The Role of Gibberellic Acid in Aphid-Plant-Arbuscular Mycorrhizal Fungus Interactions

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Gibberellic Acid in Aphid-Plant-Arbuscular Mycorrhizal Fungus Interactions University of Northern Colorado Scholarship & Creative Works @ Digital UNC Master's Theses Student Research 5-8-2020 THE ROLE OF GIBBERELLIC ACID IN APHID-PLANT-ARBUSCULAR MYCORRHIZAL FUNGUS INTERACTIONS Drew Olson [email protected] Follow this and additional works at: https://digscholarship.unco.edu/theses Recommended Citation Olson, Drew, "THE ROLE OF GIBBERELLIC ACID IN APHID-PLANT-ARBUSCULAR MYCORRHIZAL FUNGUS INTERACTIONS" (2020). Master's Theses. 164. https://digscholarship.unco.edu/theses/164 This Dissertation/Thesis is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Master's Theses by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact [email protected]. © 2020 Drew Olson ALL RIGHTS RESERVED UNIVERSITY OF NORTHERN COLORADO Greeley, Colorado The Graduate School THE ROLE OF GIBBERELLIC ACID IN APHID- PLANT-ARBUSCULAR MYCORRHIZAL FUNGUS INTERACTIONS A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Drew Olson College of Natural and Health Sciences School of Biological Sciences May 2020 This Thesis by Drew Olson Entitled: The role of gibberellic acid in aphid-plant-arbuscular mycorrhizal fungus interactions has been approved as meeting the requirement for the Degree of Master of Science in College of Natural and Health Sciences in School of Biological Sciences, Program of Biological Sciences Accepted by the Thesis Committee: Susana Karen Gomez, Ph.D., Chair Mitchell McGlaughlin, Ph.D., Committee Member Hua Zhao, Ph.D., Committee Member Accepted by the Graduate School Cindy Wesley, Ph.D. Interim Associate Provost and Dean Graduate School and International Admissions ABSTRACT Olson, Drew. The role of gibberellic acid in aphid-plant-arbuscular mycorrhizal fungus interactions. Unpublished Master of Science thesis, University of Northern Colorado, 2020. Arbuscular mycorrhizal (AM) fungi form beneficial associations with the roots of most terrestrial plants, which is mostly characterized by increased plant nutrient acquisition (phosphate and nitrogen) by the fungi in exchange for carbon and lipids from the plants. These associations can also enhance plant coping mechanisms to abiotic and biotic stresses. However, insect herbivores, such as aphids, can benefit from AM fungi- plant symbioses by altering plant defenses that are driven mainly by the phytohormones jasmonic acid (JA) and salicylic acid (SA). Nevertheless, other phytohormones can modulate plant defenses by altering the balance of the JA and SA signaling pathways, such as the growth promoting phytohormone gibberellic acid (GA). Although GA signaling plays an important role in modulating plant defenses during plant-pathogen interactions, its role in insect-plant and insect-plant-beneficial microbe interactions remains largely unknown. Therefore, the current study set out to investigate the following two objectives: 1) examine the role of exogenous GA application in regulating plant defenses during aphid-plant-AM fungus interactions, and 2) evaluate the role of GA signaling in modulating plant defenses during aphid-plant interactions. In objective 1, we found that exogenous GA negatively affected aphid fitness on GA-treated mycorrhizal plants 7-days post pea aphid feeding. Exogenous GA had a synergistic effect on JA- related plant gene expression in shoots, and increased JA and SA levels in leaves and iii petioles after 36 hours of aphid feeding. Pea aphid feeding for 36 hours induced SA- related defense gene expression and increased SA levels in leaves and petioles. In addition, root colonization by the AM fungus resulted in induced JA- and SA-related plant defense gene expression in shoots and roots, but decreased SA levels in leaves and petioles after 36 hours of aphid feeding. In objective 2, we found that GA signaling had an antagonistic effect on JA-related defense signaling after 36 hours of aphid feeding. In summary, this study serves as a foundation for future studies examining the role of GA in regulating plant defenses during insect-plant and insect-plant-AM fungus interactions. iv ACKNOWLEDGEMENTS I first and foremost want to thank my advisor, Dr. Karen Gomez for her amazing professional and personal support and commitment to graduate student success. Karen may not be the easiest on her students, but she expects the best from us, therefore bringing out the most of us. I have grown immensely over the past two years and could not have become who I am today without Karen pushing me to learn and grow. Although there were many tough times and long weeks, she was always there to lend out a helping hand. I have faced many challenges during my time at the University of Northern Colorado, however I was able to persevere through these because of Karen’s guidance and support. With that being said, thank you for everything! I would like to thank my committee members, Dr. Mitchell McGlaughlin and Dr. Hua Zhao for their patience, commitment, and guidance through this process. In addition, I could not have succeeded without the help of Dr. Cris Argueso and her Ph.D. candidate, Hannah Berry. Thank you, Cris for allowing me to use lab space and help fund the phytohormone analyses for my research. Thank you, Hannah Berry for taking the time to help me every step of the way through the phytohormone extraction and analyses. I cannot thank either of you two enough for being critical members of my success and I hope that I will be able to return the favor later down the road! I also could not have made it this far without the help of Dr. Jamie Riggs for helping me figure out which statistical analyses to use. I would have lost much more sleep over statistical analyses had she not provided me with her valuable assistance! v I want to thank one of my best friends, soon-to-be Dr. Tyler Sherman. Tyler has helped me through everything since the beginning of my time here at the University of Northern Colorado. Without him, I would never have had the chance to travel home or elsewhere with my family. Moreover, he has provided me with support throughout the entirety of this process whether it be personal and emotional support or in the lab. I know that I would not be the person that I am proud to be today without sharing friendship with this amazing individual. I also want to thank Christine Williams for helping me through a dark time early on in my graduate school career as well as being a great friend. I am not sure where I would be at had you not allowed me to open up to you as my first friend. You were the first person that I felt that I could trust after making the long and lonely journey here to Colorado. In addition, I want to thank my most recent of close friends Christopher Gregory and Lewis Eaton. These two remind me that there is more to life than being a scientist and spending all of my time towards my graduate school success. I am not sure that I would have made it through the past 8 months or so without them pulling me out of the dens of the Gomez lab, the teaching assistant office, or my apartment. In summary, my friends make up more than a large part of my success, but more importantly my happiness during these strenuous times. I hope that I have in some way, shape, or form have provided you all something of personal value as you all have provided to me. I want to thank my parents, Joel and Kelly Olson, my brother, Jaron Olson, and my grandparents, Don and Karen Olson, for their amazing support through thick and thin. Even when I began to shut myself out to the world, you all made sure to reach out to me and remind me that all things work out in the end. vi I want to thank the entire faculty, staff, graduate students, and undergraduate students at the University of Northern Colorado that have helped me succeed as well as provide an amazing place to grow and thrive. In, addition I want to thank the College of Natural and Health Sciences and Graduate Student Association for their financial support. I want to thank David Shimokawa for his undying commitment to graduate student success and making sure that students get the funding they need for research and for travel. I know that my time here would have been a much greater challenge without the funding. David also commits himself to graduate student happiness and health by organizing many events on and off campus to get people together and connected, and for that I am forever grateful. Finally, I want to thank The Plant Cell journal for providing me permission for the non-profit use of the figure provided in Fig. 1.4. vii TABLE OF CONTENTS CHAPTER I: INTRODUCTION AND REVIEW OF LITERATURE .............................. 1 Aims ........................................................................................................................ 1 Plant Interactions with Soil Beneficial Microbes: Arbuscular Mycorrhizal Symbioses ............................................................................................................... 3 Establishment of the Arbuscular Mycorrhizal Symbiosis ...................................... 4 Plant Interactions with Phloem-Feeding Insects ..................................................... 8 The Role of Phytohormones in Plant Biotic Interactions ..................................... 10 Jasmonic Acid Signaling and Plant Defenses ....................................................... 10 Salicylic Acid Signaling and Plant Defenses .......................................................
Recommended publications
  • Effects of Selected Plant Growth Regulators on Bread Wheat Spike Development
    Sustainable Agriculture Research; Vol. 6, No. 2; 2017 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education Effects of Selected Plant Growth Regulators on Bread Wheat Spike Development Ali Rasaei1, Saeid Jalali Honarmand1, Mohsen Saeidi1, Mohammad-Eghbal Ghobadi1 & Shahrokh Khanizadeh2 1Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran 2Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Canada Correspondence: Shahrokh Khanizadeh, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Canada. E-mail: [email protected] Received: August 25, 2016 Accepted: September 27, 2016 Online Published: March 31, 2017 doi:10.5539/sar.v6n2p115 URL: https://doi.org/10.5539/sar.v6n2p115 Abstract Although the grain yield of wheat is finally determined after anthesis, the yield potential is largely dependent on early growth and development. At the specific stage from double ridge to terminal spikelet, spikelet initiation occurs and can affect the number of grains per spike and the grain yield. A factorial experiment using a randomized complete blocks design with six replicates was used to study the effect of three growth regulators (3-indoleacetic acid [IAA], gibberellic acid [GA3], and 6-benzylaminopurine [6-BAP]) on two bread wheat (Triticum aestivum L.) cultivars (Rijaw and Azar-2), at the Campus of Agriculture and Natural Resources of Razi University, in Kermanshah, Iran, during the 2013–2014 and 2014–2015 cropping seasons. The effect of the hormones was not significant for spikelet initiation number or spikelet initiation rate based on days and growing degree days (GDDs), but apical meristem length and rate of elongation of the apical meristem were affected by exogenous application of hormones in both years.
    [Show full text]
  • Addition of Abscisic Acid Increases the Production of Chitin Deacetylase By
    Process Biochemistry 51 (2016) 959–966 Contents lists available at ScienceDirect Process Biochemistry jo urnal homepage: www.elsevier.com/locate/procbio Addition of abscisic acid increases the production of chitin deacetylase by Colletotrichum gloeosporioides in submerged culture a a b b Angelica Ramos-Puebla , Carolina De Santiago , Stéphane Trombotto , Laurent David , c a,∗ Claudia Patricia Larralde-Corona , Keiko Shirai a Universidad Autonoma Metropolitana-Iztapalapa, Biotechnology Department, Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Av. San Rafael Atlixco, No. 186, 09340 Mexico City, Mexico b Ingénierie des Matériaux Polymères IMP@Lyon1 UMR CNRS 5223, Université Claude Bernard Lyon 1, Université de Lyon, 15 bd A. Latarjet, Villeurbanne Cedex, France c Centro de Biotecnología Genómica Instituto Politécnico Nacional, Tamaulipas, Mexico a r t i c l e i n f o a b s t r a c t Article history: The activity of chitin deacetylase from Colletotrichum gloeosporioides was studied by the addition of phy- Received 26 December 2015 tohormones (gibberellic acid, indole acetic acid, and abscisic acid) and amino sugars (glucosamine and Received in revised form 1 May 2016 N-acetyl glucosamine) in culture media. Abscisic acid exerted a positive and significant effect on enzyme Accepted 2 May 2016 −1 −1 production with 9.5-fold higher activity (1.05 U mg protein ) than the control (0.11 U mg protein ). Available online 3 May 2016 Subsequently, this phytohormone was used in batch culture with higher chitin deacetylase activity being found at acidic pH (3.5) than at neutral pH (7). Furthermore, the highest activity was determined at the Chemical compounds studied in this article: acceleration growth phase.
    [Show full text]
  • Plant Growth Regulators: Their Use in Crop Production
    rth Central Ftegion Extension Publication 303 IOWA Ill IND - KANSAS uo Plant Growth Regulators: Their Use in Crop Production Charles L. Harms Edward S. Oplinger Department of Agronomy Department of Agronomy Purdue University University of Wisconsin-Madison Plant growth regulators (PGRs) are organic fore, use of PGRs on field crops has not been compounds, other than nutrients, that modify as vigorously pursued by chemical companies plant physiological processes. PRGs, called and public research scientists. In fact, PGRs biostimulants or bioinhibitors, act inside plant represent the smallest market share of the cells to stimulate or inhibit specific enzymes or principal categories of chemicals applied to enzyme systems and help regulate plant me- field crops in the United States. They are pri- tabolism. They normally are active at very low marily used to control suckers in tobacco, as concentrations in plants. lodging control agents for cotton and cereals, The importance of PGRs was first recog- as harvest aids for cotton, and as ripeners for nized in the 1930s. Since that time, natural sugarcane. and synthetic compounds that alter function, shape, and size of crop plants have been discovered. Today, specific PGRs are used to modify crop growth rate and growth pattern Classes of Growth Regulators during the various stages of development, from PGRs may be naturally occurring, plant germination through harvest and post-harvest produced chemicals called hormones, or they preservation. may be synthetically produced compounds. Growth regulating chemicals that have Most PGRs, natural and synthetic, fall into positive influences on major agronomic crops one of the following classes: can be of value.
    [Show full text]
  • Non-Targeted Metabolic Profiling of BW312
    Non-targeted metabolic profiling of BW312 Hordeum vulgare semi dwarf mutant using UHPLC coupled to QTOF high resolution mass spectrometry Claire Villette, Julie Zumsteg, Hubert Schaller, Dimitri Heintz To cite this version: Claire Villette, Julie Zumsteg, Hubert Schaller, Dimitri Heintz. Non-targeted metabolic profiling of BW312 Hordeum vulgare semi dwarf mutant using UHPLC coupled to QTOF high resolution mass spectrometry. Scientific Reports, Nature Publishing Group, 2018, 8 (1), pp.13178-13178. 10.1038/s41598-018-31593-1. hal-02289572 HAL Id: hal-02289572 https://hal.archives-ouvertes.fr/hal-02289572 Submitted on 16 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Non-targeted metabolic profling of BW312 Hordeum vulgare semi dwarf mutant using UHPLC coupled Received: 8 January 2018 Accepted: 8 August 2018 to QTOF high resolution mass Published: xx xx xxxx spectrometry Claire Villette1, Julie Zumsteg1, Hubert Schaller2 & Dimitri Heintz1 Barley (Hordeum vulgare) is the fourth crop cultivated in the world for human consumption and animal feed, making it important to breed healthy and productive plants. Among the threats for barley are lodging, diseases, and pathogens. To avoid lodging, dwarf and semi-dwarf mutants have been selected through breeding processes.
    [Show full text]
  • (Ga ) on Dormancy and Activity of Α-Amylase in Rice Seeds1
    ACTION OF GIBBERELLIC ACID IN RICE SEED 43 ACTION OF GIBBERELLIC ACID (GA3) ON DORMANCY AND ACTIVITY OF ααα-AMYLASE IN RICE SEEDS1 ANTÔNIO RODRIGUES VIEIRA2*, MARIA DAS GRAÇAS GUIMARÃES CARVALHO VIEIRA3, ANTÔNIO C. FRAGA3, JOÃO ALMIR OLIVEIRA3, CUSTÓDIO D. DOS SANTOS3 RESUMO - Para avaliar a eficiência do ácido giberélico (GA3) na superação da dormência de sementes de arroz, bem como a atividade da enzima α-amilase como indicador do grau dessa dormência, foram utilizadas sementes da cultivar irrigada Urucuia, que apresentam alta intensidade de dormência pós-colheita. Para tanto, as sementes foram submetidas à pré-secagem em estufa de circulação forçada de ar a 40ºC por 7 dias e à submersão em 30 ml de soluções de GA3 nas concentrações de 0, 10, 30 e 60 mg/litro de H2O, nos tempos de 2, 24 e 36 horas. Após os tratamentos, foi determinada a atividade da α-amilase através da eletroforese em gel de poliacrilamida e da espectrofotometria. Simultaneamente, foi realizado o teste de germinação. Pelos resultados, observa-se que houve ganho na germinação e na atividade da α-amilase em maiores concentrações e tempos de embebição das sementes em GA3. A embebição das sementes em 60 mg GA3/litro H2O por 36 horas apresenta-se eficiente como um tratamento rápido na superação da dormência de sementes de arroz, sendo equivalente a estufa de circulação forçada de ar a 40ºC por 7 dias. A atividade da enzima α-amilase apresentou-se como um eficiente marcador do grau de dormência das sementes. α Termos para indexação: Sementes de arroz, dormência, germinação, ácido giberélico (GA3), - amilase.
    [Show full text]
  • Chitosan Oligosaccharides Stimulate the Efficacy of Somatic
    Article Chitosan Oligosaccharides Stimulate the Efficacy of Somatic Embryogenesis in Different Genotypes of the Liriodendron Hybrid Asif Ali 1, Jiaji Zhang 1, Minmin Zhou 1, Tingting Chen 1, Liaqat Shah 2, Shams ur Rehman 1, Sikandar Hayat 3, Jisen Shi 1 and Jinhui Chen 1,* 1 Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; [email protected] (A.A.); [email protected] (T.C.); [email protected] (S.u.R.); [email protected] (M.Z.); [email protected] (J.Z.); [email protected] (J.S.) 2 Department of Botany, Mir Chakar Khan Rind University, Sibi Baluchistan 82000, Pakistan; [email protected] 3 Department of Landscape Plants, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; [email protected] * Correspondence: [email protected] Abstract: Liriodendron hybrid (L. chinense × L. tulipifera), an essential medium-sized tree generally fa- mous for its timber, is also used as an ornamental and greenery tool in many places around the world. The Liriodendron hybrid (L. hybrid) tree goes through many hurdles to achieve its maximum strength and vigor, such as loss of habitat, vast genetic variation, and low seed setting rate. The establishment of an effective and well-organized somatic embryogenesis (S.E.) system could be used to overcome Citation: Ali, A.; Zhang, J.; Zhou, M.; these obstacles, rather than the old-fashioned seed culture and organogenesis. This study is based Chen, T.; Shah, L.; Rehman, S.u.; on the impact of chitosan oligosaccharide (COS) and its role in the induction of S.E.
    [Show full text]
  • Brassinosteroids Induce Strong, Dose-Dependent Inhibition of Etiolated Pea Seedling Growth Correlated with Ethylene Production
    biomolecules Article Brassinosteroids Induce Strong, Dose-Dependent Inhibition of Etiolated Pea Seedling Growth Correlated with Ethylene Production Petra Jiroutová, Jaromír Mikulík, OndˇrejNovák , Miroslav Strnad and Jana Oklestkova * Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic; [email protected] (P.J.); [email protected] (J.M.); [email protected] (O.N.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +42-05-8563-4853 Received: 8 November 2019; Accepted: 6 December 2019; Published: 9 December 2019 Abstract: We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the ‘triple response’ induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs’ inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production.
    [Show full text]
  • Gibberellic Acid: Reregistration Eligibility Decision (RED)
    United States Prevention, Pesticides EPA 738-R-96-005 Environmental Protection And Toxic Substances December 1995 Agency (7508W) Reregistration Eligibility Decision (RED) ***Gibberellic Acid*** 2 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: I am pleased to announce that the Environmental Protection Agency has completed its reregistration eligibility review and decisions on the biopesticide case Gibberellic Acid, which includes Gibberellic Acid (GA3), related isomers known as Gibberellins (GA4+GA7), and the salt of the acid, Potassium Gibberellate. The enclosed Reregistration Eligibility Decision (RED) contains the Agency's evaluation of the data base of these chemicals, its conclusions of the potential human health and environmental risks of the current product uses, and its decisions and conditions under which these uses and products will be eligible for reregistration. The RED includes the data and labeling requirements for products for reregistration. To assist you with a proper response, read the enclosed document entitled "Summary of Instructions for Responding to the RED". This summary also refers to other enclosed documents which include further instructions. You must follow all instructions and submit complete and timely responses. An Application for Reregistration is required to be submitted eight months from the date of receipt of this letter. Complete and timely responses will avoid the Agency taking the enforcement action of suspension against your products. If you have questions about our decision or the requirements set forth in this document, please contact the reregistration representative for the Biopesticides and Pollution Prevention Division, Richard King at (703) 308-8052.
    [Show full text]
  • Interaction of Gibberellin and Other Hormones in Almond Anthers
    Li et al. Horticulture Research (2021) 8:94 Horticulture Research https://doi.org/10.1038/s41438-021-00527-w www.nature.com/hortres ARTICLE Open Access Interaction of gibberellin and other hormones in almond anthers: phenotypic and physiological changes and transcriptomic reprogramming Peng Li1,2,JiaTian1,ChangkuiGuo 3, Shuping Luo1 and Jiang Li1 Abstract Low temperature causes anther dysfunction, severe pollen sterility and, ultimately, major yield losses in crop plants. Previous studies have shown that the gibberellic acid (GA) metabolic pathway plays an important role in this process by regulating tapetum function and pollen development. However, the interaction mechanism of GA with other hormones mediating anther development is still unclear. Herein, we collected and analyzed almond (Amygdalus communis L.) anthers at the meiosis, tetrad, 1-nucleus, and mature 2-nucleus stages. The growth rate per 1000 anthers exhibited a significant positive correlation with the total bioactive GA compound content, and the levels of all bioactive GA compounds were highest in the 1-nucleus pollen stage. GA3 treatment experiments indicated that exogenous GA3 increased the levels of indole-3-acetic acid (IAA), trans-zeatin (tZ), and jasmonic acid (JA) and decreased the levels of salicylic acid (SA) and abscisic acid (ABA); moreover, GA3 improved pollen viability and quantities under cold conditions, whereas PP333 (paclobutrazol, an inhibitor of GA biosynthesis) was antagonistic with GA3 in controlling anther development. RNA-seq and qRT-PCR results showed that GA played an important role in anther development by regulating the expression of other phytohormone pathway genes, dehydration-responsive element-binding/C-repeat binding factor (DREB1/CBF)-mediated signaling genes, and anther development pathway 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; genes.
    [Show full text]
  • Gravistimulation Effects on Oryza Sativa Amino Acid Profile, Growth Pattern and Expression of Ospin Genes
    www.nature.com/scientificreports OPEN Gravistimulation efects on Oryza sativa amino acid profle, growth pattern and expression of OsPIN genes Muhammad Farooq, Rahmatullah Jan & Kyung‑Min Kim* Gravity is an important ecological factor regulating plant growth and developmental processes. Here we used various molecular and biochemical approaches to investigate artifcial and normal gravistimulation’s efect on the early growth stages of rice (Oryza sativa L.) by changing the orientations of Petri dishes. Rate of amino acid formation, root and shoot growth, and OsPIN expression was signifcantly higher under gravistimulation compared with the control. Clinostat rotation positively afected plant growth and amino acid profle. However, under normal gravity, vertical‑oriented seedlings showed high amino acid levels compared with clinostat, 90°‑rotated, and control seedlings. Similarly, seedling growth signifcantly increased with 90°‑rotated and vertical orientations. Artifcial gravity and exogenous indole‑3‑acetic acid induced OsPIN1 expression in the roots, root shoot junction, and shoots of clinorotated seedlings. Phenyl acetic acid induced OsPIN1 expression in the roots and root shoot junction of clinorotated seedlings but not in the shoot. The current study suggests that OsPIN1 is diferentially regulated and that it might be involved in the regulation of plant growth. Conversely, OsPIN2 and OsPIN3a are gravity sensors and highly induced in the roots and root shoot junctions of vertical and 90°‑rotated seedlings and play an important role in stress conditions. Thus, on exposure to gravity, hormones, and UV‑C radiation, these genes are highly regulated by jasmonic acid, 6‑benzylaminopurine and gibberellic acid. Microgravity conditions impact biological processes such as graviperception and graviresponses.
    [Show full text]
  • Fast Plants Manual Published by Carolina Biological Supply, Burlington, NC
    The Huntington Library, Art Collections, and Botanical Gardens The Effects of Gibberellic Acid Adapted from Wisconsin Fast Plants Manual published by Carolina Biological Supply, Burlington, NC. www.carolina.com Overview Students grow both wild-type and dwarf rosette mutants of Wisconsin Fast Plants and experiment with application of gibberellic acid to help provide a visual example of the effects of this plant hormone on plant growth and development. Introduction The growth and development of plants, from stem elongation to the ripening of fruit, is controlled by internal chemical signals called plant growth regulators, or plant hormones. There are five classes of plant hormones: auxins, gibberellins, cytokinins, abscisic acid, and ethylene. Each can have different effects depending on where it is located in the plant, environmental factors, or the presence or absence of other hormones. Generally, auxins are involved in stem elongation and bud suppression; cytokinins regulate cell division and differentiation; ethylene is involved in abscission and also fruit ripening; abscisic acid (despite its name) controls stomata closure and seed dormancy; and gibberellins can increase fruit and flower size, and promote bolting, seed germination, and growth. The origins of gibberellins’ discovery lie in a fungus. Japanese scientist Ewiti Kurosawa discovered that the cause of “foolish seedling disease” in rice, which caused seedlings to sprout and grow so rapidly that they became spindly and unstable, was an infection of a soil fungus, Gibberella fujikuroi. A series of experiments that included grinding up the fungus and applying it to healthy plants in controlled lab environments led Kurosawa to isolate the responsible compound now known as gibberellin, found to have been secreted by the soil fungus.
    [Show full text]
  • Studies on the Bio Production of Gibberellic Acid from Fungi
    Benha University Faculty of Science Botany Department Studies on the Bioproduction of Gibberellic Acid from Fungi A Thesis Submitted for the degree of Doctor Philosophy of Science in Botany (Microbiology) By Doaa Abd El monem Emam Sleem Assistant lecturer-Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA) Under Supervision of Prof. Dr. Mahmoud M. Hazaa Prof. Dr. seham M. Shash Prof. of Microbiology Prof. of Microbiology and Head of Botany Department, Botany Department, Faculty of Science, Benha University Faculty of Science, Benha University Prof. Dr. Hesham M. Swailam Prof. Dr. Nagi H. Aziz Prof. of Microbiology Late Prof. of Microbiology Microbiology Department, Microbiology Department, NCRRT, AEA. NCRRT, AEA. 2013 ﺻﺪق اﷲ اﻟﻌﻈﻴﻢ Studies on the Bioproduction of Gibberellic Acid from Fungi Submitted By Doaa Abd El monem Emam Sleeem Assistant Lecturer Microbiology Department, NCRRT, AEA This thesis is approved by Supervisor Profession Signature Prof. of Microbiology, and Head of Botany Prof. Dr. Mahmoud A. Hazaa Department, Faculty of Science, Benha University Prof. of Microbiology, Botany Department, Prof. Dr. Seham M. Shash Faculty of Science, Benha University Prof. of Microbiology, Microbiology Prof. Dr. Hesham M. swailam Department , NCRRT, AEA Late Prof. of Microbiology, Microbiology Late Prof. Dr. Nagi H. Aziz Department , NCRRT, AEA Dedication ﺭﺏ ﺍﻭﺯﻋﻨﻰ ﺃﻥ ﺍﺷﻜﺮ ﻌﻤﺘﻚ ﺍﻟﱵ ﺃﻌﻤﺖ ﻋﻠﻰ ﻭﻋﻠﻰ ﻭﺍﻟﺪﻱ ﻭﺍﻥ ﺍﻋﻤﻞ ﺻﺎﳊﺎ ﺗﺮﺿﺎﻩ My work is dedicated to: Allah and I hope to accept it from me and to my father and my mother to whom I owe my life and to my husband who Supported me , my dear Sons Ziad and Mohamed.
    [Show full text]