Chilean Lake District): Introduction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Alloway Etal 2018 QSR.Pdf
Quaternary Science Reviews 189 (2018) 57e75 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Mid-latitude trans-Pacific reconstructions and comparisons of coupled glacial/interglacial climate cycles based on soil stratigraphy of cover-beds * B.V. Alloway a, b, , P.C. Almond c, P.I. Moreno d, E. Sagredo e, M.R. Kaplan f, P.W. Kubik g, P.J. Tonkin h a School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand b Centre for Archaeological Science (CAS), School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia c Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, PO Box 8084, Lincoln University, Canterbury, New Zealand d Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecologicas, Universidad de Chile, Casilla 653, Santiago, Chile e Instituto de Geografía, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna, 4860, Santiago, Chile f Lamont-Doherty Earth Observatory Columbia University, Palisades, NY, 10964-8000, United States g Paul Scherrer Institut, c/o Institute of Particle Physics, HPK H30, ETH Hoenggerberg, CH-8093, Zurich, Switzerland h 16 Rydal Street, Christchurch 8025, New Zealand article info abstract Article history: South Westland, New Zealand, and southern Chile, are two narrow continental corridors effectively Received 19 December 2017 confined between the Pacific Ocean in the west and high mountain ranges in the east which impart Received in revised form significant influence over regional climate, vegetation and soils. In both these southern mid-latitude 6 April 2018 regions, evidence for extensive and repeated glaciations during cold phases of the Quaternary is man- Accepted 6 April 2018 ifested by arrays of successively older glacial drift deposits with corresponding outwash plain remnants. -
Round the Llanquihue Lake
Round the Llanquihue Lake A full day spent exploring the corners of this magnificent lake. The third biggest of South America, and the second of Chile with 330sq miles. It is situated in the southern Los Lagos Region in the Llanquihue and Osorno provinces. The lake's fan-like form was created by successive piedmont glaciers during the Quaternary glaciations. The last glacial period is called Llanquihue glaciation in Chile after the terminal moraine systems around the lake. We will enjoy unique views from the Volcano Osorno introducing us to the peaceful rhythm of a laid back life. Meet your driver and guide at your hotel. Bordering the south lake Llanquihue acrros the Vicente Perez Rosales National Park visiting the resort of Ensenada and the Petrohue River Falls. The tour will continue up to the Osorno Volcano, Ski Resort, 1200 mts asl. (3937 feet asl.) where you will get spectacular views of the Mt Tronador, Volcano Puntiagudo,Llanquihue lake, and if is clear enough even the Reloncavi sound and of course the whole valley of Petrohue river. For the itchy feet we can go for a short walk to the crater rojo and back. (1hr) Or optional chair lift instead. You can bring your own lunch box and have it here or get something at the restaurant. Continuation to the northern border of Llanquihue Lake driving across some of the least visited sides of the lake where agriculture and cattle ranches take part of the local economy passing through Cascadas village. We will reach the picturesque village of Puerto Octay, located on a quiet bay enclosed by the Centinela Peninsula and then to the city of Frutillar, with its houses built in German style with lovely gardens represent the arquitecture in the mid 30/s when the first settlers arrived to begin a hard working life in the south. -
The 2010-2015 Mega Drought in Central Chile: Impacts on Regional Hydroclimate and Vegetation
Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-191, 2017 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 26 April 2017 c Author(s) 2017. CC-BY 3.0 License. The 2010-2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation René Garreaud1,2,*, Camila Alvarez-Garreton3,2, Jonathan Barichivich3,2, Juan Pablo Boisier1,2, Duncan 3,2 4,2 3 5 5 Christie , Mauricio Galleguillos , Carlos LeQuesne , James McPhee , Mauricio Zambrano- Bigiarini6,2 1Department of Geophysics, Universidad de Chile, Santiago-Chile 2Center for Climate and Resilience Research (CR2), Santiago-Chile 10 3Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia-Chile. 4Faculty of Agronomic Sciences, Universidad de Chile, Santiago-Chile 5Department of Civil Engineering, Universidad de Chile, Santiago-Chile 6Department of Civil Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco-Chile 15 Correspondence to: René. D. Garreaud ([email protected]) 1 Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-191, 2017 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 26 April 2017 c Author(s) 2017. CC-BY 3.0 License. Abstract. Since 2010 an uninterrupted sequence of dry years, with annual rainfall deficits ranging from 25 to 45%, has prevailed in Central Chile (western South America, 30-38°S). Although intense 1- or 2-year droughts are recurrent in this Mediterranean-like region, the ongoing event stands out because of its longevity and large extent. The extraordinary character of the so-called Central Chile mega drought (MD) was established against century long historical records and a 5 millennial tree-ring reconstruction of regional precipitation. -
Simmons2020published
V V V V V V O O O O O RESEARCH ARTICLE VOL O NI Holocene volcanism at the Quetrupillán Volcanic Complex (39°30’ S, 71°43’ W), southern Chile Isla C. Simmons*α, Dave McGarvieβ, Joaquín A. Cortésα, γ , Eliza S. Calderα, Andrés Pavezδ αSchool of GeoSciences, University of Edinburgh, Edinburgh, UK βLancaster Environment Centre, Lancaster University, Lancaster, UK γ Department of Geography, Edge Hill University, Ormskirk, UK δGEO-3, Chile Abstract This paper provides the first detailed description of Holocene volcanism at the Quetrupillán Volcanic Complex. This volcanic complex consists of a truncated and eroded stratocone plus sixteen well-preserved satellite vents on its lower flanks. Intense scouring of the stratocone’s flanks (presumably by ice) has removed much evidence of its Holocene eruptions, and thus the Holocene construction of the stratocone (i.e. number and volume of eruptions) cannot be determined. The sixteen satellite vents are the products of an uncertain number of eruptions, with trachyte comprising ~97% of the lava erupted. Geochemical analysis of tephra layers from three logged sections in nearby valleys provides evidence of three explosive eruptions from Quetrupillán. In these sections, no evidence of pyroclastic density current deposits was identified, which may suggest that explosive volcanic hazards from Quetrupillán are less than indicated on current hazard maps. Keywords: Holocene; Volcanism; Chile; Trachyte; Glacier-volcano interactions 1 Introduction 2014]. A study of tephra layers in the nearby Trancura Valley that have been attributed to explosive eruptions The Quetrupillán Volcanic Complex (Complejo at Quetrupillán was the subject of a dissertation [Toloza Volcánico Quetrupillán), henceforth shortened to 2015]. -
Climate Modeling in Las Leñas, Central Andes of Argentina
Glacier - climate modeling in Las Leñas, Central Andes of Argentina Master’s Thesis Faculty of Science University of Bern presented by Philippe Wäger 2009 Supervisor: Prof. Dr. Heinz Veit Institute of Geography and Oeschger Centre for Climate Change Research Advisor: Dr. Christoph Kull Institute of Geography and Organ consultatif sur les changements climatiques OcCC Abstract Studies investigating late Pleistocene glaciations in the Chilean Lake District (~40-43°S) and in Patagonia have been carried out for several decades and have led to a well established glacial chronology. Knowledge about the timing of late Pleistocene glaciations in the arid Central Andes (~15-30°S) and the mechanisms triggering them has also strongly increased in the past years, although it still remains limited compared to regions in the Northern Hemisphere. The Southern Central Andes between 31-40°S are only poorly investigated so far, which is mainly due to the remoteness of the formerly glaciated valleys and poor age control. The present study is located in Las Leñas at 35°S, where late Pleistocene glaciation has left impressive and quite well preserved moraines. A glacier-climate model (Kull 1999) was applied to investigate the climate conditions that have triggered this local last glacial maximum (LLGM) advance. The model used was originally built to investigate glacio-climatological conditions in a summer precipitation regime, and all previous studies working with it were located in the arid Central Andes between ~17- 30°S. Regarding the methodology applied, the present study has established the southernmost study site so far, and the first lying in midlatitudes with dominant and regular winter precipitation from the Westerlies. -
Revealing the Biodiversity of Chilean Birds Through the COI Barcode Approach
ZooKeys 1016: 143–161 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1016.51866 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Revealing the biodiversity of Chilean birds through the COI barcode approach Nelson Colihueque1, Alberto Gantz2, Margarita Parraguez3 1 Laboratorio de Biología Molecular y Citogenética, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avenida Alcalde Fuchslocher 1305, Casilla 933, Osorno, Chile 2 Laboratorio de Ecología, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile 3 Laboratorio de Genética, Acuicultura y Biodiversidad, Universidad de Los Lagos, Osorno, Chile Corresponding author: Nelson Colihueque ([email protected]) Academic editor: G. Sangster | Received 9 March 2020 | Accepted 20 December 2020 | Published 11 February 2021 http://zoobank.org/CAC90F3A-268B-41B0-B8BA-AC7BAA310D09 Citation: Colihueque N, Gantz A, Parraguez M (2021) Revealing the biodiversity of Chilean birds through the COI barcode approach. In: Spence J, Casale A, Assmann T, Liebherr J, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940–2020). ZooKeys 1016: 143–161. https://doi.org/10.3897/zookeys.1016.51866 Abstract The mitochondrial cytochrome c oxidase subunit I (COI) gene is an effective molecular tool for the estima- tion of genetic variation and the identification of bird species. This molecular marker is used to differentiate among Chilean bird species by analyzing barcodes for 76 species (197 individuals), comprising 28 species with no previous barcode data and 48 species with sequences retrieved from the BOLD and GenBank databases. The DNA barcodes correctly identified 94.7% of the species analyzed (72 of 76 species). -
Conservation Strategies for Biodiversity and Indigenous People in Chilean Forest Ecosystems
© Journal of The Royal Society oj New Zealand Volume 31 Number 4 December 2001 pp 865-877 Conservation strategies for biodiversity and indigenous people in Chilean forest ecosystems J. J. Armesto*f, C. Smith-Ramirez*, R. Rozzi* The distribution of Chilean temperate forests has been greatly disrupted by human activities, mainly through logging, land clearing for agriculture, and replacement of native forests by extensive commercial plantations of exotic trees More than Vi million people of indigenous ancestry (mainly Pehuenche and Huilliche) still live in close association with forests in south-central Chile Indigenous people have been forced to retreat, along with the last remains of native forests, towards marginal lands, characterised by low productivity and limited accessibility This process has been driven by a historical trend that reassigned public and indigenous land to private or industrial landowners, and by a Chilean forestry policy that has ignored biodiversity and non- timber forest products, and undervalued native forests by providing costly subsidies to industrial plantations for timber and pulp production As a result of these policies, two major conflicts have emerged indigenous people encroached by timber plantations are resisting the expansion of commercial forestry, and the conservation of the last remains of biologically valuable habitat is at odds with land use claims by indigenous groups in less accessible areas A promising solution to these problems is the development of mixed use landscapes or "extractive reserves", -
Holocene Volcanism at the Quetrupillán Volcanic Complex (39°30’ S, 71°43’ W), Southern Chile
1 Holocene volcanism at the Quetrupillán Volcanic Complex (39°30’ S, 71°43’ W), southern Chile 2 3 Isla C. Simmons1, Dave McGarvie2, Joaquín A. Cortés1,3, Eliza S. Calder1, Andrés Pavez4 4 1. School of GeoSciences, University of Edinburgh, Edinburgh, UK 5 2. Lancaster Environment Centre, Lancaster University, Lancaster, UK 6 3. Department of Geography, Edge Hill University, Ormskirk, UK 7 4. GEO-3, Chile 8 Email contact: [email protected] 9 10 Abstract 11 This paper provides the first detailed description of Holocene volcanism at the Quetrupillán Volcanic 12 Complex. This little-known volcanic complex consists of a truncated stratocone plus numerous 13 satellite vents on its lower flanks. 14 The c.16 satellite vents are the products of c.10 eruptions, with seven erupting trachytes (a 15 composition unusual in Chile), two erupting trachyandesites, and one erupting a basaltic andesite. 16 Intense and atypical Holocene scouring of the stratocone by ice has removed evidence of its 17 Holocene eruptions, and thus Holocene volcanism at the stratocone remains largely unknown. 18 Geochemical analysis of tephra layers from three logged sections in nearby valleys provides evidence 19 of only three explosive eruptions from Quetrupillán. No evidence of PDC deposits were identified at 20 the logged sections. Our results suggest that the explosive volcanic hazards from Quetrupillán are 21 less than current hazard maps indicate. 22 23 Keywords 24 Holocene, Chile, trachyte, glacial scouring, volcanism 25 26 1. Introduction 27 The Quetrupillán Volcanic Complex (Complejo Volcánico Quetrupillán), henceforth shortened to 28 Quetrupillán, lies in the Southern Volcanic Zone of the Chilean Andes, with the stratocone summit 29 located at 39°30’ S, 71°43’ W (Figure 1). -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Quaternary Science Reviews 28 (2009) 2165–2212 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Glaciation in the Andes during the Lateglacial and Holocene Donald T. Rodbell a,*, Jacqueline A. Smith b, Bryan G. Mark c a Geology Department, Union College, Schenectady, NY 12308, USA b Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY 12203, USA c Department of Geography, The Ohio State University, Columbus, OH 43210, USA article info abstract Article history: This review updates the chronology of Andean glaciation during the Lateglacial and the Holocene from Received 23 March 2008 the numerous articles and reviews published over the past three decades. The Andes, which include Received in revised form some of the world’s wettest and driest mountainous regions, offer an unparalleled opportunity to 29 March 2009 elucidate spatial and temporal patterns of glaciation along a continuous 68-degree meridional transect. -
P0139-P0150.Pdf
The Condor 99~139-150 0 The Cooper Ornithological Society 1997 MOLECULAR VARIATION AND BIOGEOGRAPHY OF ROCK SHAGS1 DOUGLAS SIEGEL-CAUSEY School of Biological Sciences and University of Nebraska State Museum, Lincoln, NE 68588-0118, e-mail: [email protected] Abstract. Molecular analysis of the presentgenetic structureof Rock Shags indicates significant population subdivision probably caused by vicariant disjunction associated with the Llanquihue Glaciation (35,00&15,000 ybp). The formerly continuouspopula- tion was forced into refugia on the Pacific and Atlantic coasts,where they remained with- out contactfor approximately 20,000 years. With amelioration of the climate and conse- quent glacial retreat, populationsrecolonized rocky shorelinesin the central portion of the present day range and introgressedconsiderably. The Chubdt and Falkland popula- tions serve as genetic sourcesfor the others, whereas the Fuegian population acts as a genetic sink. The population that is resident on Isla Chiloe is enigmatic and in nonequi- librium, possibly the result of indirect effects by a yet unsampled population. Key words: vicariance biogeography,population genetics,Fuego-Patagonia, glacia- tion, Phalacrocoracidae, Stictocarbomagellanicus. INTRODUCTION period of similar magnitude occurred at the Pliocene-Pleistocene boundary, 1.2-l .O million Vicariance biogeographic models postulate that ybp. At maximum, the Llanquihue glacial allopatric remnants of a formerly continuous sheets covered the southern Andes from ap- population are created by the interposition of a proximately 40”s latitude to the Fuegian archi- barrier to gene flow (Platnick and Nelson 1978). pelago, and east to the Atlantic coast to about The most widely studied of these vicariance 52”s latitude. During this period, the Fuegian events have been the Pleistocene glaciations of coastline (i.e., Pacific coast of southern Chile, the Northern Hemisphere (e.g., Hoffmann Tierra de1 Fuego, and the Atlantic coast of 1976). -
A Brief History of Araucanian Studies Donald Brand
New Mexico Anthropologist Volume 5 | Issue 2 Article 2 6-1-1941 A Brief History of Araucanian Studies Donald Brand Follow this and additional works at: https://digitalrepository.unm.edu/nm_anthropologist Recommended Citation Brand, Donald. "A Brief History of Araucanian Studies." New Mexico Anthropologist 5, 2 (1941): 19-35. https://digitalrepository.unm.edu/nm_anthropologist/vol5/iss2/2 This Article is brought to you for free and open access by the Anthropology at UNM Digital Repository. It has been accepted for inclusion in New Mexico Anthropologist by an authorized editor of UNM Digital Repository. For more information, please contact [email protected]. A BRIEF HISTORY OF ARAUCANIAN STUDIES By DONALD D. BRAND The term Araucanian most properly refers to the language once spoken by the many Indian groups between the Rio Choapa (Coquimbo Province) and the Gulf of Corcovado (Chiloe Province). However, growing usage-both vulgar and scientific-makes advisable the use of this name for the Indians themselves, although they were never a political, physical, or cultural unit. Probably the first European contact with the Araucanians was in 1536, when some of Diego de Almagro's scouts advanced into central Chile. However, it remained for Pedro de Valdivia, in 1541, to con- quer all of Araucanian Chile earlier held by the Incas (to the Rio Maule), and to push southward across the Rio Bio-Bio into the forest home of the unconquered Araucanians. Here, in 1553, Valdivia lost his life to these Indians-led by Lautaro and Caupolicdn. The con- quest was continued by Garcia Hurtado de Mendoza, in whose small army was Alonso de Ercilla y Zdfiiga (Madrid 1533-1594 Madrid). -
Control Estructural Del Basamento Sobre El Volcanismo Cuaternario Del Complejo Volcánico Chaitén- Michinmahuida
1 Control estructural del basamento sobre el volcanismo Cuaternario del Complejo Volcánico Chaitén- Michinmahuida Memoria para optar al Título de Geólogo Ramiro Alejandro Muñoz Ramírez Concepción, 2019 2 Control estructural del basamento sobre el volcanismo Cuaternario del Complejo Volcánico Chaitén- Michinmahuida Memoria para optar al Título de Geólogo Ramiro Alejandro Muñoz Ramírez Profesor Patrocinante: Dr. Andrés Humberto Tassara Oddo Profesores Comisión: Dr. Jorge Andrés Quezada Flory MSc. Abraham Elías González Martínez Concepción, 2019 3 A mis padres y familia 4 ÍNDICE Página RESUMEN……………………………………………………………………………….. 1. INTRODUCCIÓN ………………………………………………………….…... 1 1.1. Generalidades …………………………………………………………... 1 1.2. Objetivos …………………………………………………………………. 3 1.2.1. Objetivo general …………………………………………………. 3 1.2.2. Objetivos específicos …………………………………………...... 3 1.3. Ubicación y accesos ……………………………………………………. 3 1.4. Trabajos anteriores …………………………………………………… 4 1.5. Agradecimientos ……………………………………………………….. 9 2. MARCO TEÓRICO Y METODOLOGÍA ……………………………….. 10 2.1. Conceptos teóricos …………………………………………………….. 10 2.1.1. Conceptos para análisis cinemático …………………………….. 10 2.1.2. Conceptos para análisis dinámico ……………………………… 13 2.2. Metodología de trabajo ……………………………………………..... 15 2.2.1. Compilación y análisis de sistemas de información …………… 15 2.2.2. Obtención de datos en terreno ………………………………….. 15 2.2.3. Procesamiento de datos de terreno …………..…………………. 18 3. MARCO GEOLÓGICO ………………………………………………………. 22 3.1. Marco geológico regional ………………………………………......... 22 3.1.1. Rocas Metamórficas (Pz-Tr)-CMAP …………………………… 24 3.1.2. Intrusivo Devónico (Dg)-Metatonalita Chaitén ……………...... 26 3.1.3. Intrusivo Pérmico-Triásico(PTrg) .……………………………... 27 3.1.4. Intrusivo Cretácico (Kg)-Batolito Norpatagónico Kg ………… 27 3.1.5. Intrusivo Mioceno (Mg)-Batolito Norpatagónico Mg …………. 28 3.1.6. Fomarción volcano-sedimentaria Ayacara-Puduguapi (EsOva) 29 3.1.7. Estratos de Llahuén (Plill) …………………………….………… 30 3.2.8.