Resource Tracking in Marine Parasites: Going with the fl Ow?
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Green Crab Invasion: a Global Perspective with Lessons From
THE GREEN CRAB INVASION: A GLOBAL PERSPECTIVE, WITH LESSONS FROM WASHINGTON STATE by Debora R. Holmes A Thesis: Essay ofDistinction submitted in partial fulfillment of the requirements for the degree Master of Environmental Studies The Evergreen State College September 2001 This Thesis for the Master of Environmental Studies Degree by Debora R. Holmes has been approved for The Evergreen State College by Member of the Faculty 'S"f\: 1 '> 'o I Date For Maria Eloise: may you grow up learning and loving trails and shores ABSTRACT The Green Crab Invasion: A Global Perspective, With Lessons from Washington State Debora R. Holmes The European green crab, Carcinus maenas, has arrived on the shores of Washington State. This recently-introduced exotic species has the potential for great destruction. Green crabs can disperse over large areas and have serious adverse effects on fisheries and aquaculture; their impacts include the possibility of altering the biodiversity of ecosystems. When the green crab was first discovered in Washington State in 1998, the state provided funds to immediately begin monitoring and control efforts in both the Puget Sound region and along Washington's coast. However, there has been debate over whether or not to continue funding for these programs. The European green crab has affected marine and estuarine ecosystems, aquaculture, and fisheries worldwide. It first reached the United States in 1817, when it was accidentally introduced to the east coast. The green crab spread to the U.S. west coast around 1989 or 1990, most likely as larvae in ballast water from ships. It is speculated that during the El Ni:fio winter of 1997-1998, ocean currents transported green crab larvae north to Washington State, where the first crabs were found in the summer of 1998. -
University of Groningen Marine Benthic Metabarcoding
University of Groningen Marine benthic metabarcoding Klunder, Lise Margriet DOI: 10.33612/diss.135301602 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Klunder, L. M. (2020). Marine benthic metabarcoding: Anthropogenic effects on benthic diversity from shore to deep sea; assessed by metabarcoding and traditional taxonomy. University of Groningen. https://doi.org/10.33612/diss.135301602 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-12-2020 CHAPTER 2 Diversity of Wadden Sea macrofauna and meiofauna communities highest in DNA from extractions preceded by cell lysis Lise Klunder Gerard C.A. Duineveld Marc S.S. Lavaleye Henk W. van der Veer Per J. Palsbøll Judith D.L. van Bleijswijk Manuscript published in Journal of Sea Research 152 (2019) Chapter 2 ABSTRACT Metabarcoding of genetic material in environmental samples has increasingly been employed as a means to assess biodiversity, also of marine benthic communities. -
Host Specificity of Sacculina Carcini, a Potential Biological Control Agent of the Introduced European Green Crab Carcinus Maena
Biological Invasions (2005) 7: 895–912 Ó Springer 2005 DOI 10.1007/s10530-003-2981-0 Host specificity of Sacculina carcini, a potential biological control agent of the introduced European green crab Carcinus maenas in California Jeffrey H.R. Goddard1, Mark E. Torchin2, Armand M. Kuris2 & Kevin D. Lafferty3,2,* 1Marine Science Institute, 2Marine Science Institute and Department of Ecology, Evolution and Marine Biology, 3Western Ecological Research Center, US Geological Survey, Marine Science Institute, University of California, Santa Barbara, CA 93106, USA; *Author for correspondence (e-mail: laff[email protected]; fax: +1-805-893-8062) Received 3 July 2003; accepted in revised form 2 December 2003 Key words: biological control, Carcinus maenas, Hemigrapsus nudus, Hemigrapsus oregonensis, host response, host specificity, Pachygrapsus crassipes, Sacculina carcini Abstract The European green crab, Carcinus maenas, is an introduced marine predator established on the west coast of North America. We conducted laboratory experiments on the host specificity of a natural enemy of the green crab, the parasitic barnacle Sacculina carcini, to provide information on the safety of its use as a possible biological control agent. Four species of non-target, native California crabs (Hemi- grapsus oregonensis, H. nudus, Pachygrapsus crassipes and Cancer magister) were exposed to infective lar- vae of S. carcini. Settlement by S. carcini on the four native species ranged from 33 to 53%, compared to 79% for green crabs. Overall, cyprid larvae tended to settle in higher numbers on individual green crabs than on either C. magister or H. oregonensis. However, for C. magister this difference was signifi- cant for soft-shelled, but not hard-shelled individuals. -
Influence of Infection by Sacculina Carcini (Cirripedia, Rhizocephala)
Journal of Experimental Marine Biology and Ecology 446 (2013) 209–215 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Influence of infection by Sacculina carcini (Cirripedia, Rhizocephala) on consumption rate and prey size selection in the shore crab Carcinus maenas Martin H. Larsen a, Jens T. Høeg b, Kim N. Mouritsen a,⁎ a Department of Bioscience, Marine Ecology, University of Aarhus, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark b Department of Biology, Marine Biology Section, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark article info abstract Article history: Parasites generally influence the feeding behavior of their host and may therefore indirectly impact ecosystem Received 26 March 2013 structure and functioning if the host plays an ecological key role. The ecologically important shore crab Received in revised form 30 May 2013 (Carcinus maenas) is commonly infected by the rhizocephalan parasite Sacculina carcini that aside from Accepted 31 May 2013 inflicting behavioral change, castration and ceased molting, also feminizes its male host morphologically. Available online xxxx The latter results in reduced cheliped size, and, together with the other parasite-induced effects, this may potentially impact host feeding behavior. In two separate laboratory experiments, we offered infected and Keywords: Community structure uninfected adult male crabs respectively ad libitum small, easy-to-handle blue mussels (Mytilus edulis) Feeding behavior (10–15 mm in shell-length), and a limited, size-structured prey population (15–45 mm in shell-length; Feminization seven size-classes, ten mussels per class) during 10–15 days. -
Bangor University DOCTOR of PHILOSOPHY Aspects of The
Bangor University DOCTOR OF PHILOSOPHY Aspects of the biology of Sacculina carcini (Crustacea: cirripeda: rhizocephala), with particular emphasis on the larval energy budget. Collis, Sarah Anne Award date: 1991 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 ASPECTSOF THE BIOLOGY OF SACCULINA CARCINI (CRUSTACEA: CIRRIPEDIA: RHIZOCEPHALA), WITH PARTICULAR EMPHASIS ON THE LARVAL ENERGY BUDGET 0 A thesis submitted to the University of Wales by SARAH ANNE COLLIS B. Sc. in candidature for the degree of Philosophiae Doctor e^ýt Yo,1 w4 "yLFýa YT 'a x'. ^ -""t "ý ý' 1i4" ': . ': T !E CONSUL t LIAiY '`. University College of North Wales, School of Ocean Sciences, Menai Bridge, Gwynedd. LL59 5EY. ý''ý September, 1991 Kentrogon's a crippled imp, uncanny, lacking kin, The ' stabbing seed 'a Cypris made by shrinking from her skin, - A Cyprus? Nay, a fiend that borrowed Cyprid feet and mask, To cast them off when he had plied his victim-hunting task. -
Synchronism of Naupliar Development of Sacculina Carcini Thompson
Trédez et al. Helgol Mar Res (2016) 70:26 DOI 10.1186/s10152-016-0479-2 Helgoland Marine Research ORIGINAL ARTICLE Open Access Synchronism of naupliar development of Sacculina carcini Thompson, 1836 (Pancrustacea, Rhizocephala) revealed by precise monitoring Fabien Trédez, Nicolas Rabet, Laure Bellec and Fabienne Audebert* Abstract Sacculina carcini is member of a highly-specialized group of parasitic cirripeds (Rhizocephala) that use crabs (Carcinus maenas) as hosts to carry out the reproductive phase of their life cycle. We describe the naupliar development of S. carcini Thompson, 1836 from a very precise monitoring of three different broods from three specimens. Nauplii were sampled every 4 h, from the release of the larvae until the cypris stage. Larval development, from naupliar instar 1 to the cypris stage, lasts 108 h at 18 °C. A rigorous sampling allowed us to describe an additional intermediate naupliar instar, not described previously. Naupliar instars are renumbered from 1 to 5. Nauplius 1 (N1) larvae hatch in the interna; N2 are released from the interna and last between 12 and 16 h; N3 appear between 12 and 16 h after release; N4 appear between 28 and 32 h; and N5 appear between 44 and 48 h. The cypris stage appears between 108 and 112 h. The redescribed morphologies allowed us to identify new characters. Antennular setation discriminates nau- pliar instars 3, 4 and 5. Telson and furca morphologies discriminate all naupliar instars. Furthermore, we demonstrate that the speed of larval development is similar within a single brood and between broods from different specimens, suggesting synchronization of larval development. -
Barnacle Paper.PUB
Proc. Isle Wight nat. Hist. archaeol. Soc . 24 : 42-56. BARNACLES (CRUSTACEA: CIRRIPEDIA) OF THE SOLENT & ISLE OF WIGHT Dr Roger J.H. Herbert & Erik Muxagata To coincide with the bicentenary of the birth of the naturalist Charles Darwin (1809-1889) a list of barnacles (Crustacea:Cirripedia) recorded from around the Solent and Isle of Wight coast is pre- sented, including notes on their distribution. Following the Beagle expedition, and prior to the publication of his seminal work Origin of Species in 1859, Darwin spent eight years studying bar- nacles. During this time he tested his developing ideas of natural selection and evolution through precise observation and systematic recording of anatomical variation. To this day, his monographs of living and fossil cirripedia (Darwin 1851a, 1851b, 1854a, 1854b) are still valuable reference works. Darwin visited the Isle of Wight on three occasions (P. Bingham, pers.com) however it is unlikely he carried out any field work on the shore. He does however describe fossil cirripedia from Eocene strata on the Isle of Wight (Darwin 1851b, 1854b) and presented specimens, that were supplied to him by other collectors, to the Natural History Museum (Appendix). Barnacles can be the most numerous of macrobenthic species on hard substrata. The acorn and stalked (pedunculate) barnacles have a familiar sessile adult stage that is preceded by a planktonic larval phase comprising of six naupliar stages, prior to the metamorphosis of a non-feeding cypris that eventually settles on suitable substrate (for reviews on barnacle biology see Rainbow 1984; Anderson, 1994). Additionally, the Rhizocephalans, an ectoparasitic group, are mainly recognis- able as barnacles by the external characteristics of their planktonic nauplii. -
Differential Escape from Parasites by Two Competing Introduced Crabs
Vol. 393: 83–96, 2009 MARINE ECOLOGY PROGRESS SERIES Published October 30 doi: 10.3354/meps08225 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Differential escape from parasites by two competing introduced crabs April M. H. Blakeslee1,*, Carolyn L. Keogh2, James E. Byers3, Armand M. Kuris4 Kevin D. Lafferty5, Mark E. Torchin6 1Marine Invasions Lab, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland 21037, USA 2Environmental Studies Department, Emory University, Atlanta, Georgia 30322, USA 3Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA 4Department of Ecology, Evolution and Marine Biology, and Marine Science Institute, University of California, Santa Barbara, California 93106, USA 5Western Ecological Research Center, US Geological Survey, Marine Science Institute, University of California, Santa Barbara, California 93106, USA 6Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancon, Republic of Panama ABSTRACT: Although introduced species often interact with one another in their novel communities, the role of parasites in these interactions remains less clear. We examined parasite richness and prevalence in 2 shorecrab species with different invasion histories and residency times in an intro- duced region where their distributions overlap broadly. On the northeastern coast of the USA, the Asian shorecrab Hemigrapsus sanguineus was discovered 20 yr ago, while the European green crab Carcinus maenas has been established for over 200 yr. We used literature and field surveys to evalu- ate parasitism in both crabs in their native and introduced ranges. We found only 1 parasite species infecting H. sanguineus on the US East Coast compared to 6 species in its native range, while C. mae- nas was host to 3 parasite species on the East Coast compared to 10 in its native range. -
Ecological Studies in South Benfleet Creek with Special Reference to the Amphipod Genus Corophium B.A.*
Reprinted from, THE ESSEX NATURALIST for 1961 Ecological Studies in South Benfleet Creek with Special Reference to the Amphipod Genus Corophium B.A.* This paper is an account of the work done on some ecological aspects of South Benfleet Creek. A description of the Creek is given in the Introduction and a brief account of the methods used in the second section. The ecology of the most important species found in the Creek is described. The Creek is most interesting with regard to the distribution of the two species of Corophium found there, one of which, Corophium arenarium, is a relatively rare species. It has been found that the composition of the substratum, and associated factors such as water content, is the dominant factor in determining the distribution of the two species of Corophium and of the other two most important species, Nereis diversicolor and Scrobicularia plana. The import- ant distinctions between the habitat of Corophium volutator and Corophium arenarium have also been worked out. INTRODUCTION Benfleet Creek South Benfleet Creek (G.R. TQ 79 85) is a small tidal inlet on the north bank of the River Thames about 7 miles from its mouth at Shoeburyness. The Creek is just over 3 miles long, from Canvey Point to South Benfleet Bridge, nearly half a mile wide at its mouth and about 80 yards wide near the bridge. It runs in a S.S.E.-N.N.W. direction between the low-lying land of Canvey Island and Hadleigh Marsh. Because the surrounding land is all below H.W.M.M.T.* level, strong concrete embank- ments have been built along the whole length of the creek, on both banks. -
(Linnaeus) and Its Parasite Sacculina Carcini Thompson in Burma, with Notes on the Transport of Crabs to New Localities
ON THE OCCURRENCE OF CARCINUS MAENAS (LINNAEUS) AND ITS PARASITE SACCULINA CARCINI THOMPSON IN BURMA, WITH NOTES ON THE TRANSPORT OF CRABS TO NEW LOCALITIES by H. BOSGHMA Rijksmuseum van Natuurlijke Historie, Leiden From time to time crabs have been found in localities at great distances from their normal area of distribution, owing to their being transported by ships in ballast water tanks or on the hulls. Much attention has been paid to a report by Catta (1876), who examined the Crustacea taken from the hull of a ship that had made the voyage from India to Marseilles. Among these, four species of crabs of the family Grapsidae were represented, one of which, named by him Plagusia squamosa, being present in hundreds of specimens. Catta saw here the possibility of an extension of the area of distribution of the crab, but apparently the conditions of life were not favourable in the new locality, and the crab did not become established here. Stebbing (1893: 99) remarks that the correct name of the crab referred to above is Plagusia depressa (Fabricius) and adds that "The point of special interest, however, lies, as Catta explains, in showing the effects on distribution that may be produced by unconscious human agency." The data mentioned above were recorded again by Chilton (1911). According to Bennett (1964: 87) lists as given by Stebbing and Chilton of species transported on the hulls of ships are not lists of accidental acclimatisations, for it does not follow that the crabs could establish themselves in their new homes. Another case of unsuccessful transport of a crab to a new locality is the record of great numbers of Pilumnus spinifer H. -
The Effect of Sacculina Carcini Infections on the Fouling, Burying Behaviour and Condition of the Shore Crab, Carcinus Maenas
Marine Biology Research, 2006; 2: 270Á275 ORIGINAL ARTICLE The effect of Sacculina carcini infections on the fouling, burying behaviour and condition of the shore crab, Carcinus maenas KIM N. MOURITSEN1 & TOMAS JENSEN2 1Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark & 2Wadden Sea Centre, Okholmvej 5, DK-6760 Ribe, Denmark Abstract Crabs infected by rhizocephalans usually do not moult. Because moulting is the ultimate defence against fouling epibionts, infected as opposed to uninfected crabs can be expected to harbour a diversity of hard-bottom organisms on their cuticula. Here we provide unequivocal evidence that this is the case in the Carcinus maenasÁSacculina carcini association. In a Danish sample of shore crabs, 75% of sacculinized individuals harboured macroscopic epibionts, whereas only 29% of the uninfected crabs were colonized. The mean numbers of fouling barnacles and serpulid tubeworms per individual were 7.7 and 47.3 for uninfected and infected crabs, respectively, corresponding to coverage of the cuticula by 0.7 and 5.4%. Infected crabs were 12% lower in tissue dry weight than uninfected individuals, which may be a factor causing the moult of sacculinized crabs to be postponed. Finally, a laboratory experiment suggested that infected crabs are less likely to bury than uninfected specimens. Because burying is an important fouling defence, such a parasite-induced behavioural change will favour the colonization by epibionts. It is argued that rhizocephalans infecting crabs from soft-bottom communities may indirectly affect the structure of the free-living benthic community by adding hard-bottom species that otherwise would be absent. -
Life History of the Amphipod Corophium Insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy)
SCIENTIA MARINA 70 (3) September 2006, 355-362, Barcelona (Spain) ISSN: 0214-8358 Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy) ERMELINDA PRATO and FRANCESCA BIANDOLINO Istituto Sperimentale Talassografico, I.A.M.C - C.N.R., Via Roma, 3, 74100 Taranto, Italy. E-mail: [email protected] SUMMARY: A one-year study was conducted on the life history of the amphipod Corophium insidiosum (Crawford, 1937) in the Mar Piccolo estuary (Southern Italy). Monthly collections were made to investigate certain aspects of population struc- ture, abundance and reproductive biology. Population density showed a clear seasonal variation: with a maximum in spring- summer and a minimum in autumn-winter. Although brooding females were present all year round, recruitment occurred in spring, decreased in summer, peaked in autumn and almost ceased during the winter. 7-8 new cohorts in all samples could be recognised from April 2002 to November 2002. Mean longevity was ~5 to 6 months, and the estimated lifespan was longer for individuals born in late summer than for individuals born in spring. The sex ratio favoured females with a mean value of 1.51, but males grew faster and attained a larger maximum body length than females. Males and females became distinguishable at roughly >2 mm, reaching a maximum size of 5.6 mm for females and 6.0 mm for males during the win- ter months. The females reproduced for the first time when they reached 2.2 mm body length. The number of eggs carried by females was related to the size of the female.