Berardinelli-Seip Congenital Lipodystrophy

Total Page:16

File Type:pdf, Size:1020Kb

Berardinelli-Seip Congenital Lipodystrophy Berardinelli-Seip congenital lipodystrophy Author: Professor Lionel Van Maldergem1 Creation Date: November 2001 Scientific Editor: Professor Didier LACOMBE 1Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 41, Allée des Templiers, Loverval, 6280, Belgium. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Diagnostic criteria Differential diagnosis Prevalence Clinical description Management Handling Etiology Diagnostic methods Genetic counseling Prenatal diagnosis Unresolved questions References Abstract Berardinelli-Seip congenital lipodystrophy (BSCL) is a very rare autosomal recessive disorder determining the triad of lipoatrophy, hypertriglyceridemia, hepatomegaly and acromegaloid features. It is associated with insulin resistance resulting in clinically overt diabetes mellitus with onset during the second decade. Complications include hypertrophic cardiomyopathy, a fatty liver with hepatic dysfunction, muscular hypertrophy and a number of endocrine disturbances (accelerated growth in infancy, precocious puberty, ...) and bone cysts with spontaneous fractures. There are at least three loci among which two are localized (BSCL1 in 9q34 and BSCL2 in 11q13) and one gene already cloned (seipin for BSCL2). Mental retardation is observed in a majority of BSCL2 patients. Treatment consists of low fat diet and handling of insulin resistance and diabetes. Keywords adipose tissue - diabetes mellitus - mental retardation - seipin - triglycerides -autosomal recessive inheritance. Disease name and synonyms syndrome have also been used, although the It is called Berardinelli-Seip syndrome after latter designates in principle the so-called Berardinelli from Brazil described the first acquired form. it is usually called lipoatrophic patients in 1954. The syndrome was confirmed diabetes in the United States. It has received the in 1959 in Norway were Seip described a new OMIM number 269700. Brunzell syndrome is the series of patients originating from the county of association of bone cysts and lipoatrophic Rogaland. In the European literature, the terms diabetes described in five affected African- generalized lipodystrophy, congenital Americans from the same sibship. A separate lipodystrophy or total lipodystrophy have also OMIM entry (272500) was given but it is now been coined. Seip syndrome, or Lawrence generally admitted that bone cysts represent a Van Maldergem, L., Berardinelli-Seip congenital lipodystrophy. Orphanet encyclopedia. November 2001. http://www.orpha.net/data/patho/GB/uk-berard.pdf 1 rare complication of Berardinelli-Seip congenital Differential diagnosis lipodystrophy (BSCL). In the infant Excluded diseases • Short syndrome. Slit lamp examination. • Lawrence syndrome Short stature. • Dunnigan partial lipodystrophy • Neonatal progeroid syndrome. Prominent • Barraquer-Simons syndrome veins of the scalp. Premature teeth. Pseudo • Partial congenital lipodystrophy with hydrocephaloid appearance. elevated C3 nephritic factor • Neurometabolic lysosomal storage disorder: • Rabson-Mendenhall syndrome Gaucher type 2, Krabbe disease. Abnormal • Launois-Bensaude syndrome neurological examination. • Wiedemann-Rautenstrausch Glucocerebrosidase and • SHORT syndrome galactocerebrosidase on peripheral • AIDS lipodystrophy leukocytes or cultured fibroblasts. • Russell diencephalic syndrome • Russell diencephalic syndrome. Brain MRI Diagnostic criteria In the child • Dunningan lipodystrophy. Spares the face. Major Cushingoid appearance. Mutations in the • Lipoatrophy affecting both trunk and limbs. lamin gene. Gives an athletic appearance, especially • Rabson-Mendenhall. Pure insulin-resistance when muscle hypertrophy is also syndrome present.Secondary phlebomegaly. • Insulin-dependent diabetes mellitus Involvement of the face (empty cheeks due to absence of Bichat's pads) may be absent In the adult at birth and appear during the first months of • Barraquer-Simons syndrome. Asymmetric. life. • AIDS. HIV testing • Acromegaloid features : it includes • Partial lipodystrophy. C3 nephritic factor prognathism, salient orbital ridges, enlarged • Lawrence syndrome hands and feet, macrogenitosomia, gigantism, muscular hypertrophy and Prevalence advanced bone age. Estimated at 1 per 12 millions by Garg in USA • Hepatomegaly secondary to fatty liver and, 1 per million in Norway in late course of the disease, cirrhosis. 1 per 200 000 in Lebanon • Elevated serum concentration of 1 per 500 000 in Portugal triglycerides (up to 80g /Liter), sometimes according to the number of registered cases of associated to hypercholesterolemia. the Berardinelli-Seip study group. • Insulin resistance : may be limited to Clinical description elevated serum concentration of insulin and C-peptide in the first years of life. Will usually Neonatal or infantile presentation determine overt clinical diabetes during the Severe forms may be of prenatal onset with second decade. Its early clinical expression intrauterine growth retardation. When diagnosed is acanthosis nigricans of the groins, neck at birth (rare), it is usually because of and axillae which may take, in some cases, lipoatrophy. Reason for referral in the first a verruquous appearence. months of life include failure to thrive, or conversely gigantism, hepatomegaly, Minor lipoatrophy, facial dysmorphia, enlarged tongue • Hypertrophic cardiomyopathy. May be or developmental delay. present in infancy or develop later in life. • Psychomotor or mental retardation. Affects a Juvenile presentation majority of BSCL2 patients. Mild (IQ 50-70) Accelerated growth, lipoatrophy or cognitive to moderate(IQ 35-50) impairment are major modes of presentation in • Hirsutism : low frontal and posterior early childhood while diabetes mellitus hairlines, hypertrichosis of the trunk manifested by weight loss, polydipsy, polyuria or • Precocious puberty in the female. asthenia is frequently the cause in the second • Bone cysts. Polycyclic appeareance on X- decade. rays. Located in epiphyseal and metaphyseal regions of long bones. Often diagnosed during the second decade. Van Maldergem, L., Berardinelli-Seip congenital lipodystrophy. Orphanet encyclopedia. November 2001. http://www.orpha.net/data/patho/GB/uk-berard.pdf 2 Adult presentation insufficient. The other drugs, including Presents rarely in early adulthood with diabetes fenfluramine, have no proven efficiency and mellitus. The plastic surgery clinic for cosmetic should be avoided. improvement of facial lipoatrophy, the cardiologic The patient will have to be followed in a clinics or gastroenterologic clinics may be also diabetology clinic for possible retinal, peripheral the first through which the patient comes to nerve and renal complications one outpatient medical attention. consultation every six months. Cardiac and liver ultrasound will have to be Management repeated every six months. Special education will be required for most Diagnostic work-up BSCL2 patients Family history, including a three generation pedigree and the locality of origin of the Etiology grandparents needs to be investigated. Specific Rare autosomal recessive disorder with at least questions on parental consanguinity should be three loci identified: asked for. BSCL1:prevalent in Africa, Maghreb and African Clinical examination includes the pubertal status populations from North America and Caribbean. according to Tanner's charts, a complete Also described in Western European neurological examination and search for signs of populations. Apparently less severe phenotype liver dysfunction and cardiac failure. Attention than BSCL2. Onset of lipoatrophy may being the must also be paid to possible orthopedics second or third decade. No or low frequency of problems (reduced hip mobility, genu valgum). mental retardation. Linkage to 9q34 established by an Anglo-American consortium in 1999. Addtitional investigations No gene with disease-causing mutation • Clinical chemistry : Complete blood count, identified up to now. electrolytes, serum glucose concentration, BSCL2:prevalent in Portugal and its ancient insulin, aspartate transaminase, alanine colonies, Lebanon and Norway. Lipoatrophy of transaminase, serum proteins and invariable neonatal onset. More severe than electrophoresis, urea, creatinine, C-peptide, BSCL1. A majority of patients (two-thirds) triglycerides, cholesterol, Oral glucose mentally retarded, especially those with a tolerance test. When appropriate : clamp nonsense or a splice-site mutation affecting the glucose homeostasis study, GH, IgG, A, M, first half of the gene. Missense mutations E, C3 nephritic factor, CH50, C3, C4, reportedly less harmful. In a recent survey of 45 apolipoproteins, hypothalamo-pituitary BSCL2 patients, 7 premature deaths were dynamic tests. observed, from heart and liver failure. Through • Cardiac ultrasound the study of patients from an international • Liver ultrasound consortium, a gene has been cloned in 2001. It • Skeletal survey, especially long bones. encodes a protein of unknown function, mainly Search for osteopenia and bone cysts. Bone expressed in the brain, termed seipin (Magré et age maturation al 2001) • Kidney ultrasound BSCL3:some rare families appear unlinked to • Complete ophtalmological examination, neither 11q13 nor 9q34. If we also consider a including biomicroscopy and slit lamp patient with unconclusive segregation study, it examination seems associated with a severe phenotype (two • Wechsler testing of IQ premature deaths at 16 months and 7 years in • DNA testing ( search for a BSCL2 mutation
Recommended publications
  • Chapter 7: Monogenic Forms of Diabetes
    CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis.
    [Show full text]
  • GH/IGF-1 Abnormalities and Muscle Impairment: from Basic Research to Clinical Practice
    International Journal of Molecular Sciences Review GH/IGF-1 Abnormalities and Muscle Impairment: From Basic Research to Clinical Practice Betina Biagetti * and Rafael Simó * Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain * Correspondence: [email protected] (B.B.); [email protected] (R.S.); Tel.: +34-934894172 (B.B.); +34-934894172 (R.S.) Abstract: The impairment of skeletal muscle function is one of the most debilitating least understood co-morbidity that accompanies acromegaly (ACRO). Despite being one of the major determinants of these patients’ poor quality of life, there is limited evidence related to the underlying mechanisms and treatment options. Although growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels are associated, albeit not indisputable, with the presence and severity of ACRO myopathies the precise effects attributed to increased GH or IGF-1 levels are still unclear. Yet, cell lines and animal models can help us bridge these gaps. This review aims to describe the evidence regarding the role of GH and IGF-1 in muscle anabolism, from the basic to the clinical setting with special emphasis on ACRO. We also pinpoint future perspectives and research lines that should be considered for improving our knowledge in the field. Keywords: acromegaly; myopathy; review; growth hormone; IGF-1 1. Introduction Acromegaly (ACRO) is a rare chronic disfiguring and multisystem disease due to Citation: Biagetti, B.; Simó, R. non-suppressible growth hormone (GH) over-secretion, commonly caused by a pituitary GH/IGF-1 Abnormalities and Muscle tumour [1].
    [Show full text]
  • Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up of Diabetes Mellitus and Its Complications - 2019
    THE SOCIETY of ENDOCRINOLOGY and METABOLISM of TURKEY (SEMT) Clinical Practice Guideline for Diagnosis, Treatment and Follow-up of Diabetes Mellitus and Its Complications - 2019 English Version of the 12th Edition SEMT Diabetes Mellitus Working Group ISBN: 978-605-4011-39-1 CLINICAL PRACTICE GUIDELINE FOR DIAGNOSIS, TREATMENT, AND FOLLOW-UP OF DIABETES MELLITUS AND ITS COMPLICATIONS-2019 © SEMT -2019 This material has been published and distributed by The Society of Endocrinology and Metabolism of Turkey (SEMT). Whole or part of this guideline cannot be reproduced or used for commercial purposes without permission. THE SOCIETY of ENDOCRINOLOGY and METABOLISM of TURKEY (SEMT) Meşrutiyet Cad., Ali Bey Apt. 29/12, Kızılay 06420, Ankara, Turkey Phone. +90 312 425 2072 http://www.temd.org.tr ISBN: 978-605-4011-39-1 English Version of the 12th Edition Publishing Services BAYT Bilimsel Araştırmalar Basın Yayın ve Tanıtım Ltd. Şti. Ziya Gökalp Cad. 30/31 Kızılay 06420, Ankara, Turkey Phone. +90 312 431 3062 Fax +90 312 431 3602 www.bayt.com.tr Printing Miki Matbaacılık San. ve Tic. Ltd. Şti. Matbaacılar Sanayi Sitesi 1516/1 Sk. No. 27 İvedik, Yenimahalle / Ankara, Turkey Phone. +90 312 395 2128 Print Date: October 23, 2019 “Major achievements and important undertakings are only possible through collaborations” “Büyük işler, mühim teşebbüsler; ancak, müşterek mesai ile kabil-i temindir.” MUSTAFA KEMAL ATATÜRK, 1925 PREFACE Dear colleagues, The prevalence of diabetes has been increasing tremendously in the last few decades. As a result , medical professionals/ specialists from different fields encounter many diabetics in their daily practice. At this point, updated guidelines on diabetes management, which take regional specification into consideration is needed.
    [Show full text]
  • Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor
    Page 1 of 50 Diabetes Lipodystrophy Due to Adipose Tissue Specific Insulin Receptor Knockout Results in Progressive NAFLD Samir Softic1,2,#, Jeremie Boucher1,3,#, Marie H. Solheim1,4, Shiho Fujisaka1, Max-Felix Haering1, Erica P. Homan1, Jonathon Winnay1, Antonio R. Perez-Atayde5, and C. Ronald Kahn1. 1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 2 Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA 3 Cardiovascular and Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden (current address) 4 KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway 5 Department of Pathology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA # These authors contributed equally to this work. Corresponding author: C. Ronald Kahn, MD Joslin Diabetes Center One Joslin Place Boston, MA 02215 Phone: (617)732-2635 Fax:(617)732-2487 E-mail: [email protected] Keywords: Insulin receptors, IGF-1 receptors, lipodystrophy, diabetes, dyslipidemia, fatty liver, liver tumor, NAFLD, NASH. Running title: Lipodystrophic mice develop progressive NAFLD 1 Diabetes Publish Ahead of Print, published online May 10, 2016 Diabetes Page 2 of 50 SUMMARY Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and also is a common feature of type 2 diabetes, obesity and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor-1 receptor (F- IR/IGF1RKO).
    [Show full text]
  • Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
    Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6)
    [Show full text]
  • Seipin Traps Triacylglycerols to Facilitate Their Nanoscale Clustering in the ER Membrane
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.26.355065; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the ER membrane Xavier Prasanna1*, Veijo T. Salo2,3*, Shiqian Li2,3, Katharina Ven2,3, Helena Vihinen4, Eija Jokitalo4, Ilpo Vattulainen1**, Elina Ikonen2,3**x 1Department of Physics, University of Helsinki, Helsinki, Finland. 2Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; 3Minerva Foundation Institute for Medical Research, Helsinki, Finland; 4Institute of Biotechnology, University of Helsinki, Helsinki, Finland. *Shared authorship, **co-corresponding authors, xlead contact to whom correspondence should be addressed at [email protected] Running title: Intramembrane triglyceride trapping by seipin Keywords molecular dynamics simulation, lipid trafficking, membrane contacts, lipid droplet biogenesis Character count: 29892 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.26.355065; this version posted October 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Seipin is a disk-like oligomeric ER protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane.
    [Show full text]
  • Phenotypic and Clinical Outcome Studies in Amyloidosis and Associated Autoinflammatory Diseases
    Phenotypic and clinical outcome studies in amyloidosis and associated autoinflammatory diseases Taryn Alessandra Beth Youngstein Doctor of Medicine 2019 University College London UK National Amyloidosis Centre Centre for Acute Phase Protein Research Department of Medicine Royal Free Hospital Rowland Hill Street London NW3 2PF MD(Res)Thesis 1 Declaration I, Taryn Alessandra Beth Youngstein, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, it has been declared within the thesis. 2 Abstract Background: Systemic Amyloidosis results from the deposition of insoluble proteins as amyloid that disrupt organ function with time. Over 30 proteins are known to form amyloid and the identification of the precursor protein is essential as it guides treatment strategies. In AA amyloidosis, the precursor protein is Serum Amyloid A (SAA) which forms amyloid when raised in the blood over time. Thus, AA amyloidosis is a feared complication of the hereditary periodic fever syndromes and other autoinflammatory diseases. Aims: 1. To investigate transthyretin (TTR) amyloid and describe non-cardiac TTR deposition 2. To determine the role of carpal tunnel biopsy in diagnosis of TTR amyloid 3. Investigate and define the changing aetiology of AA amyloidosis 4. To investigate the safety of IL-1 antagonism for autoinflammatory disease in pregnancy 5. Delphi consensus study to define phenotype and management approaches in the autoinflammatory disease Deficiency of ADA2 (DADA2). Results and Conclusions 1. Non-cardiac TTR deposits were identified in 25 biopsies from the tissues of the bladder, duodenum, bone marrow, carpal tunnel tenosynovium, colon, stomach, lung, prostate, muscle. 84% had concurrent evidence of cardiac amyloid and 64% fulfilled consensus criteria for cardiac amyloidosis at presentation.
    [Show full text]
  • Neuroendocrine Imaging
    ACR APPROPRIATENESS CRITERIA Neuroendocrine Imaging D.J. Seidenwurm, for the Expert Panel on Neurologic Imaging maging of the hypothalamic pituitary axis is based on spe- pending on serum hormone level. In males, prolactinomas Icific endocrine testing suggested by clinical signs and symp- may be entirely asymptomatic until visual symptoms occur, toms. Endocrine disorders are generally characterized by ex- due to compression of the chiasm, or they may result in hy- cess or deficiency of specific hormones. Hormone excess is pogonadotropic hypogonadism with loss of libido and impo- diagnosed under conditions that would ordinarily suppress tence. Growth-hormone-secreting tumors generally are larger hormone secretion. Endocrine deficiencies are diagnosed on lesions manifesting clinical acromegaly. Because of the gradual the basis of hormone measurements under conditions of stim- onset of deformity, these tumors may be present for many ulation. Specific clinical syndromes of hormonal disorders are years and grow to substantial size. Before puberty excessive determined by the physiologic role of that particular GH may result in gigantism. TSH- and ACTH-secreting tu- hormone. mors may present at very small size because the impact of their The hypothalamic pituitary axis consists of 2 separate neu- hormone product is usually apparent more rapidly. Gonado- roendocrine organs, the anterior and posterior pituitary sys- tropin-secreting tumors are rare. tems. The hormones of the anterior pituitary are thyroid stim- Precocious puberty and other neurologic symptoms can be ulating hormone (TSH), adrenal corticotrophic hormone produced by hypothalamic lesions such as hamartoma. MR (ACTH), prolactin (PRL), growth hormone (GH), and the imaging is generally indicated in all patients with endocrino- gonadotropins (FSH and LH).
    [Show full text]
  • Acromegaly Your Questions Answered Patient Information • Acromegaly
    PATIENT INFORMATION ACROMEGALY YOUR QUESTIONS ANSWERED PATIENT INFORMATION • ACROMEGALY Contents What is acromegaly? 1 What does growth hormone do? 1 What causes acromegaly? 2 What is acromegaly? Acromegaly is a rare disease characterized by What are the signs and symptoms of acromegaly? 2 excessive secretion of growth hormone (GH) by a pituitary tumor into the bloodstream. How is acromegaly diagnosed? 5 What does growth hormone do? What are the treatment options for acromegaly? 6 Growth hormone (GH) is responsible for growth and development of the human body especially during childhood and adolescence. In addition, Will I need treatment with any other hormones? 9 GH has important functions during later life. It influences fat and glucose (sugar) metabolism, and muscle and bone strength. Growth hormone is How can I expect to feel after treatment? 9 produced in the pituitary gland which is a small bean-sized organ located just underneath the brain (Figure 1). The pituitary gland also secretes How should patients with acromegaly be followed after initial treatment? 9 other hormones into the bloodstream to regulate important functions including reproduction, energy, breast lactation, water balance control, and metabolism. What do I need to do if I have acromegaly? 10 Acromegaly Frequently Asked Questions (FAQs) 10 Glossary inside back cover Pituitary gland Funding was provided by Ipsen Group, Novo Nordisk, Inc. and Pfizer, Inc. through Figure 1. Location of the pituitary gland. unrestricted educational grants. This is the fourth of the series of informational pamphlets provided by The Pituitary Society. Supported by an unrestricted educational grant from Eli Lilly and Company.
    [Show full text]
  • A Case Report of a Chinese Familial Partial Lipodystrophic Patient with Lamin A/C Gene R482Q Mutation and Polycystic Ovary Syndr
    s Case Re te po e r b t Su et al., Diabetes Case Rep 2017,2:1 s ia D Diabetes Case Reports DOI: 10.4172/2572-5629.1000117 ISSN: 2572-5629 ResearchCase Report Article Open Access A Case Report of a Chinese Familial Partial Lipodystrophic Patient with Lamin A/C Gene R482Q Mutation and Polycystic Ovary Syndrome Benli Su1*, Nan Liu1, Jia Liu2, Wei Sun1, Xia Zhang1 and Ping Zhang1 1Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian 116027, China 2Department of Endocrinology and Metabolism, Dalian Fifth Hospital, Dalian 116023, China Abstract Individuals with Familial partial lipodystrophy (FPLD), Dunnigan variety is a rare autosomal dominant disorder caused by missense mutations in Lamin gene are predisposed to insulin resistance and its complications including features of polycystic ovarian syndrome. We present a single case report about a 26-year-old Chinese woman consulted for infertility. On physical examination acanthosis nigricans and central distribution of fat were found. Her masculine type morphology, muscular appearance of the limbs and excess fat deposits in the face and neck promote us to suspect the existence of partial lipodystrophy. Biochemistry testing confirmed glucose intolerance associated with a severe insulin resistance, hypertriglyceridemia, and polycystic ovary syndrome. The detection of a heterozygous missense mutation in LAMIN A/C gene at position 482 confirmed the diagnosis of FPLD2. In conclusion, characteristic features of FPLD and mutation screening allow early diagnosis of this disorder, and facilitate appropriate clinical treatment. Keywords: Familial partial lipodystrophy; Lamin; Polycystic ovary but not spontaneous regular menses, and she received combined syndrome; Metabolism cyproterone acetate treatment that induced cyclical withdrawal bleeding, but oligomenorrhea recurred after interruption of this Introduction treatment.
    [Show full text]
  • Uncommon Forms of Diabetes
    Clinical Medicine 2021 Vol 21, No 4: e337–41 CME: DIABETES Uncommon forms of diabetes Authors: Yun-Ni LeeA and Mohammed SB HudaB Diabetes mellitus is a common condition which all clinicians and insulin independence. It is estimated to account for 1%–2% will encounter in their clinical practice. The most common of patients diagnosed with diabetes and, in the UK, the prevalence form is type 2 diabetes followed by type 1 diabetes. However, of MODY is estimated to be at 108 cases per million.3 However, there are many other atypical forms of diabetes which are it may be a significant underestimate and these figures are not important for a clinician to consider as it can impact on the accurate until large population screening studies are performed. ABSTRACT diagnosis and their management. The most common mutations are hepatocyte nuclear factor-1- This article focuses on maturity onset diabetes of the young alpha (HNF1α; 52%), glucokinase (GCK; 32%) and HNF4α (10%), (MODY), latent autoimmune diabetes in adults (LADA), see Table 2.3 ketosis-prone diabetes and other secondary forms of diabetes such as pancreatic cancer and haemochromatosis. We briefly Hepatocyte nuclear factor-1-alpha gene describe the key clinical features of these forms of diabetes and their investigations and treatment. Formerly called MODY3, mutations on the HNF1α gene on chromosome 3 are associated with a progressive defect of insulin secretion.4 Mutations here also result in low renal threshold for 5 Introduction glucose and thus mutation carriers have detectable glycosuria. In the UK, around 90% of people with diabetes have type 2 diabetes (T2D), around 8% have type 1 diabetes (T1D) and around 2% have other forms of diabetes.1 Key points Typically, we see T1D present in a young, lean patient with Suspect other uncommon forms of diabetes if the clinical marked symptoms of polyuria, polydipsia, weight loss and diabetic picture does not fit type 1 or type 2 diabetes.
    [Show full text]
  • Acromegaly in a Girl of 8 Years
    Arch Dis Child: first published as 10.1136/adc.33.167.49 on 1 February 1958. Downloaded from ACROMEGALY IN A GIRL OF 8 YEARS BY R. McLAREN TODD From the Department of Child Health, University ofLiverpool (RECEIVED FOR PUBLICATION JUNE 21, 1957) Pierre Marie in 1886 first suggested the name of 6 years who lived in Brno (Traub, 1939) and acromegaly for a clinical condition associated with showed acromegalic gigantism associated with bony enlargement of the extremities (aKpa) which he changes in the right hip, tarsal scaphoids, metatarsals had observed in two women aged 37 and 54 years. and vertebral bodies. Marie reviewed the literature and found records of Case Report five male patients (two of whom were brothers) G.O. was born on August 23, 1947, after a normal with similar features; the earliest of these descrip- pregnancy and delivery. She weighed 7j lb. at birth and tions concerned a man of 39 years reported by developed normally until the age of 5 years when she Saucerotte (1772). Marie also discussed the had a mild attack of whooping cough. After this illness differential diagnosis of acromegaly from myx- her mother noticed that she tired easily and that she was oedema, Paget's disease of bone (osteitis deformans) putting on weight excessively. It was not until two years later that the symptoms became more obvious. She and leontiasis ossea of Virchow. consulted her family doctor (Dr. W. Jones Morris) in Although Saucerotte's account is probably the July, 1954, when she was 6 years 11 months old because earliest medical description of acromegaly, the con- of persistent nasal catarrh and he observed the acro- dition was well known to ancient writers.
    [Show full text]