implantation and excimer laser corneal alternate sequence of the bioptics procedure. ablation. Candidates for this procedure included patients with high refractive errors (with astigmatism) that surpass METHODS: In this prospective study of 50 eyes, pha- the treatment range for excimer laser refractive surgery and kic intraocular lenses (IOLs) and pseudophakic IOLs were patients whose corneal thickness will not allow full treat- implanted, followed by LASIK. The corneal fl ap was cre- ment of refractive error. ated, followed by lens implantation 3 days later. Laser ablation was performed to the stromal bed 3 months Over time, the defi nition of bioptics has expanded to in- later. Fifty eyes with varying degrees of refractive clude phakic, pseudophakic, and clear lens extraction cases error (range of manifest refraction spherical equivalent followed by surgery on the corneal plane. Phakic or pseudo- [MRSE], Ϫ19.50 to ϩ8.50 diopters [D]) were treated. phakic surgery followed by refractive surgery is the most com- Follow-up ranged from 3 months to 4 years postopera- mon form of bioptics.2 In this procedure, the lens is implanted tively. to correct the majority of refractive error followed by LASIK RESULTS: No intra- or postoperative complications performed at least 3 months postoperatively to correct the re- occurred.
    [Show full text]
  • The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence
    Journal of Clinical Medicine Review The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence Giacinto Triolo 1,* , Piero Barboni 2,3, Giacomo Savini 4, Francesco De Gaetano 1, Gaspare Monaco 1, Alessandro David 1 and Antonio Scialdone 1 1 Ophthalmic Institute, ASST Fatebenefratelli-Sacco, 20121 Milan, Italy; [email protected] (F.D.G.); [email protected] (G.M.); [email protected] (A.D.); [email protected] (A.S.) 2 San Raffaele Scientific Institute, University Vita-Salute, 20133 Milan, Italy; [email protected] 3 Studio Oculistico D’Azeglio, 40123 Bologna, Italy 4 G.B. Bietti Foundation I.R.C.C.S., 00198 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: The introduction of anterior-segment optical-coherence tomography (AS-OCT) has led to improved assessments of the anatomy of the iridocorneal-angle and diagnoses of several mechanisms of angle closure which often result in raised intraocular pressure (IOP). Continuous advancements in AS-OCT technology and software, along with an extensive research in the field, have resulted in a wide range of possible parameters that may be used to diagnose and follow up on patients with this spectrum of diseases. However, the clinical relevance of such variables needs to be explored thoroughly. The aim of the present review is to summarize the current evidence supporting the use of AS-OCT for the diagnosis and follow-up of several iridocorneal-angle and anterior-chamber Citation: Triolo, G.; Barboni, P.; alterations, focusing on the advantages and downsides of this technology.
    [Show full text]
  • Laser Procedures for the Management of Glaucoma and More Handout
    4/25/17 Overview Laser Procedures for the Management • Why we use lasers of Glaucoma and More • YAG capsulotomy Nate Lighthizer, O.D., F.A.A.O. • Laser Peripheral Iridotomy (LPI or PI) Assistant Professor, NSUOCO • Argon Laser Peripheral Iridoplasty (ALPI) Assistant Dean, Clinical Care Services • Argon Laser Trabeculoplasty (ALT) Director of CE Chief of Specialty Care Clinics • Selective Laser Trabeculoplasty (SLT) Chief of Electrodiagnostics Clinic • Other Laser Trabeculoplasty [email protected] Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 4/25/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1.
    [Show full text]
  • Ophthalmology Abbreviations Alphabetical
    COMMON OPHTHALMOLOGY ABBREVIATIONS Listed as one of America’s Illinois Eye and Ear Infi rmary Best Hospitals for Ophthalmology UIC Department of Ophthalmology & Visual Sciences by U.S.News & World Report Commonly Used Ophthalmology Abbreviations Alphabetical A POCKET GUIDE FOR RESIDENTS Compiled by: Bryan Kim, MD COMMON OPHTHALMOLOGY ABBREVIATIONS A/C or AC anterior chamber Anterior chamber Dilators (red top); A1% atropine 1% education The Department of Ophthalmology accepts six residents Drops/Meds to its program each year, making it one of nation’s largest programs. We are anterior cortical changes/ ACC Lens: Diagnoses/findings also one of the most competitive with well over 600 applicants annually, of cataract whom 84 are granted interviews. Our selection standards are among the Glaucoma: Diagnoses/ highest. Our incoming residents graduated from prestigious medical schools ACG angle closure glaucoma including Brown, Northwestern, MIT, Cornell, University of Michigan, and findings University of Southern California. GPA’s are typically 4.0 and board scores anterior chamber intraocular ACIOL Lens are rarely lower than the 95th percentile. Most applicants have research lens experience. In recent years our residents have gone on to prestigious fellowships at UC Davis, University of Chicago, Northwestern, University amount of plus reading of Iowa, Oregon Health Sciences University, Bascom Palmer, Duke, UCSF, Add power (for bifocal/progres- Refraction Emory, Wilmer Eye Institute, and UCLA. Our tradition of excellence in sives) ophthalmologic education is reflected in the leadership positions held by anterior ischemic optic Nerve/Neuro: Diagno- AION our alumni, who serve as chairs of ophthalmology departments, the dean neuropathy ses/findings of a leading medical school, and the director of the National Eye Institute.
    [Show full text]
  • A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives
    Ophthalmol Ther DOI 10.1007/s40123-017-0082-x REVIEW A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives Yujia Zhou . Ahmad A. Aref Received: January 17, 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com ABSTRACT explored, revealing that minor modifications may lead to a more favorable or safer clinical Selective laser trabeculoplasty (SLT) has been outcome. The utilization of postoperative widely used in the clinical management of medications remains controversial based on the glaucoma, both as primary and adjunctive current evidence. A short-term IOP increase treatment. As new evidence continues to arise, may complicate SLT and can also persist in we review the current literature in terms of certain cases such as in exfoliation glaucoma. indications and efficacy, surgical technique, The efficacy and safety of repeat SLT are shown postoperative care, repeatability, and compli- in multiple studies, and the timing of repeat cations of this therapy. SLT has been shown to procedures may affect the success rate. be effective in various glaucomas, including primary open-angle glaucoma (POAG), nor- mal-tension glaucoma (NTG), steroid-induced Keywords: Glaucoma; Intraocular pressure; glaucoma, pseudoexfoliation glaucoma (PXFG), Laser; Selective laser trabeculoplasty and primary angle-closure glaucoma (PACG), as well as other glaucoma subtypes. Relatively high preoperative intraocular pressure (IOP) INTRODUCTION may predict surgical success, while other parameters that have been studied do not seem Intraocular pressure (IOP) reduction is the to affect the outcome. Different techniques for mainstay of therapy for glaucomatous optic performing the procedure have recently been neuropathy. Selective laser trabeculoplasty (SLT) has been widely employed for this pur- Enhanced content To view enhanced content for this pose over the past several years as both a pri- article go to http://www.medengine.com/Redeem/ mary and adjunctive treatment [1].
    [Show full text]
  • Contractile Cells in the Human Scleral Spur
    Exp. Eye Res. (1992) 54, 531-543 Contractile Cells in the Human Scleral Spur ERNST TAMM”“, CASSANDRA FLUGEL”, FRITZ H.STEFANIb~~~ JOHANNES W. ROHEN” aDepartment of Anatomy, University of Erlangen- Niirnberg and bEye Hospital of the University of Munich, Germany (Received Lund 75 March 7997 and accepted in revised form 73 June 7997) The scieral spur in 37 human (age 17-87 years) and six cynomolgusmonkey eyes (2-4 years) was investigated. Serial meridional and tangential sections were studied with ultrastructural and immunocytochemicalmethods. The bundlesof the ciliary muscledo not enter the scleralspur, but their tendons, which consistof elasticfibres join the elasticfibres in the scleralspur. Within the scleralspur a populationof circularly oriented and spindle-shapedcells is found. In contrast to the ciliary musclecells, the scleralspur cellsform no bundles,but are looselyaggregated. They have long cytoplasmicprocesses and are connectedto each other by adherens-typeand gap junctions. They stain intensely for a-smooth muscleactin. myosin and vimentin. In contrast to the ciliary musclecells, they do not stain for desmin. Ultrastructurally, the scleral spur cells contain abundant thin (actin) filaments, but do not otherwise show the typical ultrastructural features of ciliary musclecells. The scleral spur cells do not expressa completebasal lamina. They form individual tendinousconnections with the elasticfibres in the scleral spur, which are continuous with the elasticfibres of the trabecular meshwork.The scleralspur cellsare in close contact with nerve terminals containing small agranular (30-60 nm) and large granular (65-l 10 nm) vesiclesbut alsowith terminalscontaining small granular (30-60 nm) vesicleswhich are regardedas typical for adrenergic terminals. We conclude that the scleral spur cells are contractile myofibroblasts.Their contraction might influence the rate of the aqueousoutflow.
    [Show full text]