Voltage-Gated Calcium Channels

Total Page:16

File Type:pdf, Size:1020Kb

Voltage-Gated Calcium Channels Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Voltage-Gated Calcium Channels William A. Catterall Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280 Correspondence: [email protected] Voltage-gated calcium (Ca2þ) channels are key transducers of membrane potential changes into intracellular Ca2þ transients that initiate many physiological events. There are ten members of the voltage-gated Ca2þ channel family in mammals, and they serve distinct roles in cellular signal transduction. The CaV1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic trans- mission at ribbon synapses in specialized sensory cells. The CaV2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The CaV3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca2þ channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties. PHYSIOLOGICAL ROLES OF with ryanodine-sensitive Ca2þ release channels VOLTAGE-GATED Ca2þ CHANNELS in the sarcoplasmic reticulum and activate them to initiate rapid contraction (Catterall 1991; a2þ channels in many different cell types Tanabe et al. 1993). The same Ca2þ channels Cactivate on membrane depolarization and in the transverse tubules also mediate a slow mediate Ca2þ influx in response to action Ca2þ conductance that increases cytosolic potentials and subthreshold depolarizing sig- concentration and thereby regulates the force nals. Ca2þ entering the cell through voltage- of contraction in response to high-frequency gated Ca2þ channels serves as the second trains of nerve impulses (Catterall 1991). In messenger of electrical signaling, initiating endocrine cells, voltage-gated Ca2þ channels many different cellular events (Fig. 1). In car- mediate Ca2þ entry that initiates secretion of diac and smooth muscle cells, activation of hormones (Yang and Berggren 2006). In neu- Ca2þ channels initiates contraction directly by rons, voltage-gated Ca2þ channels initiate syn- increasing cytosolic Ca2þ concentration and aptic transmission (Tsien et al. 1988; Dunlap indirectly by activating calcium-dependent et al. 1995; Catterall and Few 2008). In many calcium release by ryanodine-sensitive Ca2þ different cell types, Ca2þ entering the cytosol release channels in the sarcoplasmic reticulum via voltage-gated Ca2þ channels regulates en- (Reuter 1979; Tsien 1983; Bers 2002). In skeletal zyme activity, gene expression, and other muscle cells, voltage-gated Ca2þ channels in the biochemical processes (Flavell and Greenberg transverse tubule membranes interact directly 2008). Thus, voltage-gated Ca2þ channels are Editors: Martin Bootman, Michael J. Berridge, James W. Putney, and H. Llewelyn Roderick Additional Perspectives on Calcium Signaling available at www.cshperspectives.org Copyright # 2011 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a003947 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a003947 1 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press W.A. Catterall Ca2+ α 2 δ γ α1 β Contraction Secretion Synaptic transmission Protein Enzyme phosphorylation regulation Nucleus Gene transcription Figure 1. Signal transduction by voltage-gated Ca2þ channels. Ca2þ entering cells initiates numerous intracel- lular events, including contraction, secretion, synaptic transmission, enzyme regulation, protein phosphoryla- tion/dephosphorylation, and gene transcription. (Inset) Subunit structure of voltage-gated Ca2þ channels. The five-subunit complex that forms high-voltage-activated Ca2þ channels is illustrated with a central pore- forming a1 subunit, a disulfide-linked glycoprotein dimer of a2 and d subunits, an intracellular b subunit, and a transmembrane glycoprotein g subunit (in some Ca2þ channel subtypes). As described in the text, this model is updated from the original description of the subunit structure of skeletal muscle Ca2þ channels. (Adapted from Takahashi et al. 1987). the key signal transducers of electrical excit- types of Ca2þ currents as defined by physiolog- ability, converting the electrical signal of the ical and pharmacological criteria (Tsien et al. action potential in the cell surface membrane 1988; Bean 1989a; Llina´s et al. 1992). In cardiac, to an intracellular Ca2þ transient. Signal trans- smooth, and skeletal muscle, the major Ca2þ duction in different cell types involves differ- currents are distinguished by high voltage ent molecular subtypes of voltage-gated Ca2þ of activation, large single channel conductance, channels, which mediate voltage-gated Ca2þ slow voltage-dependent inactivation, marked currents with different physiological, pharma- up-regulation by cAMP-dependent protein cological, and regulatory properties. phosphorylation pathways, and specific inhi- bition by Ca2þ antagonist drugs including 2þ dihydropyridines, phenylalkylamines, and ben- Ca CURRENT TYPES DEFINED BY zothiazepines (Table 1) (Reuter 1979; Tsien PHYSIOLOGICAL AND et al. 1988). These Ca2þ currents have been PHARMACOLOGICAL PROPERTIES designated L-type, as they have slow voltage- Since the first recordings of Ca2þ currents in dependent inactivation and therefore are long cardiac myocytes (reviewed in Reuter 1979), it lasting when Ba2þ is the current carrier and there has become apparent that there are multiple is no Ca2þ-dependent inactivation (Tsien et al. 2 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a003947 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Voltage-Gated Calcium Channels Table 1. Subunit composition and function of Ca2þ channel types Ca2þ current a1 Specific type Subunits blocker Principal physiological functions Inherited diseases LCav1.1 DHPs Excitation-contraction coupling in Hypokalemic periodic skeletal muscle, regulation of paralysis transcription Cav1.2 DHPs Excitation-contraction coupling in Timothy syndrome: cardiac cardiac and smooth muscle, arrhythmia with endocrine secretion, neuronal developmental Ca2þ transients in cell bodies and abnormalites and autism dendrites, regulation of enzyme spectrum disorders activity, regulation of transcription Cav1.3 DHPs Endocrine secretion, cardiac pacemaking, neuronal Ca2þ transients in cell bodies and dendrites, auditory transduction Cav1.4 DHPs Visual transduction Stationary night blindness NCav2.1 v-CTx-GVIA Neurotransmitter release, Dendritic Ca2þ transients P/QCav2.2 v-Agatoxin Neurotransmitter release, Familial hemiplegic migraine, Dendritic Ca2þ transients cerebellar ataxia RCav2.3 SNX-482 Neurotransmitter release, Dendritic Ca2þ transients TCav3.1 None Pacemaking and repetitive firing Cav3.2 Pacemaking and repetitive firing Absence seizures Cav3.3 Abbreviations: DHP,dihydropyridine; v-CTx-GVIA, v-conotoxin GVIA from the cone snail Conus geographus; SNX-482, a synthetic version of a peptide toxin from the tarantula Hysterocrates gigas. 1988). L-type Ca2þ currents are also recorded in membrane potentials, inactivated rapidly, deac- endocrine cells where they initiate release of hor- tivated slowly, had small single channel con- mones (Yang and Berggren 2006) and in neurons ductance, and were insensitive to conventional where they are important in regulation of gene Ca2þ antagonist drugs available at that time expression, integration of synaptic input, and (Table 1). They were designated low-voltage- initiation of neurotransmitter release at special- activated Ca2þ currents for their negative volt- ized ribbon synapses in sensory cells (Tsien age dependence (Carbone and Lux 1984) or et al. 1988; Bean 1989a; Flavell and Greenberg T-type Ca2þ currents for their transient open- 2008). L-type Ca2þ currents are subject to regu- ings (Nowycky et al. 1985). lation by second messenger–activated protein Whole-cell voltage clamp and single- phosphorylation in several cell types as discussed channel recording from dissociated dorsal root below. ganglion neurons revealed an additional Ca2þ Electrophysiological studies of Ca2þ cur- current, N-type (Table 1) (Nowycky et al. rents in starfish eggs (Hagiwara et al. 1975) first 1985). N-type Ca2þ currents were initially revealed Ca2þ currents with different properties distinguished by their intermediate voltage de- from L-type, and these were subsequently char- pendence and rate of inactivation—more nega- acterized in detail in voltage-clamped dorsal tive and faster than L-type but more positive root ganglion neurons (Carbone and Lux and slower than T-type (Nowycky et al. 1985). 1984; Fedulova et al. 1985; Nowycky et al. They are insensitive to organic L-type Ca2þ 1985). In comparison to L-type, these novel channel blockers but blocked by the cone snail Ca2þ currents activated at much more negative peptide v-conotoxin GVIA and related peptide Cite this article as Cold Spring Harb Perspect Biol 2011;3:a003947 3 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press W.A. Catterall toxins (Tsien et al. 1988; Olivera et al. 1994). MOLECULAR PROPERTIES OF Ca2þ This pharmacological profile has become the CHANNELS primary method to distinguish N-type
Recommended publications
  • Characterization of Cecal Smooth Muscle Contraction in Laying Hens
    veterinary sciences Communication Characterization of Cecal Smooth Muscle Contraction in Laying Hens Katrin Röhm 1, Martin Diener 2 , Korinna Huber 1 and Jana Seifert 1,* 1 Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; [email protected] (K.R.); [email protected] (K.H.) 2 Institute of Veterinary Physiology and Biochemistry, Justus-Liebig University, 35392 Gießen, Germany; [email protected] * Correspondence: [email protected] Abstract: The ceca play an important role in the physiology of the gastrointestinal tract in chickens. Nevertheless, there is a gap of knowledge regarding the functionality of the ceca in poultry, especially with respect to physiological cecal smooth muscle contraction. The aim of the current study is the ex vivo characterization of cecal smooth muscle contraction in laying hens. Muscle strips of circular cecal smooth muscle from eleven hens are prepared to investigate their contraction ex vivo. Contraction is detected using an isometric force transducer, determining its frequency, height and intensity. Spontaneous contraction of the chicken cecal smooth muscle and the influence of buffers (calcium-free buffer and potassium-enriched buffer) and drugs (carbachol, nitroprusside, isoprenaline and Verapamil) affecting smooth muscle contraction at different levels are characterized. A decrease in smooth muscle contraction is observed when a calcium-free buffer is used. Carbachol causes an increase in smooth muscle contraction, whereas atropine inhibits contraction. Nitroprusside, isoprenaline and Verapamil result in a depression of smooth muscle contraction. In conclusion, the present results confirm a similar contraction behavior of cecal smooth muscles in laying hens as Citation: Röhm, K.; Diener, M.; shown previously in other species.
    [Show full text]
  • Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment
    Single-particle cryo-EM of the ryanodine receptor channel Eur J Transl Myol - Basic Appl Myol 2015; 25 (1): 35-48 Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment Mariah R. Baker, Guizhen Fan and Irina I. Serysheva Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA Abstract Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo- microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo- EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure- function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.
    [Show full text]
  • Minding the Calcium Store: Ryanodine Receptor Activation As a Convergent Mechanism of PCB Toxicity
    Pharmacology & Therapeutics 125 (2010) 260–285 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate Editor: Carey Pope Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity Isaac N. Pessah ⁎, Gennady Cherednichenko, Pamela J. Lein Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA article info abstract Keywords: Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since Ryanodine receptor (RyR) results from epidemiological studies indicate that PCB burden is associated with immune system Calcium-induced calcium release dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various Calcium regulation adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in Polychlorinated biphenyls PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter Triclosan fi 2+ Bastadins the spatial and temporal delity of Ca signals through one or more receptor-mediated processes. This Polybrominated diphenylethers review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in Developmental neurotoxicity muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The Activity dependent plasticity molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. © 2009 Elsevier Inc. All rights reserved. Contents 1. Introduction ............................................... 260 2. Ryanodine receptor macromolecular complexes: significance to polychlorinated biphenyl-mediated Ca2+ dysregulation .
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Current, TTX-Resistant Na؉ Current, and Ca2؉ Current in the Action Potentials of Nociceptive Sensory Neurons
    The Journal of Neuroscience, December 1, 2002, 22(23):10277–10290 Roles of Tetrodotoxin (TTX)-Sensitive Na؉ Current, TTX-Resistant Na؉ Current, and Ca2؉ Current in the Action Potentials of Nociceptive Sensory Neurons Nathaniel T. Blair and Bruce P. Bean Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 20114 Nociceptive sensory neurons are unusual in expressing carry the largest inward charge during the upstroke of the voltage-gated inward currents carried by sodium channels re- nociceptor action potential (ϳ58%), with TTX-sensitive sodium sistant to block by tetrodotoxin (TTX) as well as currents carried channels also contributing significantly (ϳ40%), especially near by conventional TTX-sensitive sodium channels and voltage- threshold, and high voltage-activated calcium currents much dependent calcium channels. To examine how currents carried less (ϳ2%). Action potentials had a prominent shoulder during by each of these helps to shape the action potential in small- the falling phase, characteristic of nociceptive neurons. TTX- diameter dorsal root ganglion cell bodies, we voltage clamped resistant sodium channels did not inactivate completely during cells by using the action potential recorded from each cell as the action potential and carried the majority (58%) of inward the command voltage. Using intracellular solutions of physio- current flowing during the shoulder, with high voltage-activated logical ionic composition, we isolated individual components of calcium current also contributing significantly (39%).
    [Show full text]
  • Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates
    UC San Diego UC San Diego Previously Published Works Title Comparative genomic analysis of integral membrane transport proteins in ciliates. Permalink https://escholarship.org/uc/item/3g98s19z Journal The Journal of eukaryotic microbiology, 62(2) ISSN 1066-5234 Authors Kumar, Ujjwal Saier, Milton H Publication Date 2015-03-01 DOI 10.1111/jeu.12156 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates Ujjwal Kumar & Milton H. Saier Jr Division of Biological Sciences, University of California at San Diego, La Jolla, California Keywords ABSTRACT Channels; evolution; genome analyses; secondary carriers. Integral membrane transport proteins homologous to those found in the Transporter Classification Database (TCDB; www.tcdb.org) were identified and Correspondence bioinformatically characterized by transporter class, family, and substrate speci- M. H. Saier Jr, Division of Biological ficity in three ciliates, Paramecium tetraurelia (Para), Tetrahymena thermophila Sciences, University of California at San (Tetra), and Ichthyophthirius multifiliis (Ich). In these three organisms, 1,326 of Diego, La Jolla, CA 92093-0116, USA 39,600 proteins (3.4%), 1,017 of 24,800 proteins (4.2%), and 504 out of 8,100 Telephone number: +858-534-4084; proteins (6.2%) integral membrane transport proteins were identified, respec- FAX number: +858-534-7108; tively. Thus, an inverse relationship was observed between the % transporters e-mail: [email protected] identified and the number of total proteins per genome reported.
    [Show full text]
  • Back-To-Basics: the Intricacies of Muscle Contraction
    Back-to- MIOTA Basics: The CONFERENCE OCTOBER 11, Intricacies 2019 CHERI RAMIREZ, MS, of Muscle OTRL Contraction OBJECTIVES: 1.Review the anatomical structure of a skeletal muscle. 2.Review and understand the process and relationship between skeletal muscle contraction with the vital components of the nervous system, endocrine system, and skeletal system. 3.Review the basic similarities and differences between skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 4.Review the names, locations, origins, and insertions of the skeletal muscles found in the human body. 5.Apply the information learned to enhance clinical practice and understanding of the intricacies and complexity of the skeletal muscle system. 6.Apply the information learned to further educate clients on the importance of skeletal muscle movement, posture, and coordination in the process of rehabilitation, healing, and functional return. 1. Epithelial Four Basic Tissue Categories 2. Muscle 3. Nervous 4. Connective A. Loose Connective B. Bone C. Cartilage D. Blood Introduction There are 3 types of muscle tissue in the muscular system: . Skeletal muscle: Attached to bones of skeleton. Voluntary. Striated. Tubular shape. Cardiac muscle: Makes up most of the wall of the heart. Involuntary. Striated with intercalated discs. Branched shape. Smooth muscle: Found in walls of internal organs and walls of vascular system. Involuntary. Non-striated. Spindle shape. 4 Structure of a Skeletal Muscle Skeletal Muscles: Skeletal muscles are composed of: • Skeletal muscle tissue • Nervous tissue • Blood • Connective tissues 5 Connective Tissue Coverings Connective tissue coverings over skeletal muscles: .Fascia .Tendons .Aponeuroses 6 Fascia: Definition: Layers of dense connective tissue that separates muscle from adjacent muscles, by surrounding each muscle belly.
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Muscle Physiology Dr
    Muscle Physiology Dr. Ebneshahidi Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Skeletal Muscle Figure 9.2 (a) Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Functions of the muscular system . 1. Locomotion . 2. Vasoconstriction and vasodilatation- constriction and dilation of blood vessel Walls are the results of smooth muscle contraction. 3. Peristalsis – wavelike motion along the digestive tract is produced by the Smooth muscle. 4. Cardiac motion . 5. Posture maintenance- contraction of skeletal muscles maintains body posture and muscle tone. 6. Heat generation – about 75% of ATP energy used in muscle contraction is released as heat. Copyright. © 2004 Pearson Education, Inc., publishing as Benjamin Cummings . Striation: only present in skeletal and cardiac muscles. Absent in smooth muscle. Nucleus: smooth and cardiac muscles are uninculcated (one nucleus per cell), skeletal muscle is multinucleated (several nuclei per cell ). Transverse tubule ( T tubule ): well developed in skeletal and cardiac muscles to transport calcium. Absent in smooth muscle. Intercalated disk: specialized intercellular junction that only occurs in cardiac muscle. Control: skeletal muscle is always under voluntary control‚ with some exceptions ( the tongue and pili arrector muscles in the dermis). smooth and cardiac muscles are under involuntary control. Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Innervation: motor unit . a) a motor nerve and a myofibril from a neuromuscular junction where gap (called synapse) occurs between the two structures. at the end of motor nerve‚ neurotransmitter (i.e. acetylcholine) is stored in synaptic vesicles which will release the neurotransmitter using exocytosis upon the stimulation of a nerve impulse. Across the synapse the surface the of myofibril contains receptors that can bind with the neurotransmitter.
    [Show full text]
  • Redalyc.Neurobiological Alterations in Alcohol Addiction: a Review
    Adicciones ISSN: 0214-4840 [email protected] Sociedad Científica Española de Estudios sobre el Alcohol, el Alcoholismo y las otras Toxicomanías España Erdozain, Amaia M.; Callado, Luis F. Neurobiological alterations in alcohol addiction: a review Adicciones, vol. 26, núm. 4, octubre-diciembre, 2014, pp. 360-370 Sociedad Científica Española de Estudios sobre el Alcohol, el Alcoholismo y las otras Toxicomanías Palma de Mallorca, España Available in: http://www.redalyc.org/articulo.oa?id=289132934009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative revisión adicciones vol. 26, nº 3 · 2014 Neurobiological alterations in alcohol addiction: a review Alteraciones neurobiológicas en el alcoholismo: revisión Amaia M. Erdozain*,*** and Luis F. Callado*,** *Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain. **Biocruces Health Research Institute, Bizkaia, Spain. ***Neuroscience Paris Seine, Université Pierre et Marie Curie, Paris, France Resumen Abstract Todavía se desconoce el mecanismo exacto mediante el cual el etanol The exact mechanism by which ethanol exerts its effects on the brain produce sus efectos en el cerebro. Sin embargo, hoy en día se sabe is still unknown. However, nowadays it is well known that ethanol que el etanol interactúa con proteínas específicas de la membrana interacts with specific neuronal membrane proteins involved in neuronal, implicadas en la transmisión de señales, produciendo así signal transmission, resulting in changes in neural activity.
    [Show full text]
  • Mechanism-Specific Assay Design Facilitates the Discovery of Nav1.7
    Mechanism-specific assay design facilitates the PNAS PLUS discovery of Nav1.7-selective inhibitors Tania Chernov-Rogana, Tianbo Lia, Gang Lua, Henry Verschoofb, Kuldip Khakhb, Steven W. Jonesa, Maureen H. Beresinia, Chang Liua, Daniel F. Ortwinec, Steven J. McKerrallc, David H. Hackosd, Daniel Sutherlinc, Charles J. Cohenb, and Jun Chena,1 aDepartment of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080; bXenon Pharmaceuticals, Burnaby, BC V5G 4W8, Canada; cDepartment of Chemistry, Genentech Inc., San Francisco, CA 94080; and dDepartment of Neuroscience, Genentech Inc., San Francisco, CA 94080 Edited by Bruce P. Bean, Harvard Medical School, Boston, MA, and approved December 11, 2017 (received for review August 30, 2017) Many ion channels, including Nav1.7, Cav1.3, and Kv1.3, are linked therefore are nonselective (14). Recently, a group of arylsulfo- to human pathologies and are important therapeutic targets. To namides was identified as selective Nav1.7 inhibitors (15, 16). develop efficacious and safe drugs, subtype-selective modulation These compounds were discovered empirically, before our cur- is essential, but has been extremely difficult to achieve. We rent understanding that they bind to the voltage-sensing domain postulate that this challenge is caused by the poor assay design, 4 (VSD4) instead of the central cavity. However, PF-771, the and investigate the Nav1.7 membrane potential assay, one of the most advanced compound, was recently halted from clinical most extensively employed screening assays in modern drug development, raising concerns about this chemical class. discovery. The assay uses veratridine to activate channels, and To identify subtype-selective chemical scaffolds, large libraries compounds are identified based on the inhibition of veratridine- of compounds, sometimes exceeding millions of individual evoked activities.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]