Araneae, Salticidae)

Total Page:16

File Type:pdf, Size:1020Kb

Araneae, Salticidae) Molecular Phylogenetics and Evolution 41 (2006) 472–495 www.elsevier.com/locate/ympev Species diversiWcation patterns in the Polynesian jumping spider genus Havaika Prószyjski, 2001 (Araneae, Salticidae) Miquel A. Arnedo ¤, Rosemary G. Gillespie 1 Division of Insect Biology, University of California-Berkeley, ESPM 201 Wellman Hall, Berkeley, CA 94720-3112, USA Received 30 March 2006; revised 10 May 2006; accepted 13 May 2006 Available online 20 May 2006 Abstract Hotspot archipelagoes provide exceptional models for the study of the evolutionary process, due to the eVects of isolation and topograph- ical diversity in inducing the formation of unique biotic assemblages. In this paper, we examine the evolutionary patterns exhibited by the jumping spider genus Havaika Prószyjski, 2001 in the Polynesian islands of the Hawaiian and Marquesas chains. To date, systematic research on Havaika has been seriously limited by the poor taxonomic knowledge on the group, which was based on a handful of specimens that showed continuous variability and lacked clear-cut diagnostic characters. Here, we circumvent this problem by inferring a phylogeny based on DNA sequences of several fragments including both mitochondrial (protein coding cytochrome oxidase I, NAD1 dehydrogenase, ribosomal 16S, and tRNA leu) and nuclear (internal transcribed spacer 2) genes, and a statistical morphological analyses of a large sample of specimens. Results suggest that the Marquesan and Hawaiian Havaika may be the result of independent colonizations. Furthermore, data provide little support for the standard “progression rule” (evolution in the direction of older to younger islands) in Hawaiian Islands. This may be explained by a recent arrival of the group: age estimates of the diVerent lineages suggest that Havaika colonized the Hawaiian Islands after most of the extant islands were already formed. The lack of clear-cut diagnostic characters among species may also be explained by the recent origin of the group since molecular data do not provide any evidence of hybridization among lineages. Quantitative morphological data coupled with the phylogenetic information allow us to reevaluate the current limitation of Havaika taxonomy. Molecular data support the existence of at least four diVerent evolutionary lineages that are further morphologically diagnosable. However, genealogical relationships are better predicted by geographical aYnity (i.e. island) than by morphological characters used in the original descriptions of the species. A pattern of size segregation linked to largely overlapping distributions of some of the species hints at a potential involvement of competition in generating morphological diversity. This study contributes to our understanding on the origin and shaping of the biodiversity of oceanic islands and sets the stage for more detailed studies on particular aspects of these previously overlooked spiders. © 2006 Elsevier Inc. All rights reserved. Keywords: Salticidae; Hawaiian islands; Marquesas; Competition; Island evolution; Phylogeny 1. Introduction pie, 1998; Simon, 1987), and development of communities (Gillespie, 2004) and ecosystems (Vitousek et al., 1998). In The Hawaiian Islands are often considered a natural the context of evolutionary biology, studies have shown the laboratory for evolution, allowing studies of patterns of importance of isolation that the islands provide in allowing diversiWcation and species formation (Roderick and Gilles- ecological exploration and adaptive radiation (Carson and Sato, 1969; Gillespie, 2005; Vandergast et al., 2004). It has recently been shown that the proportion of species * Corresponding author. Present address: Departament de Biologia Ani- endemic to an oceanic island is related linearly to its species mal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain. richness, from which it was inferred that species diversity Fax: +34 93 403 5740. may drive diversiWcation (Emerson and Kolm, 2005). This E-mail addresses: [email protected] (M.A. Arnedo), gillespi@ nature.berkeley.edu (R.G. Gillespie). relationship suggests that competition not only plays a key 1 Fax: +1 510 642 7428. role in structuring biological communities (Gillespie, 2004), 1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2006.05.012 M.A. Arnedo, R.G. Gillespie / Molecular Phylogenetics and Evolution 41 (2006) 472–495 473 but also may act as a selective agent triggering species (Prószyjski, 2002). Diagnostic characters are restricted to the diVerentiation. Indeed, character displacement, an outcome bulb of the male palp (Prószyjski, 2003) and the pattern, dis- of interspeciWc competition due to limiting resources, tribution, and color of setae around the chelicerae and eyes appears to be more widespread in nature than previously (Simon, 1900). Although these characters cannot be used for thought (Losos, 2000), and its key role has been implicated species identiWcation, they do serve to separate Hawaiian in the evolution of diversity in many adaptive radiations species into three phenetic groups: species with reddish and (Schluter, 2000a). white setae covering the proximal anterior part of the chelic- Several spider groups with Hawaiian endemic lineages erae and with long male palpal tibia [H. albociliata (Simon, have been used as models for the study of diVerent aspects 1900), H. canosa (Simon, 1900), H. pubens (Simon, 1900), and of the evolutionary process. Ecological shifts have played a H. valida (Simon, 1900)] and species with chelicerae covered major role in the diversiWcation of the spider genus Tetrag- with long white bristles forming lines, and with a short male natha (Blackledge and Gillespie, 2004; Gillespie, 2004), palpal tibia. The latter group is further divided into species while speciation in the endemic spider Orsonwelles has been with a long male bulb embolus [H. cruciata (Simon, 1900), H. mostly driven by inter-island colonization (Hormiga et al., jamiesoni Prószyjski, 2001, H. navata (Simon, 1900)] and 2003). In all spider groups examined to date, species on species with a short embolous [(H. senicula (Simon, 1900) younger islands appear to have been derived from ances- and H. verecunda (Simon, 1900)]. The absence of clear-cut tors on older islands, which is in accordance with prevailing limits separating species in Hawaiian Havaika could be “progression rule” found in the large majority of lineages explained by a recent diversiWcation of the group with insuY- within the Hawaiian Islands (Funk and Wagner, 1995). cient time for Wxation of diagnostic characters. Alternatively, The current study uses a unique system of jumping spi- species limits may have been secondarily obscured as a result ders: the genus Havaika Prószyjski, 2001 (Araneae: Saltici- of recurrent hybridization events. Indeed, occurrence of nat- dae) in the Hawaiian Islands. Havaika is one of the most ural hybridization has been documented in several Hawaiian species-rich salticid genera in the PaciWc region, only sur- arthropod taxa, including Drosophila (Carson, 1989), Lau- passed by Sobasina Simon, 1898 from the western PaciWc pala crickets (Shaw, 1996), and Megalagrion damselXies (Jor- (Berry et al., 1998). It currently comprises three species in dan et al., 2003). the Marquesas (Berland, 1933, 1934) and nine species in the An additional biogeographic puzzle presented by the Hawaiian Islands (Prószyjski, 2002; Simon, 1900) although genus Havaika is the inclusion of the Marquesas islands, in given the status of knowledge of other spiders groups (e.g. addition to Hawaii, in its distribution (Berland, 1933, 1934). Tetragnatha) prior to recent research, the possibility of Biological similarities across PaciWc islands, in particular many more undescribed species is evident (Gillespie, 1999). among snails (Pilsbry, 1900), certain insects (Meyrick, Recent research using molecular characters for the entire 1935a,b), spiders (Berland, 1942), and plants (Brown, 1921; family Salticidae, which included 81 genera broadly scat- Campbell, 1933; Guillaumin, 1928) led scientists in the ear- tered throughout the more than 500 known genera accord- lier part of the 20th century to propose the existence of an ing to previous notions of the phylogenetic diversity of the extensive land mass (submerged around the early Tertiary) family, has identiWed the continental genera Pellenes in the area currently occupied by the PaciWc depression Simon, 1876 and Habronattus F. O. P.-Cambridge, 1901 as (Gregory, 1930). However, considerable evidence now the closest relatives of Havaika (Maddison and Hedin, exists to support the hypothesis that the islands within the 2003b). These results are further supported by somatic and PaciWc depression are of volcanic origin and acquired their genitalic morphological similarities (Prószyjski, 2002). The faunas by overseas dispersal (Gregory, 1928): The Hawai- genus Habronattus (Masta and Maddison, 2002) is well ian archipelago originated from a volcanic hotspot (Wil- known for elaborate male secondary sexual characteristics, son, 1963), and the islands of the Marquesas were formed in with sexual selection having been demonstrated to play a a similar fashion, though from diVerent hotspots (Nunn, prominent role in species diversiWcation (Masta and Madd- 1994). Nevertheless, molecular evidence has recently indi- ison, 2002). However, Havaika males, very much like Pel- cated biogeographic connections between the remote lenes males, have only mild ornamentation that shows PaciWc islands. The
Recommended publications
  • Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
    Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Visual Perception in Jumping Spiders (Araneae,Salticidae)
    Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods .....................................................................................................................................................................
    [Show full text]
  • Spiders of the Hawaiian Islands: Catalog and Bibliography1
    Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record­ ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in­ cludes a listing of several introduced species. The spider collection available to Simon re­ presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe­ cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical­ ly for convenience.
    [Show full text]
  • Molecular Insights Into the Phylogenetic Structure of the Spider
    MolecularBlackwell Publishing Ltd insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna MIQUEL A. ARNEDO, INGI AGNARSSON & ROSEMARY G. GILLESPIE Accepted: 9 March 2007 Arnedo, M. A., Agnarsson, I. & Gillespie, R. G. (2007). Molecular insights into the phylo- doi:10.1111/j.1463-6409.2007.00280.x genetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. — Zoologica Scripta, 36, 337–352. The Hawaiian happy face spider (Theridion grallator Simon, 1900), named for a remarkable abdominal colour pattern resembling a smiling face, has served as a model organism for under- standing the generation of genetic diversity. Theridion grallator is one of 11 endemic Hawaiian species of the genus reported to date. Asserting the origin of island endemics informs on the evolutionary context of diversification, and how diversity has arisen on the islands. Studies on the genus Theridion in Hawaii, as elsewhere, have long been hampered by its large size (> 600 species) and poor definition. Here we report results of phylogenetic analyses based on DNA sequences of five genes conducted on five diverse species of Hawaiian Theridion, along with the most intensive sampling of Theridiinae analysed to date. Results indicate that the Hawai- ian Islands were colonised by two independent Theridiinae lineages, one of which originated in the Americas. Both lineages have undergone local diversification in the archipelago and have convergently evolved similar bizarre morphs. Our findings confirm para- or polyphyletic status of the largest Theridiinae genera: Theridion, Achaearanea and Chrysso.
    [Show full text]
  • Outer Islands
    Initial Environmental Examination Project Number. 49450-012 March 2019 Proposed Grant and Administration of Grants for Kingdom of Tonga: Tonga Renewable Energy Prepared by Tonga Power Limited and Ministry of Meteorology, Energy, Information, Disaster Management, Environment and Climate Change for the Ministry of Finance and National Planning and the Asian Development Bank The Initial Environmental Examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management or staff, and may be preliminary in nature. In preparing any country programme or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. TON: Tonga Renewable Energy Project Initial Environmental Examination – Outer Islands TABLE OF CONTENTS Page A. INTRODUCTION 1 B. ADMINISTRATIVE, POLICY AND LEGAL FRAMEWORK 4 1. Administrative Framework 4 2. Tongan Country Safeguards System 5 3. Environmental Assessment Process in Tonga 6 4. Tonga’s Energy Policy and Laws 7 5. ADB Environmental Safeguard Requirements 8 C. DESCRIPTION OF THE PROJECT 9 1. Project Rationale 9 2. Overview of Project Components in Outer Islands 10 3. Location of Components 11 4. Detail of Project Components 18 5. Project Construction, Operation and Decommissioning 19 D. DESCRIPTION OF EXISTING ENVIRONMENT (BASELINE CONDITIONS) 21 1. Physical Environment 21 2. Biological Environment 24 3. Socio-economic Environment 28 E. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 32 1. Design and Pre-construction Impacts 32 2.
    [Show full text]
  • Evolutionary Divergences Mirror Pleistocene Paleodrainages in A
    Molecular Phylogenetics and Evolution 144 (2020) 106696 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary divergences mirror Pleistocene paleodrainages in a rapidly- T evolving complex of oasis-dwelling jumping spiders (Salticidae, Habronattus tarsalis) ⁎ Marshal Hedina, , Steven Foldia,b, Brendan Rajah-Boyera,c a Dept of Biology, San Diego State University, San Diego, CA 92182, United States b Valley International Prep School, Chatsworth, CA 91311, United States c St. Francis of Assisi Catholic School, Vista, CA 92083, United States ARTICLE INFO ABSTRACT Keywords: We aimed to understand the diversifcation history of jumping spiders in the Habronattus tarsalis species com- Biogeography plex, with particular emphasis on how history in this system might illuminate biogeographic patterns and Ephemeral speciation processes in deserts of the western United States. Desert populations of H. tarsalis are now confned to highly Introgression discontinuous oasis-like habitats, but these habitats would have been periodically more connected during Pleistocene multiple pluvial periods of the Pleistocene. We estimated divergence times using relaxed molecular clock ana- Saline Valley lyses of published transcriptome datasets. Geographic patterns of diversifcation history were assessed using Sexual selection phylogenetic and cluster analyses of original sequence capture, RADSeq and morphological data. Clock analyses of multiple replicate transcriptome datasets suggest mid- to late-Pleistocene divergence dates within the H. tarsalis group complex. Coalescent and concatenated phylogenetic analyses indicate four early-diverging lineages (H. mustaciata, H. ophrys, and H. tarsalis from the Lahontan and Owens drainage basins), with remaining samples separated into larger clades from the Mojave desert, and western populations from the California Floristic Province of California and northern Baja California.
    [Show full text]
  • Jump Takeoff in a Small Jumping Spider
    Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01473-7 ORIGINAL PAPER Jump takeof in a small jumping spider Erin E. Brandt1,2 · Yoshan Sasiharan2 · Damian O. Elias1 · Natasha Mhatre2 Received: 27 October 2020 / Revised: 4 February 2021 / Accepted: 23 February 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Jumping in animals presents an interesting locomotory strategy as it requires the generation of large forces and accurate timing. Jumping in arachnids is further complicated by their semi-hydraulic locomotion system. Among arachnids, jumping spiders (Family Salticidae) are agile and dexterous jumpers. However, less is known about jumping in small salticid species. Here we used Habronattus conjunctus, a small jumping spider (body length ~ 4.5 mm) to examine its jumping performance and compare it to that of other jumping spiders and insects. We also explored how legs are used during the takeof phase of jumps. Jumps were staged between two raised platforms. We analyzed jumping videos with DeepLabCut to track 21 points on the cephalothorax, abdomen, and legs. By analyzing leg liftof and extension patterns, we found evidence that H. conjunc- tus primarily uses the third legs to power jumps. We also found that H. conjunctus jumps achieve lower takeof speeds and accelerations than most other jumping arthropods, including other jumping spiders. Habronattus conjunctus takeof time was similar to other jumping arthropods of the same body mass. We discuss the mechanical benefts and drawbacks of a semi- hydraulic system of locomotion and consider how small spiders may extract dexterous jumps from this locomotor system.
    [Show full text]
  • Ecological Considerations for Development of the Wildlife Lake, Castlereagh
    Ecological considerations for development of the Wildlife Lake, Castlereagh Total Catchment Management Services Pty Ltd August 2009 Clarifying statement This report provides strategic guidance for the site. Importantly this is an informing document to help guide the restoration and development of the site and in that respect does not contain any matters for which approval is sought. Disclaimer The information contained in this document remains confidential as between Total Catchment Management Services Pty Ltd (the Consultant) and Penrith Lakes Development Corporation (the Client). To the maximum extent permitted by law, the Consultant will not be liable to the Client or any other person (whether under the law of contract, tort, statute or otherwise) for any loss, claim, demand, cost, expense or damage arising in any way out of or in connection with, or as a result of reliance by any person on: • the information contained in this document (or due to any inaccuracy, error or omission in such information); or • any other written or oral communication in respect of the historical or intended business dealings between the Consultant and the Client. Notwithstanding the above, the Consultant's maximum liability to the Client is limited to the aggregate amount of fees payable for services under the Terms and Conditions between the Consultant and the Client. Any information or advice provided in this document is provided having regard to the prevailing environmental conditions at the time of giving that information or advice. The relevance and accuracy of that information or advice may be materially affected by a change in the environmental conditions after the date that information or advice was provided.
    [Show full text]
  • The Complete Mitochondrial Genome Sequence of the Spider Habronattus Oregonensis Reveals 2 Rearranged and Extremely Truncated Trnas 3 4 5 Susan E
    1 The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals 2 rearranged and extremely truncated tRNAs 3 4 5 Susan E. Masta 6 Jeffrey L. Boore 7 8 9 10 11 DOE Joint Genome Institute 12 Department of Evolutionary Genomics 13 2800 Mitchell Drive 14 Walnut Creek, CA 94598 15 16 Corresponding author: 17 Susan E. Masta 18 Department of Biology 19 P.O. Box 751 20 Portland State University 21 Portland, Oregon 97207 22 email: [email protected] 23 telephone: (503) 725-8505 24 fax: (503) 725-3888 25 26 27 Key words: mitochondrial genome, truncated tRNAs, aminoacyl acceptor stem, gene 28 rearrangement, genome size, Habronattus oregonensis 29 30 31 Running head: mitochondrial genome of a spider 32 33 1 34 We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis 35 of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features 36 distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of 37 the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical 38 cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to 39 form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. 40 Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs 41 appear to be lacking, because fully paired acceptor stems are not possible and because the 42 downstream sequences instead encode adjacent genes. Hence, these appear to be among the 43 smallest known tRNA genes.
    [Show full text]
  • Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven
    Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Namadgi, ACT Bush Blitz Spiders 27 November-5 December 2018 Submitted: August 2019 Robert Raven Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 12 Bush Blitz – Namadgi, ACT 27 Nov-5 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 2 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................. 4 2.2 Survey techniques ..................................................................................................... 4 2.2.1 Methods used at standard survey sites ................................................................... 5 2.3 Identifying the collections .........................................................................................
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]