Downloaded 10/07/21 11:52 PM UTC 850 WEATHER and FORECASTING VOLUME 32

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/07/21 11:52 PM UTC 850 WEATHER and FORECASTING VOLUME 32 JUNE 2017 H A I E T A L . 849 Extreme Rainstorms that Caused Devastating Flooding across the East Coast of Peninsular Malaysia during November and December 2014 OOI SEE HAI National Antarctic Research Center, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia AZIZAN ABU SAMAH National Antarctic Research Center, Institute of Postgraduate Studies, and Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia SHEEBA NETTUKANDY CHENOLI National Antarctic Research Center, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia KUMARENTHIRAN SUBRAMANIAM Malaysian Meteorological Department, Petaling Jaya, Selangor, Malaysia MUHAMMAD YUNUS AHMAD MAZUKI National Antarctic Research Center, Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, Malaysia (Manuscript received 2 September 2016, in final form 6 January 2017) ABSTRACT During the early boreal winter (northeast) monsoon (November–December), cold air frequently bursts out from intense Siberian highs toward the Chinese coast in response to the development and movement of a 500-hPa trough. The resultant strong low-level northwesterlies turn into northeasterlies across the South China Sea as ‘‘cold surges.’’ On interacting with the near-equatorial trough, mesoscale convective systems form north of the trough, normally giving rise to heavy downpours and severe flooding, mainly along the coastal stretch in the east coast states of Peninsular Malaysia. In November 2014, a 1-week-long episode of heavy downpours, producing more than 800 mm of rain, occurred along the coastal stretch of northeastern Peninsular Malaysia. However, during December 2014, two episodes of extreme rainfall occurred mostly over inland and mountainous areas of the east coast of Peninsular Malaysia, in particular across its northern sector. These two unusual events, which lasted a total of 11 days and delivered more than 1100 mm of precipitation, resulted in extreme and widespread flooding, as well as extensive damage, in many inland areas. Analysis shows that the stronger wind surges from the South China Sea due to very intense cold-air outbreaks of the Siberian high developed under ENSO-neutral conditions. In addition, the mesoscale convective systems that developed across the northeastern Indian Ocean (near northern Sumatra) in response to the propagation of a 500-hPa short-wave trough across the Indian subcontinent toward China were the combined factors for these unusual extreme rainfall and flooding events along the east coast of Peninsular Malaysia. 1. Introduction occurred along the coastal stretch of northeastern Peninsular Malaysia. However, from mid-December Heavy rain with its associated flooding is an annual onward, two episodes of extreme rainfall caused wide- occurrence along the east coast of Peninsular Malaysia spread flooding in Kelantan, Terengganu, and Pahang (Fig. 1) during the northeast monsoon. In November on the east coast of Peninsular Malaysia. The unusual 2014, an episode of heavy rainfall and ensuing flooding situation was that these long-lasting extreme rainfall events were concentrated over the catchment areas in Corresponding author e-mail: Sheeba Nettukandy Chenoli, the upper reaches of the Kelantan and Pahang River [email protected] basins instead of near the lower reaches, as normal. A DOI: 10.1175/WAF-D-16-0160.1 Ó 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). Unauthenticated | Downloaded 10/07/21 11:52 PM UTC 850 WEATHER AND FORECASTING VOLUME 32 oscillation. The relationship between the rainfall vari- ability over the Maritime Continent region and ENSO has been studied by Hendon (2003), McBride et al. (2003), and Tangang and Juneng (2004). These studies reveal that the winter monsoon is weak during El Niño years and is likely to be strong during La Niña years. Recently, Wu and Leung (2009), as well as Tubi and Dayan (2012), studied the impact of ENSO on the Si- berian high, the East Asian winter monsoon, and the modulation of rainfall over southern China and Hong Kong. Unlike the results from the above-mentioned previous studies, the cases examined in this paper, as revealed in section 3, show that the December 2014 episodes of unusual cold surge–induced extreme rainfall FIG. 1. Topography of Malaysia (Peninsular Malaysia and the states of Sarawak and Sabah). occurred mostly over inland and mountainous areas in the northern sector of the east coast of Peninsular Malaysia and were due to the influences of the intense mountainous hydrological station (Gunung Gagau) in Siberian high during an ENSO-neutral year along with Pahang recorded 624 mm of torrential rain from 15 to developing mesoscale convective systems in the north- 19 December and 1395 mm from 20 to 24 December eastern Indian Ocean. 2014. These rainfall amounts were claimed to have re- turn periods of 40 and 1000 yr, respectively (Sun Daily, 2. Data and methods 20 January 2015). The extreme rainfall situation was aggravated by the low water-holding capacity of the Surface and upper-air reanalysis data at 0000 UTC lower reaches, excessive logging and land clearing, as from the European Centre for Medium-Range well as sediment buildup in river areas. In fact, exces- Weather Forecasts (ECMWF) are used. These so- sive land clearing caused serious erosion and swift called ERA-Interim (Dee et al. 2011) data have a spa- drainage of water, leading to widespread flooding. River tial resolution of 0.75830.758 in latitude and longitude. levels during these two episodes far exceeded those of We complement the reanalysis data with a wide range of the 1967 and 2004 floods. At the height of the flood, satellite observations (Rahimi et al. 2015). We use more than 66 500 people were evacuated, at least 21 monthly, daily, and 3-hourly Tropical Rainfall Measur- people died, and 250 000 lost their homes. Estimated ing Mission (TRMM) precipitation at 0.258 resolution; damages cost about 1 billion Malaysian ringgits (RM), the data were obtained from the Goddard Earth Sci- almost U.S. $300 million (source: Malaysian National ences Data and Information Services Center (GES- Security Council). DISC) Interactive Online Visualization and Analysis The available records show that the above flood- Infrastructure (Giovanni). TRMM data (Bookhagen associated extreme meteorological events during 2010) are merely used to complement the precipitation December 2014 are the first to occur in Peninsular analysis in data-sparse land and sea areas throughout the Malaysia. Thus, understanding the features and pro- region. Furthermore, selected daily/hourly gridded cesses of these rare episodes is essential in advancing the Multifunctional Transport Satellite-2 (MTSAT-2) in- scientific knowledge for better flood mitigation to min- frared channel 1 (IR1) data, which are available from the imize the socioeconomic impacts in the future (Valipour Center for Environmental Remote Sensing (CEReS), 2012, 2016). This is the core objective and approach of Chiba University, Chiba, Japan, are also utilized. These this paper. Several recent studies carried out for the data, which have a resolution of 0.048, cover an area Malaysia region show that there has been an increase in from 608Sto608N and from 858 to 2058 longitude. The the frequency and intensity of extreme rainfall events measured blackbody temperatures (TBBs) of these in- (Suhaila et al. 2010; Zin et al. 2010). In addition, a few frared images are color enhanced by suppressing those previous case studies of extreme rainfall over Peninsular TBBs warmer than 2208C based on the convection in- Malaysia by Tangang et al. (2008) and Juneng et al. dex, as described by Chang et al. (2005). The coldest (2007) were mainly focused on the extreme precipitation cloud tops are associated with colors ranging from blue events caused by the interaction of northeasterly cold to orange to pink. The colder the cloud tops are, the surges with the Borneo vortex, as well as the impact on higher the clouds and, most likely, the heavier the the events by phenomena such as the Madden–Julian thunderstorms. For example, near the strongest IR Unauthenticated | Downloaded 10/07/21 11:52 PM UTC JUNE 2017 H A I E T A L . 851 TABLE 1. List of El Niño, La Niña, and neutral events in the index from Chang et al. (2005), which is chosen as the tropical Pacific based on the ONI. averaged 925-hPa meridional wind between 1108 and 8 8 El Niño years La Niña years Neutral years 117.5 E along 15 N(Fig. 5a, described in more detail below). By adapting the index definition from Chang et al. 1982 1983 1981 1986 1984 1985 (2005), we further define the easterly surge index [zonal 1987 1988 1989 wind surge due to strengthening or equatorward move- 1991 1995 1990 ment in the subtropical ridge of the northwestern Pacific 1994 1998 1992 (Raman et al. 1978) as a result of a Siberian high out- 1997 1999 1993 break] as the averaged 925-hPa zonal wind between 7.58 2002 2000 1996 8 8 2004 2007 2001 and 15 N along 120 E. A surge event occurs when either 21 2006 2010 2003 one of these indices exceeds 8 m s . The surge intensity is 2011 2005 classified into weak, moderate, and strong categories for a 2008 surge index between 8 and 10, 10 and 12, and greater than 2 2012 12 m s 1 [as adopted from Chang et al. (2005)], re- 2013 2014 spectively. Cold and/or easterly surges are necessary but not a sufficient condition to ensure the impingement and sustenance of surge-induced heavy rainfall events toward gradients at the leading edge of an enhanced image is the the east coast of Peninsular Malaysia. location of heavy rain with cumulonimbus clusters. TBBs from 2708 to 2808C indicate that the cloud top 3. Analysis and discussion has penetrated the tropopause level (above 100 hPa or a.
Recommended publications
  • Weather Numbers Multiple Choices I
    Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2.
    [Show full text]
  • FMFRP 0-54 the Persian Gulf Region, a Climatological Study
    FMFRP 0-54 The Persian Gulf Region, AClimatological Study U.S. MtrineCorps PCN1LiIJ0005LFII 111) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited DEPARTMENT OF THE NAVY Headquarters United States Marine Corps Washington, DC 20380—0001 19 October 1990 FOREWORD 1. PURPOSE Fleet Marine Force Reference Publication 0-54, The Persian Gulf Region. A Climatological Study, provides information on the climate in the Persian Gulf region. 2. SCOPE While some of the technical information in this manual is of use mainly to meteorologists, much of the information is invaluable to anyone who wishes to predict the consequences of changes in the season or weather on military operations. 3. BACKGROUND a. Desert operations have much in common with operations in the other parts of the world. The unique aspects of desert operations stem primarily from deserts' heat and lack of moisture. While these two factors have significant consequences, most of the doctrine, tactics, techniques, and procedures used in operations in other parts of the world apply to desert operations. The challenge of desert operations is to adapt to a new environment. b. FMFRP 0-54 was originally published by the USAF Environmental Technical Applications Center in 1988. In August 1990, the manual was published as Operational Handbook 0-54. 4. SUPERSESSION Operational Handbook 0-54 The Persian Gulf. A Climatological Study; however, the texts of FMFRP 0—54 and OH 0-54 are identical and OH 0-54 will continue to be used until the stock is exhausted. 5. RECOMMENDATIONS This manual will not be revised. However, comments on the manual are welcomed and will be used in revising other manuals on desert warfare.
    [Show full text]
  • Variations in Winter Surface High Pressure in the Northern Hemisphere and Climatological Impacts of Diminishing Arctic Sea Ice
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of 5-2010 Variations in Winter Surface High Pressure in the Northern Hemisphere and Climatological Impacts of Diminishing Arctic Sea Ice Kristen D. Fox University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Other Earth Sciences Commons Fox, Kristen D., "Variations in Winter Surface High Pressure in the Northern Hemisphere and Climatological Impacts of Diminishing Arctic Sea Ice" (2010). Dissertations & Theses in Earth and Atmospheric Sciences. 8. https://digitalcommons.unl.edu/geoscidiss/8 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VARIATIONS IN WINTER SURFACE HIGH PRESSURE IN THE NORTHERN HEMISPHERE AND CLIMATOLOGICAL IMPACTS OF DIMINISHING ARCTIC SEA ICE by Kristen D. Fox A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professor Mark Anderson Lincoln, Nebraska May, 2010 VARIATIONS IN WINTER SURFACE HIGH PRESSURE IN THE NORTHERN HEMISPHERE AND CLIMATOLOGICAL IMPACTS OF DIMINISHING ARCTIC SEA ICE Kristen D. Fox, M.S. University of Nebraska, 2010 Advisor: Mark Anderson This study explores the role Arctic sea ice plays in determining mean sea level pressure and 1000 hPa temperatures during Northern Hemisphere winters while focusing on an extended period of October to March.
    [Show full text]
  • A Reconstructed Siberian High Index Since A.D. 1599 from Eurasian And
    GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L05705, doi:10.1029/2004GL022271, 2005 A reconstructed Siberian High index since A.D. 1599 from Eurasian and North American tree rings Rosanne D’Arrigo,1 Gordon Jacoby,1 Rob Wilson,2 and Fotis Panagiotopoulos3 Received 20 December 2004; revised 17 January 2005; accepted 2 February 2005; published 2 March 2005. [1] The long-term variability of the Siberian High, the Precipitation correlations are coherent over large regions of dominant Northern Hemisphere anticyclone during winter, Eurasia, and highest near the Urals. is largely unknown. To investigate how this feature varied [4] Despite its spatial extent, the SH has attracted less prior to the instrumental record, we present a reconstruction attention than other circulation features such as the North of a Dec–Feb Siberian High (SH) index based on Eurasian Atlantic Oscillation or NAO [S1991; Cohen et al., 2001; and North American tree rings. Spanning 1599–1980, it P2005]. The SH’s interactions with features of global provides information on SH variability over the past four climate, including the NAO, Arctic Oscillation (AO) [Wu centuries. A decline in the instrumental SH index since the and Wang, 2002], East Asian winter monsoon (EAWM), late 1970s, related to Eurasian warming, is the most striking Aleutian Low, and El Nin˜o-Southern Oscillation (ENSO) feature over the past four hundred years. It is associated are still not well understood [e.g., P2005]. Of the major with a highly significant (p < 0.0001) step change in 1989. teleconnection patterns of the Northern Hemisphere, the SH Significant 3–4 yr spectral peaks in the reconstruction fall is best correlated with the AO (r = À0.48, Dec–Feb 1958– within the range of variability of the East Asian winter 98 [Gong and Ho, 2002]).
    [Show full text]
  • Chapter 7 – Atmospheric Circulations (Pp
    Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2.
    [Show full text]
  • The Role of Biomass Burning As Derived from the Tropospheric CO Vertical Profiles Measured by IAGOS Aircraft in 2002–2017
    Atmos. Chem. Phys., 18, 17277–17306, 2018 https://doi.org/10.5194/acp-18-17277-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017 Hervé Petetin1, Bastien Sauvage1, Mark Parrington2, Hannah Clark3, Alain Fontaine1, Gilles Athier1, Romain Blot1, Damien Boulanger4, Jean-Marc Cousin1, Philippe Nédélec1, and Valérie Thouret1 1Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France 2European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK 3IAGOS-AISBL, Brussels, Belgium 4Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, UPS, Toulouse, France Correspondence: Hervé Petetin ([email protected]) Received: 1 July 2018 – Discussion started: 20 July 2018 Revised: 2 November 2018 – Accepted: 12 November 2018 – Published: 6 December 2018 Abstract. This study investigates the role of biomass burning mertime in the northern United States, during winter/spring and long-range transport in the anomalies of carbon monox- in Japan, during spring in south-east China, during the non- ide (CO) regularly observed along the tropospheric vertical monsoon seasons in south-east Asia and south India, and profiles measured in the framework of the In-service Air- during summer/fall in Windhoek, Namibia. Depending on craft for a Global Observing System (IAGOS). Considering the location, these strong anomalies are observed in differ- the high interannual variability
    [Show full text]
  • Downloaded 10/04/21 05:59 AM UTC 206 Vol
    news from our chapters1 Central Illinois It was announced that the Dr. Harry Hawkins Service Award The chapter held its first meeting of the season on 8 November would be presented to Howard Friedman of the Atlantic at the Loomis Laboratory on the campus of the University of Oceanographic and Meteorological Laboratory's Hurricane Re- Illinois. Frederick Sanders, a professor at the Massachusetts search Division. The award is given to the member who has Institute of Technology (MIT), spoke on 18 years of daily fore- contributed the most to the chapter. Freidman was not present, casting at MIT. He discussed the history of this forecasting so the award will be presented at a later date by Hawkin's son experiment, and how it has been used to define and document Jeffery in honor of his father. the state of the art in forecasting skill. Four of the National Hurricane Center's hurricane special- The new officers for the year were announced. They are: ists entertained the group with stories of embarrassing bloop- John Gyakum, president; Dave Tucek, vice president; Sharon ers. Robert A. Case told of how he had briefed the head of the Gould-Stewart, treasurer; and Steve Savageau, secre- Weather Service into a thunderstorm while on station in Ju- tary.—Steve Savageau, Secretary neau, Alaska. Hal Gerrish told why his weather unit at a cer- tain Air Force Base was the most popular,- there were pinups under the weather maps. Miles Lawrence did some statistical digging and announced that the average error for 24-hour storm Central Virginia forecast positions was 180 km.
    [Show full text]
  • Bulletin of the American Meteorological Society J Uly 2012
    Bulletin of the American Meteorological Society Bulletin of the American Meteorological >ŝďƌĂƌŝĞƐ͗WůĞĂƐĞĮůĞǁŝƚŚƚŚĞƵůůĞƟŶŽĨƚŚĞŵĞƌŝĐĂŶDĞƚĞŽƌŽůŽŐŝĐĂů^ŽĐŝĞƚLJ, Vol. 93, Issue 7 July 2012 July 93 Vol. 7 No. Supplement STATE OF THE CLIMATE IN 2011 Editors Jessica Blunden Derek S. Arndt Associate Editors Howard J. Diamond Martin O. Jeffries Ted A. Scambos A. Johannes Dolman Michele L. Newlin Wassila M. Thiaw Ryan L. Fogt James A. Renwick Peter W. Thorne Margarita C. Gregg Jacqueline A. Richter-Menge Scott J. Weaver Bradley D. Hall Ahira Sánchez-Lugo Kate M. Willett AMERICAN METEOROLOGICAL SOCIETY Copies of this report can be downloaded from doi: 10.1175/2012BAMSStateoftheClimate.1 and http://www.ncdc.noaa. gov/bams-state-of-the-climate/ This report was printed on 85%–100% post-consumer recycled paper. Cover credits: Front: ©Jakob Dall Photography — Wajir, Kenya, July 2011 Back: ©Jonathan Wood/Getty Images — Rockhampton, Queensland, Australia, January 2011 HOW TO CITE THIS DOCUMENT Citing the complete report: Blunden, J., and D. S. Arndt, Eds., 2012: State of the Climate in 2011. Bull. Amer. Meteor. Soc., 93 (7), S1–S264. Citing a chapter (example): Gregg, M. C., and M. L. Newlin, Eds., 2012: Global oceans [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S57–S92. Citing a section (example): Johnson, G. C., and J. M. Lyman, 2012: [Global oceans] Sea surface salinity [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S68–S69. EDITOR & AUTHOR AFFILIATIONS (ALPHABETICAL BY NAME) Achberger, C., Earth Sciences
    [Show full text]
  • Climatology of Borneo Vortices in the Hadgem3-GC3.1 General Circulation Model
    1MAY 2021 L I A N G E T A L . 3401 Climatology of Borneo Vortices in the HadGEM3-GC3.1 General Circulation Model a a b,c d e JU LIANG, JENNIFER L. CATTO, MATTHEW HAWCROFT, KEVIN I. HODGES, MOU LEONG TAN, a,c AND JAMES M. HAYWOOD a College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom b University of Southern Queensland, Toowoomba, Queensland, Australia c Met Office, Exeter, United Kingdom d Department of Meteorology, University of Reading, Reading, United Kingdom e Geoinformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia (Manuscript received 3 August 2020, in final form 21 January 2021) ABSTRACT: Borneo vortices (BVs) are intense precipitating winter storms that develop over the equatorial South China Sea and strongly affect the weather and climate over the western Maritime Continent because of their association with deep convection and heavy rainfall. In this study, the ability of the Hadley Centre Global Environment Model 3–Global Coupled, version 3.1 (HadGEM3-GC3.1), global climate model to simulate the climatology of BVs at different horizontal resolutions is examined using an objective feature-tracking algorithm. The HadGEM3-GC3.1 at the N512 (25 km) horizontal resolution simulates BVs with well-represented characteristics, including their frequency, spatial distribution, and lower-tropospheric structures when compared with BVs identified in a climate reanalysis, whereas the BVs in the N96 (;135 km) and N216 (;65 km) simulations are much weaker and less frequent. Also, the N512 simulation better captures the contribution of BVs to the winter precipitation in Borneo and the Malay Peninsula when compared with precipitation from a reanalysis data and from observations, whereas the N96 and N216 simulations underestimate this contribution because of the overly weak low- level convergence of the simulated BVs.
    [Show full text]
  • An ANN Model Trained on Regional Data in the Prediction of Particular Weather Conditions
    applied sciences Article An ANN Model Trained on Regional Data in the Prediction of Particular Weather Conditions Aleksandra B ˛aczkiewicz 1,2 , Jarosław W ˛atróbski 1,* , Wojciech Sałabun 3 and Joanna Kołodziejczyk 3 1 Institute of Management, University of Szczecin, Cukrowa 8, 71-004 Szczecin, Poland; [email protected] 2 Doctoral School of University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland 3 Research Team on Intelligent Decision Support Systems, Department of Artificial Intelligence and Applied Mathematics, Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin ul. Zołnierska˙ 49, 71-210 Szczecin, Poland; [email protected] (W.S.); [email protected] (J.K.) * Correspondence: [email protected] Abstract: Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its Citation: B ˛aczkiewicz,A.; effectiveness on real data. The principal aim of this study is to present the use of a regressive model W ˛atróbski,J.; Sałabun, W.; based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to Kołodziejczyk, J.
    [Show full text]
  • Causes of Extreme Weather and Climate Events in China During 2020/21 28 April 2021
    Causes of extreme weather and climate events in China during 2020/21 28 April 2021 oceanographic and meteorological connections, which have just been published in Advances in Atmospheric Sciences. Sea surface temperature (SST) fluctuations in the tropical Pacific, Indian, and Atlantic Oceans can contribute to heavy rainfall events in China. However, observational data suggest that Atlantic and Indian Ocean influences dominate over those from the Pacific. Beginning in May 2020, positive SST anomalies, or change from average, throughout the tropical western North Atlantic (WNA) induced positive geopotential height anomalies in June over the mid-latitude North Atlantic. Geopotential height is the altitude above Credit: CC0 Public Domain sea level at which a certain pressure surface exists, typically analyzed at 500mb. This metric is excellent for identifying the ridges and troughs which affect the rainfall anomalies in the YRV via During the summer of 2020, especially June and an Atlantic-induced atmospheric 'wave train' across July, periods of extreme heavy rainfall occurred in Eurasia. Further analysis suggests that the Indian China's Yangtze River Valley (YRV). These rain Ocean did not significantly affect June rainfall over events caused the severest floods for the region the YRV. However, when considering June and since the summer of 1998. Despite this, the 2020 July rainfall together, both the Indian Ocean and western North Pacific (WNP) typhoon season WNA influences are important. started slowly, but eventually produced 23 named tropical cyclones, still slightly below 27, the WNP seasonal average. As summer transitioned to winter, three severe cold surges swept most parts of China during late 2020 and early 2021, prompting the National Meteorological Center to issue its highest cold surge warning alert for the first time in four years.
    [Show full text]
  • Compendium on Tropical Meteorology for Aviation Purposes
    Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 930 Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WMO-No. 930 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at https://public.wmo.int/en/ meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 930 © World Meteorological Organization, 2020 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-10930-9 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]