Star Cluster Versus Field Star Formation in the Nucleus of the Prototype
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
In IAU Symp. 193, Wolf-Rayet Phenomena in Stars and Starburst
Synthesis Models for Starburst Populations with Wolf-Rayet Stars Claus Leitherer Space Telescope Science Institute1, 3700 San Martin Drive, Baltimore, MD 21218 Abstract. The prospects of utilizing Wolf-Rayet populations in star- burst galaxies to infer the stellar content are reviewed. I discuss which Wolf-Rayet star features can be detected in an integrated stellar pop- ulation. Specific examples are given where the presence of Wolf-Rayet stars can help understand galaxy properties independent of the O-star population. I demonstrate how populations with small age spread, such as super star clusters, permit observational tests to distinguish between single-star and binary models to produce Wolf-Rayet stars. Different synthesis models for Wolf-Rayet populations are compared. Predictions for Wolf-Rayet properties vary dramatically between individual models. The current state of the models is such that a comparison with starburst populations is more useful for improving Wolf-Rayet atmosphere and evo- lution models than for deriving the star-formation history and the initial mass function. 1. Wolf-Rayet Signatures in Young Populations The central 30 Doradus region has the highest concentration of Wolf-Rayet (WR) stars in the LMC. Parker et al. (1995) classify 15 stars within 2000 (or 5 pc) of R136 as WR stars, including objects which may appear WR-like due to very dense winds (de Koter et al. 1997). This suggests that about 1 out of 10 ionizing stars around R136 is of WR type. The WR stars can be seen in an ultraviolet (UV) drift-scan spectrum of the integrated 30 Dor population obtained by Vacca et al. -
The Fossil Starburst In
The Fossil Starburst in M82 ∗ Richard de Grijs ([email protected]) and Robert W. O’Connell ([email protected]) Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903, USA John S. Gallagher, III ([email protected]) Astronomy Department, University of Wisconsin, 475 North Charter Street, Madison, WI 53706, USA Abstract. We present high-resolution optical and near-infrared HST observations of two adjacent regions in the fossil starburst region in M82, M82 B1 and B2. The presence of both the active and the fossil starburst in M82 provides a unique physical environment to study the stellar and dynamical evolution of star cluster systems. The cluster population in B2 is more heavily affected by internal extinction than that in B1, amounting to an excess extinction in B2 of AV,excess ≃ 1.1 ± 0.3 mag. Preliminary age estimates date the cluster population in the fossil starburst between ∼ 2×108 and ∼ 109 years. The radial luminosity profiles of the brightest clusters are more closely approximated by power laws than by a Gaussian model, in particular in their wings, which favors a slow star formation scenario. Keywords: galaxies: evolution, galaxies: individual (M82), galaxies: photometry, galaxies: starburst, galaxies: star clusters, galaxies: stellar content 1. M82, the prototypical starburst galaxy Observations at all wavelengths from radio to X-rays are consistent with a scenario that tidal interactions between M82 and another member galaxy of the M81 group has channeled large amounts of gas into the arXiv:astro-ph/9903188v1 11 Mar 1999 central regions of M82 during the last several 100 Myr (e.g., Telesco 1988, Rieke et al. -
Mar–Apr 2013, Volume 105, Number 4
SEPT–OCT 2011, v OlumE 104, numb Er 1 m E xi CO C i T y … grav E CO n CE rn S … hubbl E SP a CESC a PES … indian ar T … g E r T rud E himm E lfarb mar–a in theatres march 22nd P r 2013 r mar–aPr 2013, v OlumE 105, numb Er 4 UNIVERSITY OF CHICAGO ALUMNI MAGAZINE STREET DATE: FEB/MARCH DUE DATE: 1/22 non-bleed: 6.4375” x 8.825”, 4-Color JANUARY 22, 2013 1:30 PM EST UCH_MAR_APRIL_covers and spine_v4.indd 1 2/25/13 10:40 AM 130315_FocusFeatures_Chicago.indd 1 1/23/13 8:40 AM alumniweekend June –, CELEBRATE EXCEPTIONAL UCHICAGO Register today for Alumni Weekend 2013. • HONOR outstanding achievement at the 72nd Annual Alumni Awards Ceremony. • SHOW YOUR PRIDE in UChicago at the Alumni Parade. • CELEBRATE the academic rigor and challenges that formed your UChicago experience. • REDISCOVER the intellectual destination that is UChicago. Visit alumniweekend.uchicago.edu to register today. uestions? Call 800.955.0065, e-mail [email protected], or visit alumniweekend.uchicago.edu. AlumniIFC_AlumniWeekendAd_4c.indd Weekend Mar-Apr ad_12.11.indd 4 1 2/27/13 11:1811:19 AM Features 32 adrift in the city On walks across Mexico City, historian Mauricio Tenorio Trillo finds a path to the past. By Elizabeth Station 38 decomposure An alumna mortician, medievalist, and video sage tries to change the way Americans think about death. By Michael Washburn, AM’02 46 raised voices The Sahmat collective galvanizes artists across India to create work that Mar–aPr 2013 vOLuME 105, N uMBEr 4 resists divisive politics. -
The VLT-FLAMES Tarantula Survey? XXIX
A&A 618, A73 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833433 & c ESO 2018 Astrophysics The VLT-FLAMES Tarantula Survey? XXIX. Massive star formation in the local 30 Doradus starburst F. R. N. Schneider1, O. H. Ramírez-Agudelo2, F. Tramper3, J. M. Bestenlehner4,5, N. Castro6, H. Sana7, C. J. Evans2, C. Sabín-Sanjulián8, S. Simón-Díaz9,10, N. Langer11, L. Fossati12, G. Gräfener11, P. A. Crowther5, S. E. de Mink13, A. de Koter13,7, M. Gieles14, A. Herrero9,10, R. G. Izzard14,15, V. Kalari16, R. S. Klessen17, D. J. Lennon3, L. Mahy7, J. Maíz Apellániz18, N. Markova19, J. Th. van Loon20, J. S. Vink21, and N. R. Walborn22,?? 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK e-mail: [email protected] 2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3 European Space Astronomy Centre, Mission Operations Division, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH, UK 6 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA 7 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 8 Departamento de Física y Astronomía, Universidad de La Serena, Avda. Juan Cisternas 1200, Norte, La Serena, Chile 9 Instituto de Astrofísica de Canarias, 38205 La Laguna, -
Extended Lyα Emission Around Quasars with Eclipsing Damped Lyα Systems
MNRAS 461, 1816–1840 (2016) doi:10.1093/mnras/stw1411 Advance Access publication 2016 June 21 Extended Lyα emission around quasars with eclipsing damped Lyα systems H. Fathivavsari,1‹ P. Petitjean,1‹ P. Noterdaeme,1‹ I. Paris,ˆ 2 H. Finley,3,4 S. Lopez´ 5 and R. Srianand6 1Institut d’Astrophysique de Paris, Universite´ Paris 6-CNRS, UMR7095, 98bis Boulevard Arago, F-75014 Paris, France 2Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34131 Trieste, Italy 3CNRS/IRAP, 14 Avenue E. Belin, F-31400 Toulouse, France 4University Paul Sabatier of Toulouse/ UPS-OMP/ IRAP, F-31400 Toulouse, France 5Departamento de Astronom´ıa, Universidad de Chile, Casilla 36-D, Santiago, Chile 6Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, 411 007 Pune, India Downloaded from Accepted 2016 June 9. Received 2016 June 6; in original form 2016 April 12 ABSTRACT We present spectroscopic observations of six high redshift (zem > 2) quasars, which have http://mnras.oxfordjournals.org/ been selected for their Lyman α (Lyα) emission region being only partially covered by a strong proximate (zabs ∼ zem) coronagraphic damped Lyα system (DLA). We detected spatially extended Lyα emission envelopes surrounding these six quasars, with projected spatial extent in the range 26 ≤ dLyα ≤ 51 kpc. No correlation is found between the quasar ionizing luminosity and the Lyα luminosity of their extended envelopes. This could be related to the limited covering factor of the extended gas and/or due to the AGN being obscured in other directions than towards the observer. Indeed, we find a strong correlation between the luminosity of the envelope and its spatial extent, which suggests that the envelopes are probably ionized by the AGN. -
Stellar Life Cycle in Giant Galactic Nebula NGC 3603
Stellar Life Cycle in Giant Galactic Nebula NGC 3603 edited by David L. Alles Western Washington University e-mail: [email protected] Last Updated 2009-11-20 Note: In PDF format most of the images in this web paper can be enlarged for greater detail. 1 Introduction NGC 3603 is a giant HII region in the Carina spiral arm of the southern Milky Way, some 20,000 light years (6 kpc) away from our solar system. HII stands for ionized hydrogen. Gas clouds consist predominantly of hydrogen, the lightest and most abundant element in the universe. When exposed to ultraviolet radiation from hot stars the gas becomes ionized. Hydrogen atoms are stripped of their only electron, and the proton remains. While hydrogen atoms become ionized, ions recombine with free electrons to form again neutral atoms. When recombining the electrons emit light at characteristic wavelengths. NGC 3603 is actually only a dwarf among giant HII regions— there are other galaxies with much larger regions of this kind. But NGC 3603 is the closest giant HII region and the best resolved one. In fact it is the only giant HII region in our Galaxy that is visible at optical wavelengths. NGC 3603 has been the subject of many studies from the ground and space, but the high resolution of recent Hubble Space Telescope observations revealed a number of previously unknown features and nicely illustrates the complexity of this nearby starburst region. 2 In this stunning picture of the giant galactic nebula NGC 3603, the Hubble Space Telescope captures various stages of the life cycle of stars in a single view. -
Hubble Heritage
VOL 18 ISSUE 03 Space Telescope Science Institute HubbleHubble Heritage:Heritage: Scowen and Brian Moore (ASU) NASA, (SCSU), Paul Donald Walter FromFrom InspirationInspiration toto RealizationRealization Keith Noll, [email protected] hances are you’ve seen some of our images. They are popping up support. More than a year of planning and team-building later, Hubble everywhere in textbooks, magazines, and online. Perhaps you’ve Heritage unveiled its first four images on October 21, 1998. In the first month used them in a lecture or maybe pinned one on your bulletin board. thereafter, our new web site recorded 14 million hits from people coming to You may be one of the 200,000 people who view our web site each view our images of the “Fried Egg” Seyfert Galaxy NGC 7742, a colorful field C of stars in Sagittarius near the center of the Milky Way, the wisps of the month or the millions more who see our monthly images in other venues. You may have even noticed an image credit to NASA/Hubble Heritage and Bubble Nebula, and Saturn’s classic rings. (http://heritage.stsci.edu) wondered briefly what that signified. Early on in our project, we settled on the pace of producing one new image Hubble Heritage is many things. It is an idea—an idea born in a holiday each month. We have attempted to include as broad and representative a conversation with relatives who wanted to know if I had worked on “that selection of astronomical objects as possible. We use both public, archival picture from Hubble”—Jeff Hester’s image of the Eagle Nebula, M16. -
Canvas and Cosmos: Visual Art Techniques Applied to Astronomy Data
March 14, 2017 0:27 WSPC/INSTRUCTION FILE EnglishJCanvasCos- mos International Journal of Modern Physics D c World Scientific Publishing Company Canvas and Cosmos: Visual Art Techniques Applied to Astronomy Data. JAYANNE ENGLISH∗ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. Jayanne [email protected] Received Day Month Year Revised Day Month Year Bold colour images from telescopes act as extraordinary ambassadors for research astronomers because they pique the public's curiosity. But are they snapshots docu- menting physical reality? Or are we looking at artistic spacescapes created by digitally manipulating astronomy images? This paper provides a tour of how original black and white data, from all regimes of the electromagnetic spectrum, are converted into the colour images gracing popular magazines, numerous websites, and even clothing. The history and method of the technical construction of these images is outlined. However, the paper focuses on introducing the scientific reader to visual literacy (e.g. human per- ception) and techniques from art (e.g. composition, colour theory) since these techniques can produce not only striking but politically powerful public outreach images. When cre- ated by research astronomers, the cultures of science and visual art can be balanced and the image can illuminate scientific results sufficiently strongly that the images are also used in research publications. Included are reflections on how they could feedback into astronomy research endeavours and future forms of visualization as well as on the rele- vance of outreach images to visual art. (See the colour online version, in which figures can be enlarged, at http://xxxxxxx.) Keywords: astronomy; astrophysics; public outreach; image-making; visualization; colour theory; art arXiv:1703.04183v1 [astro-ph.IM] 12 Mar 2017 PACS numbers: 1. -
A Review of the Theory of Galactic Winds Driven by Stellar Feedback
Review A Review of the Theory of Galactic Winds Driven by Stellar Feedback Dong Zhang 1,2 1 Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904, USA; [email protected] 2 Department of Astronomy, University of Michigan, 1085 S University Ave, Ann Arbor, MI 48109, USA Received: date; Accepted: date; Published: date Abstract: Galactic winds from star-forming galaxies are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Galactic winds associated with stellar feedback may be driven by overlapping supernova explosions, radiation pressure of starlight on dust grains, and cosmic rays. Galactic winds are multiphase, the growing observations of emission and absorption of cold molecular, cool atomic, ionized warm and hot outflowing gas in a large number of galaxies have not been completely understood. In this review article, I summarize the possible mechanisms associated with stars to launch galactic winds, and review the multidimensional hydrodynamic, radiation hydrodynamic and magnetohydrodynamic simulations of winds based on various algorithms. I also briefly discuss the theoretical challenges and possible future research directions. Keywords: starbursts; galactic winds; supernovae; interstellar medium; dust; radiative transfer; radiation hydrodynamics; cosmic rays; magnetohydrodynamics 1. Introduction The basic scenario of galaxy formation and evolution in the cosmological context can be described in the framework of the standard L cold dark matter (LCDM) cosmology. However, many observed properties of galaxies remain difficult to explain. To obtain a realistic picture of cosmological galaxy formation and evolution which matches observations, astrophysical processes such as gas cooling, accretion, galaxy mergers, and feedback should be considered. -
Arxiv:1801.07170V4 [Astro-Ph.HE] 4 Mar 2018 to the Best-fit Source Position [11, 12]
Acceleration of ultrahigh-energy cosmic rays in starburst superwinds Luis Alfredo Anchordoqui Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA Department of Physics, Graduate Center, City University of New York, NY 10016, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA Departamento de F´ısica, Universidad Nacional de La Plata, (1900) La Plata, Argentina The sources of ultrahigh-energy cosmic rays (UHECRs) have been stubbornly elusive. However, the latest report of the Pierre Auger Observatory provides a compelling indication for a possible correlation between the arrival directions of UHECRs and nearby starburst galaxies. We argue that if starbursts are sources of UHECRs, then particle acceleration in the large-scale terminal shock of the superwind that flows from the starburst engine represents the best known concept model in the market. We investigate new constraints on the model and readjust free parameters accordingly. We show that UHECR acceleration above about 1011 GeV remains consistent with observation. We also show that the model could accommodate hard source spectra as required by Auger data. We demonstrate how neutrino emission can be used as a discriminator among acceleration models. The search for the sources of ultrahigh-energy cosmic born magnetars [16], gamma-ray bursts (GRBs) [17, 18], rays (UHECRs) remains one of the cornerstone compo- and tidal disruption events (TDEs) caused by black nents of high energy astrophysics. The source hunting holes [19] have been identified as potential UHECR ac- exploration is mostly driven by three observables: the celerators inside starburst galaxies [1, 20]. Given the energy spectrum, the nuclear composition, and the dis- ubiquity of pulsars, magnetars, and black holes we can tribution of arrival directions. -
Dissecting the Core of the Tarantula Nebula with MUSE
Astronomical Science DOI: 10.18727/0722-6691/5053 Dissecting the Core of the Tarantula Nebula with MUSE Paul A. Crowther1 firmed as Lyman continuum leakers (for ute mosaic which encompasses both Norberto Castro2 example, Micheva et al., 2017). the R136 star cluster and R140 (an aggre- Christopher J. Evans3 gate of WR stars to the north). See Fig- Jorick S. Vink4 The Tarantula Nebula is host to hundreds ure 1 for a colour-composite of the cen- Jorge Melnick5 of massive stars that power the strong tral 200 × 160 pc of the Tarantula Nebula Fernando Selman5 Hα nebular emission, comprising main obtained with the Advanced Camera sequence OB stars, evolved blue super- for Surveys (ACS) and the Wide Field giants, red supergiants, luminous blue Camera 3 (WFC3) aboard the HST. The 1 Department of Physics & Astronomy, variables and Wolf-Rayet (WR) stars. The resulting image resolution spanned 0.7 University of Sheffield, United Kingdom proximity of the LMC (50 kpc) permits to 1.1 arcseconds, corresponding to a 2 Department of Astronomy, University of individual massive stars to be observed spatial resolution of 0.22 ± 0.04 pc, pro- Michigan, Ann Arbor, USA under natural seeing conditions (Evans viding a satisfactory extraction of sources 3 UK Astronomy Technology Centre, et al., 2011). The exception is R136, the aside from R136. Four exposures of Royal Observatory, Edinburgh, United dense star cluster at the LMC’s core that 600 s each for each pointing provided a Kingdom necessitates the use of adaptive optics yellow continuum signal-to-noise (S/N) 4 Armagh Observatory, United Kingdom or the Hubble Space Telescope (HST; see ≥ 50 for 600 sources. -
Not Yet Imagined: a Study of Hubble Space Telescope Operations
NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.