Assessment of Coastal Water Resources and Watershed Conditions at Olympic National Park, Washington
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Socioeconomic Monitoring of the Olympic National Forest and Three Local Communities
NORTHWEST FOREST PLAN THE FIRST 10 YEARS (1994–2003) Socioeconomic Monitoring of the Olympic National Forest and Three Local Communities Lita P. Buttolph, William Kay, Susan Charnley, Cassandra Moseley, and Ellen M. Donoghue General Technical Report United States Forest Pacific Northwest PNW-GTR-679 Department of Service Research Station July 2006 Agriculture The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all pro- grams.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. -
Ecology and Habitat Requirements of Fish Populations in South Fork Hoh River, Olympic National Park
Ecology and Habitat Requirements of Fish Populations in South Fork Hoh River, Olympic National Park J.R. Sedell, P.A. Bisson, J.A. June, and R.W. Speaker ABSTRACT Four distinct running water habitats are defined and examined on the South Fork Hoh River--main river channel, river off-channel areas, terrace tributaries, and valley wall tributaries. Species compositions, densities, and total fish biomasses are distinctly different for each habitat examined. Habitat formed by the main river channel and its tributaries is controlled by the valley terrace structure and the modifying effects of large woody debris. Without large wood, spawning and rearing habitat quality would be poorer, even in the large channel. Virtually all rearing of salmonid fish occurs in river off-channel areas and tributaries. The main channel is used mainly for spawning and migration. Fish densities and biomasses are highest in streams along the valley floor. Alteration of these areas will have greatest impact on fish production. J. R. Sedell, U.S. Department of Agriculture, Forest Service, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331; P. A. Bisson, Weyerhaeuser Company, 505 North Pearl Street, Centralia, Washington 98531; J. A. June, Department of Fisheries, University of Washington, Seattle, Washington 98195; and R. W. Speaker, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331. 35 SOUTH FORK HON RIVER MATERIALS AND METHODS FISH SAMPLE SIT ES A beach seine was employed for sampling salmonid AAAAA " populations in the main stem South Fork Hoh River. tOlhf 114•1" A 600-volt backpack electric shocker was used to .11. -
Snps) in the Northeast Pacific Intertidal Gooseneck Barnacle, Pollicipes Polymerus
University of Alberta New insights about barnacle reproduction: Spermcast mating, aerial copulation and population genetic consequences by Marjan Barazandeh A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences ©Marjan Barazandeh Spring 2014 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Abstract Barnacles are mostly hermaphroditic and they are believed to mate via copulation or, in a few species, by self-fertilization. However, isolated individuals of two species that are thought not to self-fertilize, Pollicipes polymerus and Balanus glandula, nonetheless carried fertilized embryo-masses. These observations raise the possibility that individuals may have been fertilized by waterborne sperm, a possibility that has never been seriously considered in barnacles. Using molecular tools (Single Nucleotide Polymorphisms; SNP), I examined spermcast mating in P. polymerus and B. glandula as well as Chthamalus dalli (which is reported to self-fertilize) in Barkley Sound, British Columbia, Canada. -
Bureau of Reclamation Hoh River Geomorphic
Summary Report for Geomorphic Assessment of Hoh River in Washington State Hoh River Miles 17 to 40: Oxbow Canyon and Mount Tom Creek U.S. Department of the Interior Bureau of Reclamation Technical Service Center July 2004 Summary Report for Geomorphic Assessment of Hoh River in Washington State River Miles 17 to 40 between Oxbow Canyon and Mount Tom Creek Report Prepared by: Lucille A. Piety, Geomorphologist Seismotectonics & Geophysics Group, Technical Service Center Jennifer A. Bountry, P.E., Hydraulic Engineer Sedimentation & River Hydraulics Group, Technical Service Center Timothy J. Randle, P.E., Hydraulic Engineer Sedimentation & River Hydraulics Group, Technical Service Center Edward W. Lyon, Jr., Geologist Geology, Exploration, & Instrumentation Group Pacific Northwest Regional Office Report Peer Reviewed by: Ralph E. Klinger, Ph.D., Geomorphologist Flood Hydrology Group, Technical Service Center Richard A. Link, Regional Geologist Geology, Exploration, & Instrumentation Group Pacific Northwest Regional Office U.S. Department of the Interior Bureau of Reclamation Technical Service Center, Denver, Colorado UNITED STATES DEPARTMENT OF THE INTERIOR The mission of the Department of the Interior is to protect and provide access to our Nation=s natural and cultural heritage and honor our trust responsibilities to Indian tribes and our commitments to island communities. BUREAU OF RECLAMATION The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound -
Supplementary Materials for Tsunami-Driven Megarafting
Supplementary Materials for Commented [ams1]: Please use SM template provided Tsunami-Driven Megarafting: Transoceanic Species Dispersal and Implications for Marine Biogeography James T. Carlton, John W. Chapman, Jonathan A. Geller, Jessica A. Miller, Deborah A. Carlton, Megan I. McCuller, Nancy C. Treneman, Brian Steves, Gregory M. Ruiz correspondence to: [email protected] This file includes: Materials and Methods Figs. S1 to S8 Tables S1 to S6 1 Material and Methods Sample Acquisition and Processing Following the arrival in June 2012 of a large fishing dock from Misawa and of several Japanese vessels and buoys along the Oregon and Washington coasts (table S1), we established an extensive contact network of local, state, provincial, and federal officials, private citizens, and Commented [ams2]: Can you provide more details, i.e. in what formal sense was this a ‘network’ with nodes and links, rather than a list of contacts? environmental (particularly "coastal cleanup") groups, in Alaska, British Columbia, Washington, Oregon, California, and Hawaii. Between 2012 and 2017 this network grew to hundreds of individuals, many with scientific if not specifically biological training. We advised our contacts that we were interested in acquiring samples of organisms (alive or dead) attached to suspected Japanese Tsunami Marine Debris (JTMD), or to obtain the objects themselves (numerous samples and some objects were received that were North American in origin, or that we interpreted as likely discards from ships-at-sea). We provided detailed directions to searchers and collectors relative to Commented [ams3]: Did you deploy a standard form/protocol for your contacts to use? Can it be included in the SM if so? sample photography, collection, labeling, preservation, and shipping, including real-time communication while investigators were on site. -
United States Department of the Interior Donald Paul
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY RECONNAISSANCE OF THE WATER RESOURCES OF THE HOH INDIAN RESERVATION AND THE HOH RIVER BASIN, WASHINGTON By W. E. Lum II With a Section on Fluvial Sediment Transport in the Hoh River by L. M. Nelson U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 85-4018 Prepared in cooperation with the HOH INDIAN TRIBE Tacoma, Washington 1986 UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports 1201 Pacific Avenue - Suite 600 Box 25425, Federal Center, Bldg. 41 Tacoma, Washington 98402-4384 Denver, Colorado 80225 Telephone (303) 236-7476 CONTENTS Page Abstract----------------------------------------------------------- 1 Introduction------------------------------------------------------- 2 Purpose and scope of the study--------------------------------- 2 Description of the study area---------------------------------- 3 Climate of the Hoh River basin--------------------------------- 3 The hydrologic cycle------------------------------------------- 7 Previous investigations---------------------------------------- 7 Geology and ground-water resources--------------------------------- 8 Geology of the Hoh River basin--------------------------------- 8 Ground-water occurrence---------------------------------------- 8 Hydrologic testing on the Hoh Indian Reservation--------------- -
Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (Oases)
Exploring Options for an Olympic Coast Ocean Acidification Sentinel Site (OASeS) Workshop Proceedings September 2016 Contents Background ..................................................................................................................................... 1 Olympic Coast ............................................................................................................................ 1 Ocean Acidification .................................................................................................................... 1 Ocean Acidification Sentinel Site (OASeS) Workshop Background ......................................... 2 Workshop Goals.......................................................................................................................... 3 Panel Discussion Summaries .......................................................................................................... 3 Science in National Marine Sanctuaries and OCNMS ............................................................... 3 i. i.Panelists: Steve Giddings, Liam Atrim, Scott Noakes, Lee Whitford Partners and Activities ................................................................................................................ 5 i. Panelists: Libby Jewett, Jan Newton, Richard Feely, Steve Fradkin, Paul McElhany, Joe Shumacker Education and Communication ................................................................................................... 7 i. Panelists: Laura Francis, Christopher Krembs, Jacqueline Laverdure, Angie -
Deep-Water Turbidites As Holocene Earthquake Proxies: the Cascadia Subduction Zone and Northern San Andreas Fault Systems
University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 10-1-2003 Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems Chris Goldfinger Oregon State University C. Hans Nelson Universidad de Granada Joel E. Johnson University of New Hampshire, Durham, [email protected] Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Goldfinger, C. Nelson, C.H., and Johnson, J.E., 2003, Deep-Water Turbidites as Holocene Earthquake Proxies: The Cascadia Subduction Zone and Northern San Andreas Fault Systems. Annals of Geophysics, 46(5), 1169-1194. http://dx.doi.org/10.4401%2Fag-3452 This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. ANNALS OF GEOPHYSICS, VOL. 46, N. 5, October 2003 Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems Chris Goldfinger (1),C. Hans Nelson (2) (*), Joel E. Johnson (1)and the Shipboard Scientific Party (1) College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, U.S.A. (2) Department of Oceanography, Texas A & M University, College Station, Texas, U.S.A. Abstract New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ¾ 600 years since the first post-Mazama event ¾ 7500 years ago. -
Gold and Fish Pamphlet: Rules for Mineral Prospecting and Placer Mining
WASHINGTON DEPARTMENT OF FISH AND WILDLIFE Gold and Fish Rules for Mineral Prospecting and Placer Mining May 2021 WDFW | 2020 GOLD and FISH - 2nd Edition Table of Contents Mineral Prospecting and Placer Mining Rules 1 Agencies with an Interest in Mineral Prospecting 1 Definitions of Terms 8 Mineral Prospecting in Freshwater Without Timing Restrictions 12 Mineral Prospecting in Freshwaters With Timing Restrictions 14 Mineral Prospecting on Ocean Beaches 16 Authorized Work Times 17 Penalties 42 List of Figures Figure 1. High-banker 9 Figure 2. Mini high-banker 9 Figure 3. Mini rocker box (top view and bottom view) 9 Figure 4. Pan 10 Figure 5. Power sluice/suction dredge combination 10 Figure 6. Cross section of a typical redd 10 Fig u re 7. Rocker box (top view and bottom view) 10 Figure 8. Sluice 11 Figure 9. Spiral wheel 11 Figure 10. Suction dredge . 11 Figure 11. Cross section of a typical body of water, showing areas where excavation is not permitted under rules for mineral prospecting without timing restrictions Dashed lines indicate areas where excavation is not permitted 12 Figure 12. Permitted and prohibited excavation sites in a typical body of water under rules for mineral prospecting without timing restrictions Dashed lines indicate areas where excavation is not permitted 12 Figure 13. Limits on excavating, collecting, and removing aggregate on stream banks 14 Figure 14. Excavating, collecting, and removing aggregate within the wetted perimeter is not permitted 1 4 Figure 15. Cross section of a typical body of water showing unstable slopes, stable areas, and permissible or prohibited excavation sites under rules for mineral prospecting with timing restrictions Dashed lines indicates areas where excavation is not permitted 15 Figure 16. -
Life-History Model for Sockeye Salmon (Oncorhynchus Nerka) at Lake Ozette, Northwestern Washington—Users’ Guide
Prepared in cooperation with the National Park Service Life-History Model for Sockeye Salmon (Oncorhynchus nerka) at Lake Ozette, Northwestern Washington—Users’ Guide Open-File Report 2019–1031 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs and diagram showing interface of the Lake Ozette sockeye salmon life-history model, northwestern Washington. Main photograph: Makah Tribe member surveying Ozette River. Photograph by Andy Ritchie, Makah Tribe, June 24, 2004. Small photograph: Sockeye salmon spawning in Lake Ozette. Photograph by Roy Morris and Nancy Messmer, Clallam Bay Sekiu Lions Club, October 20, 2014, used with permission. Life-History Model for Sockeye Salmon (Oncorhynchus nerka) at Lake Ozette, Northwestern Washington—Users’ Guide By Andrea Woodward, Mike Haggerty, and Patrick Crain Prepared in cooperation with the National Park Service Open File Report 2019–1031 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Acting Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https:/store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. -
Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, Including Population Status, Threats, and Monitoring Recommendations
HOW HEALTHY ARE HEALTHY STOCKS? Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, including Population Status, Threats, and Monitoring Recommendations Prepared for the Native Fish Society April 2001 How Healthy Are Healthy Stocks? Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, including Population Status, Threats, and Monitoring Recommendations Prepared for: Bill Bakke, Director Native Fish Society P.O. Box 19570 Portland, Oregon 97280 Prepared by: Peter Bahls, Senior Fish Biologist David Evans and Associates, Inc. 2828 S.W. Corbett Avenue Portland, Oregon 97201 Sponsored by the Native Fish Society and the U.S. Environmental Protection Agency. April 2001 Please cite this document as follows: Bahls, P. 2001. How healthy are healthy stocks? Case studies of three salmon and steelhead stocks in Oregon and Washington, including population status, threats, and monitoring recommendations. David Evans and Associates, Inc. Report. Portland, Oregon, USA. EXECUTIVE SUMMARY Three salmon stocks were chosen for case studies in Oregon and Washington that were previously identified as “healthy” in a coast-wide assessment of stock status (Huntington et al. 1996): fall chinook salmon (Oncorhynchus tshawytscha) of the Wilson River, summer steelhead (O. mykiss) of the Middle Fork John Day (MFJD) River, and winter steelhead (O. mykiss) of the Sol Duc River. The purpose of the study was to examine with a finer focus the status of these three stocks and the array of human influences that affect them. The best available information was used, some of which has become available since the 1996 assessment of healthy stocks was conducted. Recommendations for monitoring were developed to address priority data gaps and most pressing threats to the species. -
The Bogachiel River System
The Bogachiel River System Within the Bogachiel River system, a number of stream reaches qualify as shorelines of statewide significance. The mainstem BOGACHIEL (RM 0 – 17.6) contains no reach breaks under the current SMP. The portion of the Bogachiel that flows through the Forks Urban Growth Area (FUGA) extends from approximately RM 8.9 to 10.1. Tributary reaches include the following: BEAR‐BOGACHIEL (RM 0‐4.2); DRY‐BOGACHIEL (RM 0‐.5); MAXFIELD 10 (RM 0‐2.7); MAXFIELD 20 (RM 2.7‐4.4); MILL (RM 0 – 1.3); MURPHY 10 (RM 0‐ 1.7); MURPHY 20 (RM 1.7‐ 2.1); and DRY‐BOGACHIEL (RM 0‐ .5). The portion of MILL CR that is within the FUGA extends from RM .8‐ 1.3. The creek flows outside of FUGA and then returns into FUGA boundaries (RM .1) upstream of its confluence with the Bogachiel. The portion of Mill Creek that is outside of FUGA extends from RM 0.1 ‐ .8. Physical Environment The headwaters of the Bogachiel River lie outside the current planning area in the steep terrain of the Olympic National Park. As it enters the planning unit, it flows in a northwesterly direction with several miles in close proximity to US 101. West of the Forks UGA, its largest tributary, the Calawah River, flows into the Bogachiel. Downstream of the confluence, the River widens and meanders in a westward direction through a broad alluvial valley. Beds of Pleistocene clay, sand, and gravel WRIA 20 Draft ICR June 30, 2011 10 | Page overlie the older rocks throughout most of this region.