Chronic Obstructive Pulmonary Disease: Diagnostic Considerations MARVIN DEWAR, M.D., J.D., and R

Total Page:16

File Type:pdf, Size:1020Kb

Chronic Obstructive Pulmonary Disease: Diagnostic Considerations MARVIN DEWAR, M.D., J.D., and R Chronic Obstructive Pulmonary Disease: Diagnostic Considerations MARVIN DEWAR, M.D., J.D., and R. WHIT CURRY, JR., M.D. University of Florida College of Medicine, Gainesville, Florida Chronic obstructive pulmonary disease is characterized by the gradual progression of irrevers- ible airflow obstruction and increased inflammation in the airways and lung parenchyma that is generally distinguishable from the inflammation caused by asthma. Most chronic obstructive pulmonary disease is associated with smoking, but occupational exposure to irritants and air pollution also are important risk factors. Patients with chronic obstructive pulmonary disease typically present with coughing, sputum production, and dyspnea on exertion. However, none of these findings alone is diagnostic. The Global Initiative for Chronic Obstructive Lung Disease diagnostic criterion for chronic obstructive pulmonary disease is a forced expiratory volume in one second/forced vital capacity ratio of less than 70 percent of the predicted value. Severity is further stratified based on forced expiratory volume in one second and symptoms. Chest radiog- raphy may rule out alternative diagnoses and comorbid conditions. Selected patients should be tested for G1-antitrypsin deficiency. Arterial blood gas testing is recommended for patients pre- senting with signs of severe disease, right-sided heart failure, or significant hypoxemia. Chronic obstructive pulmonary disease also is a systemic disorder with weight loss and dysfunction of respiratory and skeletal muscles. (Am Fam Physician 2006;73:669-76, 677-8. Copyright © 2006 American Academy of Family Physicians.) S Patient Information: he global burden of chronic limitation that is not fully reversible and A handout on chronic obstructive pulmonary disease that is associated with an abnormal inflam- obstructive pulmonary disease, written by the (COPD) is increasing; the disease matory response of the lungs to noxious authors of this article, is is projected to be the third leading particles or gases. provided on page 677. causeT of death and fifth leading cause of over- Patients with COPD present with a S 1 See related editorial all disability worldwide by 2020. Men and variety of clinical findings, including ele- on page 590. women seem to be at an equal risk, and the ments of chronic bronchitis and emphy- death rate attributable to COPD is increasing sema.6-8 Although COPD and asthma are significantly in both sexes.1,2 The economic both associated with airflow obstruction consequences of COPD are substantial. In and inflammation of the lung and airways, 2002, the estimated total societal cost of asthma-related airflow obstruction is more COPD in the United States was $32 billion.2 reversible and the disease course is more variable than with COPD.6,8,9 Definition COPD is a heterogeneous disorder that Risk Factors encompasses traditional clinical entities such Exposure to tobacco smoke is the most as emphysema and chronic bronchitis.3,4 significant risk factor for COPD, with 80 to The Global Initiative for Chronic Obstruc- 90 percent of all cases attributable to smok- tive Lung Disease (GOLD),5 a ing.6 Evidence linking tobacco smoke expo- collaborative effort from the sure and COPD predominantly comes from Smokingcessationcangive National Heart, Lung, and population-based studies that have consis- a former smoker the Blood Institute; the National tently shown that smoking is associated with same average ongoing Institutes of Health; and the diminished lung function, more frequent loss of lung function as World Health Organization, respiratory symptoms, and increased COPD- a never-smoker. defines COPD as a usually pro- related deaths.5,10-13 Pipe and cigar smoking gressive disease with airflow are associated with increased COPD risk, $OWNLOADEDFROMTHE!MERICAN&AMILY0HYSICIAN7EBSITEATWWWAAFPORGAFP#OPYRIGHT¥2006!MERICAN!CADEMYOF&AMILY0HYSICIANS&ORTHEPRIVATE NONCOMMERCIAL USEOFONEINDIVIDUALUSEROFTHE7EBSITE!LLOTHERRIGHTSRESERVED#ONTACTCOPYRIGHTS AAFPORGFORCOPYRIGHTQUESTIONSANDORPERMISSIONREQUESTS COPD SORT: KEY RECOMMENDATIONS FOR PRACTICE Evidence Clinical recommendation rating References Spirometry should be used as the first-line diagnostic tool when C 5, 6 evaluating patients for COPD. A FEV1/FVC ratio of less than 70 percent of the predicted value suggests COPD. Patients with suspected COPD should receive chest radiography C6, 31 to exclude other diagnoses and comorbidities. G1-Antitrypsin deficiency testing should be performed in select C15 patients (e.g., COPD in never-smokers, idiopathic cirrhosis, family history of G1-antitrypsin deficiency, predominantly lower lung emphysema, “premature” COPD, and refractory asthma at a young age). ABG testing should be performed if the patient presents with C 5 right-sided heart failure or has more severe COPD. COPD = chronic obstructive pulmonary disease; FEV1 = forced expiratory volume in one second; FVC = forced vital capacity; ABG = arterial blood gas. A = consistent, good-quality, patient-oriented evidence; B = inconsistent or limited-quality, patient-oriented evi- dence; C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series. For information about the SORT evidence rating system, see page 573 or http://www.AAFP.org/afpsort.xml. but at a lesser rate than with cigarette smok- fuels, commonly used for indoor cooking ing.5,6 Although cigarette smoking is a sig- and heating, is a risk factor for COPD, par- nificant risk factor for COPD, only about ticularly in the developing world.5,6,9,19,20 20 percent of cigarette smokers develop clinically significant COPD.6,8,13 Natural History The second most significant documented Patients with COPD may present with loss risk factor for COPD is G1-antitrypsin defi- of lung function beyond normal age-related ciency. Although G1-antitrypsin deficiency decreases. Clinical disease develops fairly increases the risks associated with smok- late in the disease course, after lung function ing, COPD can develop in never-smokers drops below threshold values. with G1-antitrypsin deficiency. One percent After 25 years of age, a nonsmoking adult’s of COPD cases are attributable to severe forced expiratory volume in one second 5,6,14,15 G1-antitrypsin deficiency. (FEV1) decreases by an average of 20 to 40 mL Certain occupational exposures are per year. In some smokers, FEV1 decreases by associated with increased risk of COPD two to five times this amount, making them (Table 116-18). Exposure to solid biomass particularly susceptible to COPD.6,8,12,13,21,22 Smoking cessation may cause slight initial improvement in FEV1 (approximately 50 mL TABLE 1 in the first year).21 More importantly, smok- Occupational Irritants That ing cessation can give a former smoker the IncreasetheRiskofCOPD same average ongoing loss of lung function as a never-smoker.13,21 Figure 113,21 illustrates Occupation Irritant the progressive loss of lung function in a Agricultural worker Endotoxin variety of settings. Coal miner Coal dust Patients with COPD usually have a smok- Concrete worker Mineral dust ing history of at least 20 pack-years. Wheez- Construction worker Dust ing and dyspnea on exertion generally occur Gold miner Silica when the FEV1 is less than 50 percent of the Hard rock miner Mineral dust predicted value, and significant physical Rubber worker Industrial chemicals disability usually occurs when the FEV1 is less than 35 to 40 percent of the predicted COPD = chronic obstructive pulmonary disease. value.4,22,23 Patients who started smoking in Information from references 16 through 18. their 20s and have already sustained appre- ciable FEV1 loss by their 40s are likely to 670 American Family Physician www.aafp.org/afp Volume 73, Number 4 U February 15, 2006 COPD develop significant COPD if they continue matous changes are most prominent in the to smoke. Those in their mid-40s who have upper lung fields. Loss of the structural sup- normal FEV1 values, however, probably will ports that keep the airways open allows the not develop symptomatic disease.13 bronchioles to collapse during expiration; the resulting nonfunctioning alveolar units Pathophysiology reduce the amount of lung area available for COPD involves a chronic inflammatory pro- gas exchange.4-6,24 cess, primarily in the peripheral airways and Patients with COPD have high neutro- the lung parenchyma. Airway irritation causes phil, macrophage, and CD8+ T-lymphocyte mucous gland enlargement, hypersecretion, counts in the airways and lung parenchyma. ciliary dysfunction, and squamous metaplasia These cells release inflammatory cytokines early in the disease course. An ongoing cycle and proteases that cause an imbalance of the of inflammation and repair ultimately nar- pro-inflammatory and protective mediators rows the airway lumen and obstructs air- found in healthy lungs.5,8,20,25 flow. Patients with emphysema experience destruction of the structural constituents Diagnosis of the alveolar walls, causing permanent Common differential diagnosis of COPD enlargement of the air spaces distal to the ter- includes asthma, heart failure, bronchiecta- minal bronchioles. In early COPD, emphyse- sis, bronchiolitis obliterans, cystic fibrosis, Lung Function Decline in Smokers and Nonsmokers Average nonsmoker 4 Severely susceptible smoker who stops smoking at 40 years 3 of age (L) 1 Clinical symptoms develop FEV 2 Susceptible smoker Severely susceptible smoker Severe disability 1 0 25 45 65 85 Age (years) Figure 1. The natural history of lung function decline. Smokers who are susceptible
Recommended publications
  • Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality
    Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality Please note, this report is designed for double-sided printing American Lung Association Epidemiology and Statistics Unit Research and Health Education Division March 2013 Page intentionally left blank Table of Contents COPD Mortality, 1999-2009 COPD Prevalence, 1999-2011 COPD Hospital Discharges, 1999-2010 Glossary and References List of Tables Table 1: COPD – Number of Deaths by Ethnic Origin and Sex, 1999-2009 Figure 1: COPD – Number of Deaths by Sex, 1999-2009 Figure 2: COPD – Age-Adjusted Death Rates by Ethnic Origin and Sex, 2009 Table 2: COPD – Age-Adjusted Death Rate per 100,000 Population by Ethnic Origin and Sex, 1999- 2009 Figure 3: COPD – Deaths and Age-Adjusted Death Rate by Sex, 2009 Figure 4: COPD – Diagnosed Cases and Evidence of Impaired Lung Function Figure 5: Chronic Bronchitis – Prevalence Rates per 1,000, 2011 Table 3: Chronic Bronchitis – Number of Conditions and Prevalence Rate per 1,000 Population by Ethnic Origin, Sex and Age, 1999-2011 Figure 6: Emphysema – Prevalence Rates per 1,000, 2011 Table 4: Emphysema – Number of Conditions and Prevalence Rate per 1,000 Population by Ethnic Origin, Sex and Age, 1997-2011 Table 5: COPD – Adult Prevalence by Sex and State, 2011 Figure 8: COPD – Age-Adjusted Prevalence in Adults by State, 2011 Table 6: Characteristics Among Those Reporting a Diagnosis of COPD by State (%), 2011 Figure 9: COPD – First-Listed Hospital Discharge Rates per 10,000, 2010 Table 7: COPD – Number of First-Listed Hospital Discharges and Rate per 10,000 Population by Race, Sex and Age, 1999-2010 Figure 9: National Projected Annual Cost of COPD, 2010 Introduction Chronic obstructive pulmonary disease (COPD) is a term which refers to a large group of lung diseases characterized by obstruction of air flow that interferes with normal breathing.
    [Show full text]
  • Chronic Obstructive Lung Disease &​Bronchiectasis
    PLEASE CHECK Editing file BEFORE! ​ ​ ​ ​ Chronic Obstructive lung Disease & Bronchiectasis ​ ★ Objectives: ​ 1. Definition of the two conditions 2. Clinical and radiological diagnosis 3. Differential diagnosis 4. General outline of management 5. Create a link to 341 clinical teaching ★ Resources Used in This lecture: Davidson, Guyton and Becker step 1 lecture notes ​ Done by: Mohammad Alkharraz Contact us at: [email protected] Chronic Obstructive Pulmonary Diseases (COPD) COPD contains two diseases which are chronic bronchitis and emphysema ​ ​ ​ ■ COPD is classified under obstructive pulmonary diseases along with other ​(no kidding!)​ diseases such as asthma and bronchiectasis ■ Chronic bronchitis and emphysema are grouped together under COPD because they are both mainly caused by smoking and they usually present together. ​ ■ Brainless pathology textbooks (Robbins) try to confuse us students with “Pink Puffers” and “Blue Bloaters”. Forget about that as it is not clinically relevant1. Let us quickly point out some points (pathology) that are relevant to each disease (chronic bronchitis and emphysema) and then we will discuss the clinical presentation, management, etc. of COPD Chronic bronchitis It is mainly a clinical diagnosis patients cough up lots of sputum for a long period of time ​ ​ “3 months per year for at least 2 consecutive years2” ● Pathogenesis: Cigarette smoke causes hyperplasia of mucus glands which increase the ​ secretion of mucus → mucus plugs cause obstruction of bronchioles→ COPD Emphysema It is mainly a pathological diagnosis. ​ ​ ● Pathogenesis: 1. Pollutants (smoking)→ increased inflammatory mediators in the lung that destroy the lung parenchyma (trypsin and elastase) 2. We have defense mechanisms to fight these inflammatory mediators (alpha1 antitrypsin) ○ However, the amount of inflammatory mediators exceeds our ability to counteract them 3.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis As a Cause of Bronchial Asthma in Children
    Egypt J Pediatr Allergy Immunol 2012;10(2):95-100. Original article Allergic bronchopulmonary aspergillosis as a cause of bronchial asthma in children Background: Allergic bronchopulmonary aspergillosis (ABPA) occurs in Dina Shokry, patients with asthma and cystic fibrosis. When aspergillus fumigatus spores Ashgan A. are inhaled they grow in bronchial mucous as hyphae. It occurs in non Alghobashy, immunocompromised patients and belongs to the hypersensitivity disorders Heba H. Gawish*, induced by Aspergillus. Objective: To diagnose cases of allergic bronchopulmonary aspergillosis among asthmatic children and define the Manal M. El-Gerby* association between the clinical and laboratory findings of aspergillus fumigatus (AF) and bronchial asthma. Methods: Eighty asthmatic children were recruited in this study and divided into 50 atopic and 30 non-atopic Departments of children. The following were done: skin prick test for aspergillus fumigatus Pediatrics and and other allergens, measurement of serum total IgE, specific serum Clinical Pathology*, aspergillus fumigatus antibody titer IgG and IgE (AF specific IgG and IgE) Faculty of Medicine, and absolute eosinophilic count. Results: ABPA occurred only in atopic Zagazig University, asthmatics, it was more prevalent with decreased forced expiratory volume Egypt. at the first second (FEV1). Prolonged duration of asthma and steroid dependency were associated with ABPA. AF specific IgE and IgG were higher in the atopic group, they were higher in Aspergillus fumigatus skin Correspondence: prick test positive children than negative ones .Wheal diameter of skin prick Dina Shokry, test had a significant relation to the level of AF IgE titer. Skin prick test Department of positive cases for aspergillus fumigatus was observed in 32% of atopic Pediatrics, Faculty of asthmatic children.
    [Show full text]
  • Cryptogenic Organizing Pneumonia—Results of Treatment with Clarithromycin Versus Corticosteroids—Observational Study
    RESEARCH ARTICLE Cryptogenic organizing pneumoniaÐResults of treatment with clarithromycin versus corticosteroidsÐObservational study Elżbieta Radzikowska1*, Elżbieta Wiatr1☯, Renata Langfort2³, Iwona Bestry3³, Agnieszka Skoczylas4, Ewa Szczepulska-Wo jcik2³, Dariusz Gawryluk1☯, Piotr Rudziński5³, Joanna Chorostowska-Wynimko6³, Kazimierz Roszkowski-Śliż1³ 1 III Department of Lung Disease National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland, 2 Pathology Department National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland, 3 Radiology Department National Tuberculosis and Lung Diseases Research Institute, Warsaw, a1111111111 Poland, 4 Geriatrics Department National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, a1111111111 Poland, 5 Thoracic Surgery Department National Tuberculosis and Lung Diseases Research Institute, a1111111111 Warsaw, Poland, 6 Laboratory of Molecular Diagnostics and Immunology National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland a1111111111 a1111111111 ☯ These authors contributed equally to this work. ³ These authors also contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Radzikowska E, Wiatr E, Langfort R, Bestry I, Skoczylas A, Szczepulska-WoÂjcik E, et al. (2017) Cryptogenic organizing pneumoniaÐ Background Results of treatment with clarithromycin versus Cryptogenic organizing pneumonia (COP) is a clinicopathological syndrome of unknown ori- corticosteroidsÐObservational study. PLoS ONE 12(9): e0184739.
    [Show full text]
  • Chronic Obstructive Pulmonary Disease (Copd) in the Americas
    CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) IN THE AMERICAS KEY STATISTICS FOR THE AMERICAS An estimated 13.2 million people live with COPD (1). COPD caused over 235,000 deaths in 2010, ranking as the sixth leading cause of death (2). 7 in 10 COPD deaths are attributable to tobacco (3). In 2012, COPD was responsible for the loss of 8.3 million disability-adjusted life years (DALYs) (3). KEY MESSAGES CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) IS A LEADING CAUSE OF MORBIDITY AND MORTALITY IN THE 1 AMERICAS, REPRESENTING AN IMPORTANT PUBLIC HEALTH CHALLENGE THAT IS BOTH PREVENTABLE AND TREATABLE. COPD is an incurable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response to noxious particles or gases in the airways and the lungs. Common symptoms include breathlessness, abnormal sputum and a chronic cough. Exacerbations and comorbidities – such as cardiovascular diseases, skeletal muscle dysfunction, metabolic syndrome, osteoporosis, depression and lung cancer – contribute to the overall severity of individual patients (4,5). In 2010, COPD accounted for over 235,000 deaths in the Americas, ranking as the sixth leading cause of mortality regionally. About 23% of these deaths occurred prematurely, in people aged 30-69 years (2). An estimated 13.2 million people live with COPD in the region (1). Many people suffer from this disease for years, experiencing disa- bility and major adverse effects on their quality of life (5,6). In 2012, COPD was responsible for the loss of 8.3 million DALYs, representing the seventh leading cause of disability-adjusted life years lost (DALYs) in the Americas, with one DALY representing the loss of the equivalent of one year of full health (3,6).
    [Show full text]
  • Interstitial Lung Disease—Raising the Index of Suspicion in Primary Care
    www.nature.com/npjpcrm All rights reserved 2055-1010/14 PERSPECTIVE OPEN Interstitial lung disease: raising the index of suspicion in primary care Joseph D Zibrak1 and David Price2 Interstitial lung disease (ILD) describes a group of diseases that cause progressive scarring of the lung tissue through inflammation and fibrosis. The most common form of ILD is idiopathic pulmonary fibrosis, which has a poor prognosis. ILD is rare and mainly a disease of the middle-aged and elderly. The symptoms of ILD—chronic dyspnoea and cough—are easily confused with the symptoms of more common diseases, particularly chronic obstructive pulmonary disease and heart failure. ILD is infrequently seen in primary care and a precise diagnosis of these disorders can be challenging for physicians who rarely encounter them. Confirming a diagnosis of ILD requires specialist expertise and review of a high-resolution computed tomography scan (HRCT). Primary care physicians (PCPs) play a key role in facilitating the diagnosis of ILD by referring patients with concerning symptoms to a pulmonologist and, in some cases, by ordering HRCTs. In our article, we highlight the importance of prompt diagnosis of ILD and describe the circumstances in which a PCP’s suspicion for ILD should be raised in a patient presenting with chronic dyspnoea on exertion, once more common causes of dyspnoea have been investigated and excluded. npj Primary Care Respiratory Medicine (2014) 24, 14054; doi:10.1038/npjpcrm.2014.54; published online 11 September 2014 INTRODUCTION emphysema, in which the airways of the lungs become narrowed Interstitial lung disease (ILD) is an umbrella term, synonymous or blocked so the patient cannot exhale completely.
    [Show full text]
  • Radioaerosol Lung Scanning in Chronic Obstructive Pulmonary Disease (COPD) and Related Disorders
    88 XAOIOOIOO Radioaerosol Lung Scanning in Chronic Obstructive Pulmonary Disease (COPD) and Related Disorders Yong Whee Bahk, M.D. and Soo Kyo Chung, M.D. Introduction As a coordinated research project of the International Atomic Energy Agency (IAEA) a multicentre joint study on radioaerosol lung scan using the BARC nebulizer [1] has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the useful- ness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographie find- ings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bron- chial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation burns and glue-sniffer's lung are seperately discussed by Dr.
    [Show full text]
  • Standardisation of Spirometry
    Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method .
    [Show full text]
  • Spirometry (Adult) Guideline
    Document Number # QH-GDL-386:2012 Spirometry (Adult) Respiratory Science Custodian/Review Officer: 1. Purpose Chief Allied Health Officer This guideline provides recommendations regarding best practice to support high quality spirometry practice Version no: 1.0 throughout Queensland Health facilities. Applicable To: 2. Scope All Health Practitioners performing adult This guideline provides information for all health spirometry practitioners who perform adult spirometry as part of their clinical duties. Approval Date: 26/11/2012 This guideline provides the minimum requirements for obtaining acceptable and repeatable pre- and post- Effective Date: 26/11/2012 bronchodilator (reversibility) spirometric data using both volume and flow-measuring devices. Next Review Date: 26/11/2013 3. Related documents Authority: This guideline is primarily based on the following Chair – State-wide Clinical Measurements Network documents taken from the series “ATS/ERS Task Force: Standardisation of Lung Function Testing” Approving Officer General considerations for lung function testing 1 Chief Allied Health Officer (2005). Standardisation of spirometry (2005). 2 References from alternate sources of information have Supersedes: Nil been identified in this document. Key Words: spirometry, spiro, respiratory, Policy and Standard/s: measure, spirogram, spirometric, bronchodilator, flow-volume loop, peak Informed Decision-making in Healthcare (QH-POL- flow 346:2011) 3 Accreditation References: Procedures, Guidelines, Protocols EQuIP and other criteria and standards Australian Guidelines for the prevention and control of infection in healthcare (CD33:2010) 4 2005 American Thoracic Society and European Respiratory Society (ATS/ERS) guidelines 1, 2 Version No.: 1.0; Effective From: 26 November 2012 Page 1 of 31 Printed copies are uncontrolled Queensland Health: Spriometry (Adult) Queensland Health Paediatric Spirometry Guideline Forms and templates Nil 4.
    [Show full text]
  • Pulmonary Function Test (PFT)
    Pulmonary Function Test (PFT) St. James Mercy Hospital Respiratory Therapy, 1st Floor 411 Canisteo St. Hornell, NY 14843 607-324- 8159 To schedule an appointment: 607-324-2879 To fax to scheduling: 607-324-8221 What is pulmonary function testing and why is it done? Pulmonary function tests (also called PFTs or lung function tests) help determine how well your lungs are functioning. The results of these tests tell your physician how much air your lungs can hold, how quickly you can move air into and out of your lungs, and how well your lungs are able to use oxygen and get rid of carbon dioxide. The tests help your physician determine if you have a lung disease, help provide a measure of how significant your lung disease is, and can show how well the treatment for your lung disease is working. How is a pulmonary function test done? Pulmonary function testing is usually done by a specially trained respiratory therapist or technician. For most pulmonary function tests, you will be asked to wear a nose clip to make sure that no air passes through your nose during the test. You will be asked to breathe into a mouthpiece that is connected to a machine called a spirometer. The technician may encourage you to breathe deeply during parts of the test to get the best results. Following all of the technician's instructions will help provide the most accurate results. How do I prepare for my test? You should not eat a heavy meal just before this test. You should not smoke for six hours before the test.
    [Show full text]
  • Effect of Chronic Bronchitis on Changes in Pulmonary Function Caused by Irradiation Ofthe Lungs
    Thorax: first published as 10.1136/thx.20.4.303 on 1 July 1965. Downloaded from Thorax (1965), 20, 303. Effect of chronic bronchitis on changes in pulmonary function caused by irradiation of the lungs B. I. HOFFBRAND,1 P. M. S. GILLAM,' AND P. J. D. HEAF' From the Chest Department, University College Hospital, London In a previous paper (Gillam, Heaf, Hoffbrand, and Group 3: A history of chronic cough with Hilton, 1964) it was shown that, contrary to wide- sputum and recurrent chest infections or breath- spread opinion, the presence of co-existing chronic lessness or both. This group will be referred to as bronchitis does not interfere with the treatment of the severe bronchitic group. A subgroup 3a was bronchial carcinoma by radiotherapy. Patients derived from group 3 and consisted of those with severe chronic bronchitis can be given the patients in group 3 with a forced expiratory same dose of irradiation as those with mild volume in one second (F.E.V.j.0) of 1,250 ml. or bronchitis or with previously normal lungs. less. Group 3a thus consisted largely of those Survival after radiotherapy for bronchial carci- patients with the severest bronchitis of all. noma is not shortened by co-existing chronic Group 1 was similar to groups 2 and 3 in bronchitis. The incidence of exacerbations of respect of age, sex, previous lung resections, and bronchitis both during and after radiotherapy is radiotherapy received. Group 1, however, con- no more than might be expected in such a group tained a higher proportion of patients with more extensive and more anaplastic tumours.
    [Show full text]
  • Global Initiative for Chronic Obstructive Lung Disease (2006)
    Global Initiative for Chronic Obstructive Lung Disease GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2006 Copyright © 2006 MCR VISION, Inc. All Rights Reserved GLOBAL INITIATIVE FOR CHRONIC OBSTRUCTIVE LUNG DISEASE GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (2006) © 2006 Global Initative for Chronic Obstructive Lung Disease i Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2006) GOLD EXECUTIVE COMMITTEE* Roberto Rodriguez Roisin, MD Hospital Clinic A. Sonia Buist, MD, Chair Barcelona, Spain Oregon Health & Science University Portland, Oregon, USA Thys van der Molen, MD University of Groningen Antonio Anzueto, MD Groningen, The Netherlands (Representing the American Thoracic Society) University of Texas Health Science Center Chris van Weel, MD San Antonio, Texas, USA (Representing the World Organization of Family Doctors (WONCA)) Peter Calverley, MD University of Nijmegen University Hospital Aintree Nijmegen, The Netherlands Liverpool, UK GOLD SCIENCE COMMITTEE* Teresita S. deGuia, MD Philippine Heart Center Klaus F. Rabe, MD, PhD, Chair Quezon City, Philippines Leiden University Medical Center Leiden, The Netherlands Yoshinosuke Fukuchi, MD (Representing the Asian Pacific Society for Respirology) A. G. Agusti, MD (Effective June 2006) Tokyo, Japan Hospital Universitari Son Dureta Palma de Mallorca, Spain Christine Jenkins, MD Woolcock Institute of Medical Research Antonio Anzueto, MD Sydney, NSW, Australia University of Texas Health Science Center San Antonio, Texas, USA Nikolai Khaltaev, MD (Representing the World Health Organization) Peter J. Barnes, MD Geneva, Switzerland National Heart and Lung Institute London, UK James Kiley, PhD (Representing the National Heart, Lung, and Blood Institute, A.
    [Show full text]