DEEP EUTECTIC SOLVENTS and IONIC LIQUIDS by HENRY JOHN
Total Page:16
File Type:pdf, Size:1020Kb
CHARACTERIZATION OF SOLVENTS FOR ELECTROCHEMICAL ENERGY STORAGE: DEEP EUTECTIC SOLVENTS AND IONIC LIQUIDS By HENRY JOHN SQUIRE Submitted in partial fulfillment of the requirements for the degree of Master of Science Thesis Advisor: Professor Burcu Gurkan Department of Chemical and Biomolecular Engineering CASE WESTERN RESERVE UNIVERSITY May, 2020 1 Case Western Reserve University School of Graduate Studies We hereby approve the thesis of Henry John Squire Candidate for the degree of Master of Science Committee Chair Burcu Gurkan Committee Member Uziel Landau Committee Member Robert Savinell Committee Member Daniel Lacks Date of Defense April 27, 2020 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Copyright Portions of this work has been/will be published in the following papers: Gurkan, B., Squire, H. & Pentzer, E. Metal-Free Deep Eutectic Solvents: Preparation, Physical Properties, and Significance. J. Phys. Chem. Lett. 10, 7956– 7964 (2019). Chapter 3 Spittle, S. et al. Glyceline Dynamics and Structure. J. Am. Chem. Soc. to be submitted. Chapter 4 Zhang, Y. et al. Liquid Structure and Transport Properties of the Eutectic Mixture of Choline Chloride and Ethylene Glycol (Ethaline). J. Phys. Chem. B to be submitted. Chapter 4 and Chapter 5 Klein, J., Squire, H., Dean, W. & Gurkan, B. From salt in solution to soley ions - solvation of methyl viologen in deep eutectic solvents and ionic liquids. J. Phys. Chem. B under review. Chapter 5 Klein, J. M., Squire, H. & Gurkan, B. Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality. J. Phys. Chem. C 124, 5613–5623 (2020). Chapter 6 3 Table of Contents List of Tables .......................................................................................................... 6 List of Figures ......................................................................................................... 7 Acknowledgements ............................................................................................... 10 Chapter 1: Introduction ......................................................................................... 12 Chapter 2: Background ......................................................................................... 16 2.1 Definition of DESs and ILs ......................................................................... 16 2.2 Brief History of DESs and ILs .................................................................... 18 2.3 Application of DESs for Energy Storage .................................................... 20 2.4 Applications of ILs for Energy Storage ...................................................... 21 2.5 Structure-Function Relation ........................................................................ 22 Chapter 3: Methods ............................................................................................... 24 3.1 Preparation and Handling of DESs ............................................................. 24 3.2 Characterization Considerations ................................................................. 27 3.3 Physical Property Characterization Techniques .......................................... 29 Chapter 4: Properties of Glyceline and Ethaline Deep Eutectic Solvents ............ 38 4.1 Introduction ................................................................................................. 39 4.2 Methods and Materials ................................................................................ 41 4.3 Results and Discussion ................................................................................ 42 4.4 Conclusion ................................................................................................... 50 Chapter 5: Solvation of Methylviologen Dichloride in an IL, DES, and DES Analogues ............................................................................................................. 52 5.1 Introduction ................................................................................................. 52 5.2 Methods ....................................................................................................... 56 5.3 Results and Discussion ................................................................................ 60 5.4 Conclusions ................................................................................................. 71 Chapter 6: Redox Behavior of Quinones in Ethaline............................................ 73 6.1 Introduction ................................................................................................. 73 6.2 Materials and Methods ................................................................................ 77 6.2 Results and Discussion ................................................................................ 78 6.3 Conclusions ................................................................................................. 87 Chapter 7: Ionic Liquids: Bulk Properties and Interface Characteristics ............. 88 4 7.1 Introduction ................................................................................................. 89 7.2 Methods ....................................................................................................... 90 7.3 Results and Discussion ................................................................................ 94 7.4 Conclusion ................................................................................................. 101 Chapter 8: Conclusions and Future Work ........................................................... 102 References ........................................................................................................... 106 5 List of Tables Table 2.1 Viscosity, conductivity, and electrochemical window (EW) of representative solvents at 25ºC; comparing organic and aqueous with ILs and DESs. .................................................................................................................... 18 Table 4.1 Water contents of studied DESs (33 mol% ChCl) and DES analogues, and frequency range of EIS used for the calculation of ionic conductivities. ...... 41 Table 4.2 Fitted Arrhenius parameters and for the mixtures of ChCl and G. ............................................................................................................................... 43 Table 4.3 Fitting parameters and for temperature-dependent viscosity of ChCl in EG. .................................................................................................................... 44 Table 4.4 Fitting parameters and for temperature-dependent conductivity of ChCl in G and ChCl in EG solutions. ................................................................... 47 Table 4.5 Fitted parameters of and for temperature-dependent densities of ChCl in G and ChCl in EG solutions. ............................................................................ 50 Table 5.1 Measured viscosity ( ) and surface tension ( ) at 25 °C and the estimated average hole size (r) using equation 1. ................................................................ 62 Table 5.2 Peak assignments and peak locations for MV+2 and EG vibrational modes in solvents studied. 1:2, 1:4, and 1:6 represent the molar ratios of the choline-based salt to EG. Peaks were extracted by Gaussian function fitting. The symbol ⁑ represents a mode that comes up at two different frequencies. MVCl2 concentration was 10 mM in the corresponding mixtures. The table is color coded to indicate blue shifts and red shifts of MV2+ and EG modes in solutions with respect to the pure compounds. ........................................................................................................... 68 Table 6.1 Results of linear fit to concentration versus absorbance for different modes of H2BQ. Parameters m and b are the slope and intercept of the fit respectively. R2 is the goodness of fit measure..................................................... 80 Table 6.2 Solubility limit of various quinones in ethaline listed according to the functional groups associated with each quinone species. Decreasing polarity and increasing size of functional groups decreases solubility of quinone in ethaline. 82 Table 7.1 Water contents of dried ILs and frequency range of linear fit to EIS data for determining conductivities. ............................................................................. 93 Table 7.2 Measured viscosity conductivity and density of studied ILs, each with [TFSI] anion, at 298.15 K ..................................................................................... 95 6 List of Figures Figure 1.1 Set-up for a redox flow battery in which pumps supply electrolyte to the electrodes (A) and a lithium-ion battery in which electrolyte is stagnant, stored between the electrodes (B). ....................................................................................13 Figure 2.1 Structures of representative DESs and ILs ..........................................17 Figure 3.1 Preparation of ethaline: choline chloride and ethylene glycol in a 1:2 molar ratio. The sample on the left was heated improperly or exposed to water leading to crystal formation. The homogenous sample on the right was heated at 80 ºC for 2 hours and stored in an argon atmosphere glovebox. ...........................26 Figure 3.2 Viscosity as a function of temperature for ethaline.