A AAOS Classification, of Acetabular Bone Defects, 2557–2559
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Transolecranon Distal Humerus Fractures: a Mini Review
Patel SS, Gatta J, Lee A, Bafus BT. Transolecranon Distal Humerus Fractures: A Mini Review. J Orthopedics & Orthopedic Surg. 2021;2(1):7-12 Mini Review Open Access Transolecranon Distal Humerus Fractures: A Mini Review Shaan S. Patel*, Julian Gatta, Adrienne Lee, Blaine T. Bafus Department of Orthopaedic Surgery, MetroHealth Medical Center, Cleveland, OH, USA Article Info Abstract Article Notes Background: Transolecranon distal humerus fractures are uncommon Received: March 13, 2021 injuries. The purpose of this study is to review the outcomes and complications Accepted: April 22, 2021 associated with transolecranon distal humerus fractures. *Correspondence: Material and Methods: We performed a systematic search of PubMed *Dr. Shaan S. Patel, Department of Orthopaedic Surgery, for articles published between 1990 and 2021. Included studies reported MetroHealth Medical Center, Cleveland, OH, USA; Telephone No: (205) 495-0460; Email: [email protected]. outcomes and complications of transolecranon distal humerus fractures. Data was extracted from the included studies to describe patient demographics, ©2021 Patel SS. This article is distributed under the terms of the injury characteristics, outcome measurements, and complications. Creative Commons Attribution 4.0 International License. Results: A total of 4 studies met inclusion criteria for data extraction and Keywords analysis. Two studies evaluated an adult cohort of a total of 18 patients. The Transolecranon average Disabilities of the Arm, Shoulder, and Hand (DASH) score was 40 (range Olecranon 4.2 – 76.5). Fifteen patients (83%) had a complication. Elbow stiffness (11/18, Distal humerus 61%) was the most common complication. Eleven patients (61%) underwent Fracture Outcomes more than one procedure. Two studies evaluated a pediatric cohort of a total Complications of 9 patients. -
Clinical Practice Guideline for Limb Salvage Or Early Amputation
Limb Salvage or Early Amputation Evidence-Based Clinical Practice Guideline Adopted by: The American Academy of Orthopaedic Surgeons Board of Directors December 6, 2019 Endorsed by: Please cite this guideline as: American Academy of Orthopaedic Surgeons. Limb Salvage or Early Amputation Evidence-Based Clinical Practice Guideline. https://www.aaos.org/globalassets/quality-and-practice-resources/dod/ lsa-cpg-final-draft-12-10-19.pdf Published December 6, 2019 View background material via the LSA CPG eAppendix Disclaimer This clinical practice guideline was developed by a physician volunteer clinical practice guideline development group based on a formal systematic review of the available scientific and clinical information and accepted approaches to treatment and/or diagnosis. This clinical practice guideline is not intended to be a fixed protocol, as some patients may require more or less treatment or different means of diagnosis. Clinical patients may not necessarily be the same as those found in a clinical trial. Patient care and treatment should always be based on a clinician’s independent medical judgment, given the individual patient’s specific clinical circumstances. Disclosure Requirement In accordance with AAOS policy, all individuals whose names appear as authors or contributors to this clinical practice guideline filed a disclosure statement as part of the submission process. All panel members provided full disclosure of potential conflicts of interest prior to voting on the recommendations contained within this clinical practice guideline. Funding Source This clinical practice guideline was funded exclusively through a research grant provided by the United States Department of Defense with no funding from outside commercial sources to support the development of this document. -
Cohen2018.Pdf
Influence of treatment modality on morbidity and mortality in periprosthetic femoral fracture. A comparative study of 71 fractures treated by internal fixation or femoral implant revision S. Cohen, X. Flecher, S. Parratte, M. Ollivier, Jean-Noël Argenson To cite this version: S. Cohen, X. Flecher, S. Parratte, M. Ollivier, Jean-Noël Argenson. Influence of treatment modality on morbidity and mortality in periprosthetic femoral fracture. A comparative study of 71 fractures treated by internal fixation or femoral implant revision. Orthopaedics and Traumatology -Surgery and Research, Elsevier, 2018, 104 (3), pp.363-367. 10.1016/j.otsr.2017.12.018. hal-01960509 HAL Id: hal-01960509 https://hal.archives-ouvertes.fr/hal-01960509 Submitted on 22 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Influence of treatment modality on morbidity and mortality in periprosthetic femoral fracture. A comparative study of 71 fractures treated by internal fixation or femoral implant revision. S. Cohena, X. Flechera,*, S. Parrattea, M. Olliviera, -
Downloads As of 6/2011.) 2
CURRICULUM VITAE Michael J. Prayson, MD Department of Orthopaedic Surgery, Sports Medicine & Rehabilitation Wright State University Boonshoft School of Medicine 30 E. Apple Street, Suite 2200 Dayton, Ohio 45409 937-208-2128 937-208-2920 Fax EDUCATION Institution Concentration Degree/Date Kent State University & Combined 6-Year Program BS/MD 1989 Northeastern Ohio Universities College of Medicine Rootstown, Ohio POST GRADUATE EDUCATION Item Date Orthopaedic Surgery Internship & Residency Training 1989-1994 Akron General Medical Center, Akron, Ohio Orthopaedic Traumatology Fellowship 1994-1995 Department of Orthopaedic Surgery University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania ACADEMIC EXPERIENCE Institution Position Date Northeastern Ohio Universities College of Medicine Clinical Instructor 1993-1994 Rootstown, Ohio University of Missouri Assistant Professor 1995-1998 Department of Orthopaedic Surgery Kansas City, Missouri Akron General Medical Center Assistant Professor 1998-1999 Department of Orthopaedic Surgery Akron, Ohio University of Pittsburgh Medical Center Assistant Professor 1999-2004 Department of Orthopaedic Surgery Pittsburgh, Pennsylvania Wright State University Boonshoft School of Medicine Associate Professor 2004-2009 Department of Orthopaedic Surgery, Director of Orthopaedic Sports Medicine & Rehabilitation Undergraduate Education 2004-2006 Dayton, Ohio Trauma Fellowship Director 2006-Present Director of Orthopaedic Trauma 2004-Present Section Chair of Orthopaedic Trauma 2008-2010 Vice Chairman 2008-Present -
Orthopaedics Essentials
Frykman Classification of Distal Fracture of base of the first Neer classification of proximal humeral head # Radial # metacarpal bone 1-part 2-part 3-part 4-part GT GT+SN “CLASSIC” SN LT+SN (RARE) “VALGUS IMPACTED” Galeazzi Fracture LN (RARE) Impression # Head split Gartland’s classification of supracondylar Fracture shaft of ulnar, together with distal third of radius with fracture of humerus disruption of the proximal radioulnar dislocation or subluxation of distal joint and dislocation of radiocapitallar radio-ulnar joint joint Salter–Harris fracture = Fracture that involves the epiphyseal plate or growth plate of a bone Type I: undisplaced or minimally displaced fractures. Type II: displaced with posterior cortex intact Type III: displaced with no cortical intact Gustillo Anderson Classification of Open Fracture I – open fracture with a wound <1cm and clean II – open fracture with wound > 1cm with extensive soft tissue damage and avulsion of flaps IIIa – open fracture with adequate soft tissue coverage of bone in • Galeazzi fracture - a fracture of the radius spite of extensive soft tissue laceration or flaps or high energy with dislocation of the distal radioulnar joint trauma irrespective of size of wound • Colles' fracture - a distal fracture of the IIIb – open fracture with extensive soft tissue loss, periosteal radius with dorsal (posterior) displacement of the wrist and hand stripping and exposure of bone • Smith's fracture - a distal fracture of the IIIc – open fracture associated with an arterial injury which requires radius with volar (ventral) displacement of the I II IIIa IIIb IIIc repair wrist and hand • Barton's fracture - an intra-articular fracture of the distal radius with dislocation of Irrigation: 3L 6L 9L ORTHOPAEDICS CLASSIFICATION the radiocarpal joint • Essex-Lopresti fracture - a fracture of PART 1 (UPPER LIMB) the radial head with concomitant dislocation HTARW5B/GKS2013/3- of the distal radio-ulnar joint with disruption of Together In Delivering Excellence (T.I.D.E.) the interosseous membrane Contributors: Dr. -
Canadian Society of Plastic Surgeons Société Canadienne Des Chirurgiens Plasticiens
ABSTRACTS/RÉSUMÉS Canadian Society of Plastic Surgeons Société Canadienne des Chirurgiens Plasticiens Abstracts presented at the 69th Annual Meeting / 69e Réunion annuelle June 2 – 6, 2015, Victoria, British Columbia Dr Edward Tredget: President/Président Dr Howard Clarke: Vice President / Vice-président, Scientific Program Chair / Comité de programme scientifique Dr Chris Taylor: Local Organizing Committee Chair / Président, Comité d’accueil 02 EYE-OPENER SESSION FUNCTIONAL OUTCOMES OF ENOPHTHALMOS 00 CORRECTION PELVIC, PERINEAL AND VAGINAL RECONSTRUCTION M McRae, A Budning, C Lynham, O Antonyshyn C Butler Toronto, ON University of Texas MD Anderson Cancer Center, Houston, Texas, PURPOSE: Determine functional outcomes of late post-traumatic enoph- USA thalmos repair, specifically, ocular motility, diplopia, and strabismus. Learning Objectives: METHODS: The study series comprises 81 consecutive patients with late 1. Participants will recognize advantages and disadvantages of flap reconstruc- post-traumatic enophthalmos with functional impairment, that underwent tion of pelvic and perineal defects following abdominal perineal resection or enophthalmos repair by a single surgeon (OA) between May 2002 and pelvic exenteration. April 2014. Of those, 39 patients fulfilled study inclusion and exclusion 2. Participants will identify strategies to reconstruct the pelvic, perineal and vaginal criteria. Outcomes (diplopia, limitations of ocular motility, and strabismus) structures using flaps from various donor sites. were assessed independently by a single ophthalmologist who specializes in 3. Participants will understand the advantages and disadvantages of thigh-based strabismus surgery (AB), and were performed preop and postop for each and abdominal-based flaps for pelvic/perineal reconstruction. patient. Results: Average age was 43.1 (range 15-79) with 26 males, and 13 females. -
Policy on Infant Hip Screening
Policy on Infant Hip Screening COMMITTEE ON CHIROPRACTIC PAEDIATRIC DIAGNOSTIC AND THERAPEUTIC PROCEDURES January 2020 Note: This policy is relevant to infant ages only. A policy on hip screening in the post-infantile paediatric patient will be covered separately. BACKGROUND Developmental dysplasia of the hip (DDH) is one of the most common musculoskeletal conditions of infancy.1 DDH is the result of abnormal relationship between the femoral head and the acetabulum. It can range in severity from instability to dislocation (requiring surgical intervention), with varying degrees of acetabular dysplasia in between.2–4 In Australia, there is a reported incidence of seven per 1000 live births.5 The incidence of late- detection (clinically detected DDH after 3 months of age) and diagnosis has increased from 0.22 per 1000 live births in 1988-2003 to 0.7 per 1000 in 2003-2009.6,7 SCREENING In Australia, it is recommended that General Practitioners (GP) and Maternal and Child Health Nurses (MCHN) screen for DDH by performing Ortolani, Barlow, Abduction and Allis tests, as well as observing for leg length and thigh crease asymmetry.8–11 This follows guidelines established by the American Academy of Orthopaedic Surgeons.12 Regular screening is important as early detection of DDH has better outcomes and requires less aggressive management with reduced risks: bracing and non-surgical intervention compared to potential surgical intervention for those older than 6 months of age.5 Clinical hip examination by the infants’ GP and MCHN remains the primary -
Techniques in Hand & Upper Extremity Surgery
Open Journal of Orthopedics, 2016, 6, 321-325 http://www.scirp.org/journal/ojo ISSN Online: 2164-3016 ISSN Print: 2164-3008 Techniques in Hand & Upper Extremity Surgery Anna De Leo, Billy Ching Leung*, Henk Giele Department of Plastic Surgery, John Radcliffe Hospital, Oxford University Hospital NHS Trust, Oxford, UK How to cite this paper: De Leo, A., Leung, Abstract B.C. and Giele, H. (2016) Techniques in Hand & Upper Extremity Surgery. Open The use of tendon transfer to restore functions of extremities was initially recognised Journal of Orthopedics, 6, 321-325. in the 19th century, and its advancement was further amplified by the polio epidemic http://dx.doi.org/10.4236/ojo.2016.610042 towards the turn of that century. Tendon transfer surgery extended to the use for Received: August 18, 2016 traumatic reconstructive surgery during World War I, with key surgical pioneers, in- Accepted: October 16, 2016 cluding Mayer, Sterling Bunnell, Guy Pulvertaft and Joseph Boyes. In 1921, Robert Published: October 19, 2016 Jones first described the transfer of pronator teres (PT) to the wrist extensors for ir- reparable radial nerve paralysis in infantile hemiplegia. Although, a detailed descrip- Copyright © 2016 by authors and Scientific Research Publishing Inc. tion of its indication and surgical outcomes were not published until 1959 and 1970 This work is licensed under the Creative by Stelling and Meyer, and Keats, respectively. Pronator teres is often the tendon of Commons Attribution International choice for reconstructing wrist extensors, and used in a multiple of pathologies, in- License (CC BY 4.0). cluding radial nerve palsy, cerebral palsy, and tetraplegia. -
Non-Cardiac Manifestations of Marfan Syndrome
Keynote Lecture Series Non-cardiac manifestations of Marfan syndrome Anne H. Child Molecular and Clinical Sciences Research Institute, St George’s University of London, Cranmer Terrace, London, UK Correspondence to: Dr. Anne H. Child, MD, FRCP. Reader in Cardiovascular Genetics, Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK. Email: [email protected]. Because of the widespread distribution of fibrillin 1 in the body, Marfan syndrome (MFS) affects virtually every system. The expression of this single dominantly inherited gene is variable within a family, and between families. There is some genotype-phenotype correlation which is helpful in guiding long-term prognosis, and management. In general gene mutations have been reported in clusters, with those having mainly ocular manifestations occurring in exons 1 to 15 of this 65-exon gene; those causing cardiac problems often involving cysteine replacement in a calcium binding EGF-like sequence; the most severe mutations occurring in exons 25–32, causing neonatal MFS diagnosed at birth, and severe enough to cause death frequently before the age of 2. Other correlations will certainly be found in future. This condition is progressive, and the manifestations unfold according to age. For example, if the lens is going to dislocate this usually occurs by age 10; scoliosis usually presents itself between the ages of 8 and 15; height should be monitored carefully between the onset of puberty and cessation of growth approximately age 17 or 18. Holistic care should be offered by one doctor who oversees the patient’s welfare. This should be a paediatrician, paediatric cardiologist, or general practitioner in the case of an affected child. -
ICD~10~PCS Complete Code Set Procedural Coding System Sample
ICD~10~PCS Complete Code Set Procedural Coding System Sample Table.of.Contents Preface....................................................................................00 Mouth and Throat ............................................................................. 00 Introducton...........................................................................00 Gastrointestinal System .................................................................. 00 Hepatobiliary System and Pancreas ........................................... 00 What is ICD-10-PCS? ........................................................................ 00 Endocrine System ............................................................................. 00 ICD-10-PCS Code Structure ........................................................... 00 Skin and Breast .................................................................................. 00 ICD-10-PCS Design ........................................................................... 00 Subcutaneous Tissue and Fascia ................................................. 00 ICD-10-PCS Additional Characteristics ...................................... 00 Muscles ................................................................................................. 00 ICD-10-PCS Applications ................................................................ 00 Tendons ................................................................................................ 00 Understandng.Root.Operatons..........................................00 -
Patient Guide for a Hip Replacement
Day of surgery: ____________________ Expected discharge home: ____________________ Surgeon: ____________________ Phone number: ____________________ Bring this guide with you to the hospital on the day of your surgery 4100492 (17-10) 2 Introduction This information guide will help you understand what is involved in hip arthroplasty (hip replacement). We hope the information in this booklet will help you prepare for your surgery •••••••••••••••••••••••••••••••••••••••••••••••••••••• About Hôpital Montfort Hôpital Montfort is a Francophone academic health care institution that provides quality care in both official languages and works with its partners to improve the health of communities. Montfort strives for excellence and wants to be a hospital of choice for its personalized patient care, its workplace, teaching and research. Our daily actions are guided by the values of compassion, commitment, excellence and respect. WARNING This guide does not replace the advice of your care provider. Please consult your care provider to assess if the information presented in this guide applies to your situation. The content of this guide was prepared by Vancouver Coastal Health and adapted by Hôpital Montfort. 3 Your Health Care: Be Involved! • Be involved in your health care. Speak up if you have questions or concerns about your care. • Tell a member of your health care team about your past illnesses and your current health condition. • Tell your health team if you have any food or medication allergies. • Make sure you know what to do when you leave the hospital. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Your Interprofessional Plan of Care • Your hospital admission for your total hip replacement will follow an “interprofessional plan of care” more commonly called a "Clinical Pathway". -
Surgical Challenges in Complex Primary Total Hip Arthroplasty
A Review Paper Surgical Challenges in Complex Primary Total Hip Arthroplasty Sathappan S. Sathappan, MD, Eric J. Strauss, MD, Daniel Ginat, BS, Vidyadhar Upasani, BS, and Paul E. Di Cesare, MD should be assessed, the Thomas test should be used to Abstract determine presence of flexion contracture, and limb-length Complex primary total hip arthroplasty (THA) is defined as discrepancy should be documented with the patient in the primary THA in patients with compromised bony or soft-tissue supine and upright positions (with use of blocks for stand- states, including but not limited to dysplastic hip, ankylosed hip, prior hip fracture, protrusio acetabuli, certain neuromus- ing, allowing the extent of limb-length correction to be 3 cular conditions, skeletal dysplasia, and previous bony proce- estimated). dures about the hip. Intraoperatively, provisions must be made Standard anteroposterior (AP) and lateral x-rays of the for the possible use of modular implants and/or bone grafts. In hips should reveal underlying hip pathology and facili- this article, we review the principles of preoperative, intraop- tate surgical planning and component templating (Figure erative, and postoperative management of patients requiring a 4 complex primary THA. 1). Special imaging modalities, including computed tomography (CT) of the hip, may be useful in complex .S. surgeons annually perform more than 150,000 hip arthroplasty. CT provides 3-dimensional information total hip arthroplasties (THAs), 90% of which about anterior and posterior column deficiencies, socket are primary procedures.1 Improved surgical size, and thickness of the anterior and posterior walls and technique and instrumentation have expanded allows visualization of the external iliac vessels to ensure Uthe clinical indications for THA to include patients who previously would not have been considered eligible for this procedure.