Pellet Egestion in Modern Carnivorous Snakes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Owl Pellet Dissection Activity
Owl Pellet Dissection Activity: Background: Owl pellets are neat little packages of fur, bones, and other indigestible stuff that are regurgitated (spit up) sometime after an owl has finished digesting several meals. You can find owl pellets on the ground under trees where owls like to roost or nest. All owls cough up pellets as a part of how they digest their food. Most of the time, they swallow their prey whole without chewing or tearing the flesh apart. This means that owls naturally have a lot more bones, feathers, and fur in their diet. Owls can digest only the soft muscles and organs of their prey. The bones, teeth, fur, feathers, scales, or insect skeletons are too dense and cannot be converted into energy. The harder parts may also puncture an owl’s soft, curved intestines if passed through its digestive tract. Instead, the waste material is formed into a pellet in the gizzard, a muscular pouch in the owl’s digestive system. The gizzard operates like a trash compactor, pressing all the bones, fur, feathers, or other indigestible stuff into a firm, oval-shaped ball. When the pellet gets big enough, it is passed back up the esophagus to be cast out (thrown up) about twelve hours after eating. Although other birds, like eagles and hawks, also regurgitate pellets, owls are more efficient at it and they regurgitate more frequently. Owls swallow their prey whole, ingesting the entire skeleton. Other raptors selectively tear at their prey, eating only the soft digestible parts and leaving the indigestible bones. Also, unlike other birds, owls do not have a crop, which is an organ that holds food until the stomach is ready to receive it. -
The Southern Watersnake (Nerodia Fasciata) in Folsom, California: History, Population Attributes, and Relation to Other Introduced Watersnakes in North America
THE SOUTHERN WATERSNAKE (NERODIA FASCIATA) IN FOLSOM, CALIFORNIA: HISTORY, POPULATION ATTRIBUTES, AND RELATION TO OTHER INTRODUCED WATERSNAKES IN NORTH AMERICA FINAL REPORT TO: U. S. Fish and Wildlife Service Sacramento Fish and Wildlife Office 2800 Cottage Way, Room W-2605 Sacramento, California 95825-1846 UNDER COOPERATIVE AGREEMENT #11420-1933-CM02 BY: ECORP Consulting, Incorporated 2260 Douglas Blvd., Suite 160 Roseville, California 95661 Eric W. Stitt, M. S., University of Arizona, School of Natural Resources, Tucson Peter S. Balfour, M. S., ECORP Consulting Inc., Roseville, California Tara Luckau, University of Arizona, Dept. of Ecology and Evolution, Tucson Taylor E. Edwards, M. S., University of Arizona, Genomic Analysis and Technology Core The Southern Watersnake (Nerodia fasciata) in Folsom, California: History, Population Attributes, and Relation to Other Introduced Watersnakes in North America CONTENTS INTRODUCTION ...............................................................................................................1 The Southern Watersnake (Nerodia fasciata)................................................................3 Study Area ....................................................................................................................6 METHODS ..........................................................................................................................9 Surveys and Hand Capture.............................................................................................9 Trapping.......................................................................................................................11 -
The Venomous Snakes of Texas Health Service Region 6/5S
The Venomous Snakes of Texas Health Service Region 6/5S: A Reference to Snake Identification, Field Safety, Basic Safe Capture and Handling Methods and First Aid Measures for Reptile Envenomation Edward J. Wozniak DVM, PhD, William M. Niederhofer ACO & John Wisser MS. Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 (Wozniak) City Of Pearland Animal Control, 2002 Old Alvin Rd. Pearland, Texas 77581 (Niederhofer) 464 County Road 949 E Alvin, Texas 77511 (Wisser) Corresponding Author: Edward J. Wozniak DVM, PhD, Texas A&M University Health Science Center, Institute for Biosciences and Technology, Program for Animal Resources, 2121 W Holcombe Blvd, Houston, TX 77030 [email protected] ABSTRACT: Each year numerous emergency response personnel including animal control officers, police officers, wildlife rehabilitators, public health officers and others either respond to calls involving venomous snakes or are forced to venture into the haunts of these animals in the scope of their regular duties. North America is home to two distinct families of native venomous snakes: Viperidae (rattlesnakes, copperheads and cottonmouths) and Elapidae (coral snakes) and southeastern Texas has indigenous species representing both groups. While some of these snakes are easily identified, some are not and many rank amongst the most feared and misunderstood animals on earth. This article specifically addresses all of the native species of venomous snakes that inhabit Health Service Region 6/5s and is intended to serve as a reference to snake identification, field safety, basic safe capture and handling methods and the currently recommended first aide measures for reptile envenomation. -
Class Reptilia
REPTILE CWCS SPECIES (27 SPECIES) Common name Scientific name Alligator Snapping Turtle Macrochelys temminckii Broad-banded Water Snake Nerodia fasciata confluens Coal Skink Eumeces anthracinus Copperbelly Watersnake Nerodia erythrogaster neglecta Corn Snake Elaphe guttata guttata Diamondback Water Snake Nerodia rhombifer rhombifer Eastern Coachwhip Masticophis flagellum flagellum Eastern Mud Turtle Kinosternon subrubrum Eastern Ribbon Snake Thamnophis sauritus sauritus Eastern Slender Glass Lizard Ophisaurus attenuatus longicaudus False Map Turtle Graptemys pseudogeographica pseudogeographica Green Water Snake Nerodia cyclopion Kirtland's Snake Clonophis kirtlandii Midland Smooth Softshell Apalone mutica mutica Mississippi Map Turtle Graptemys pseudogeographica kohnii Northern Pine Snake Pituophis melanoleucus melanoleucus Northern Scarlet Snake Cemophora coccinea copei Scarlet Kingsnake Lampropeltis triangulum elapsoides Six-lined Racerunner Cnemidophorus sexlineatus Southeastern Crowned Snake Tantilla coronata Southeastern Five-lined Skink Eumeces inexpectatus Southern Painted Turtle Chrysemys picta dorsalis Timber Rattlesnake Crotalus horridus Western Cottonmouth Agkistrodon piscivorus leucostoma Western Mud Snake Farancia abacura reinwardtii Western Pygmy Rattlesnake Sistrurus miliarius streckeri Western Ribbon Snake Thamnophis proximus proximus CLASS REPTILIA Alligator Snapping Turtle Macrochelys temminckii Federal Heritage GRank SRank GRank SRank Status Status (Simplified) (Simplified) N T G3G4 S2 G3 S2 G-Trend Decreasing G-Trend -
Additional Specimen of Microraptor Provides Unique Evidence of Dinosaurs Preying on Birds
Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds Jingmai O’Connor1, Zhonghe Zhou1, and Xing Xu Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, October 28, 2011 (sent for review September 13, 2011) Preserved indicators of diet are extremely rare in the fossil record; The vertebral column of this specimen is complete except for even more so is unequivocal direct evidence for predator–prey its proximal and distal ends; pleurocoels are absent from the relationships. Here, we report on a unique specimen of the small thoracic vertebrae, as in dromaeosaurids and basal birds. Poor nonavian theropod Microraptor gui from the Early Cretaceous preservation prevents clear observation of sutures; however, Jehol biota, China, which has the remains of an adult enantiorni- there does not appear to be any separation between the neural thine bird preserved in its abdomen, most likely not scavenged, arches and vertebral centra, or any other indicators that the but captured and consumed by the dinosaur. We provide direct specimen is a juvenile. The number of caudal vertebrae cannot evidence for the dietary preferences of Microraptor and a nonavian be estimated, but the elongate distal caudals are tightly bounded dinosaur feeding on a bird. Further, because Jehol enantiorni- by elongated zygapophyses, as in other dromaeosaurids. The rib thines were distinctly arboreal, in contrast to their cursorial orni- cage is nearly completely preserved; both right and left sides are thurine counterparts, this fossil suggests that Microraptor hunted visible ventrally closed by the articulated gastral basket. -
Wildlife Center Classroom Series Owl Pellets: Little Packages of Owl Puke
Wildlife Center Classroom Series Owl Pellets: Little Packages of Owl Puke Wednesday August 10, 2016 Raina Krasner, WCV: Hello, everyone! Welcome to today’s Wildlife Center Classroom Series! Raina Krasner, WCV: Today, we’re talking about something that I think many of you are familiar with – owl pellets! Otherwise known as owl puke, little furball gifts, tiny packages of bones. But let me stop myself before I give away too much of the good stuff. Comment From caleb (͡๏̯͡๏) WOO HOO! Kids think this may be one of the BEST Classroom Series EVER ~~ we LOVE to dissect Papa G'Ho pellets! Comment From Dave in Missouri Oh, oel puke, this will go good with my lunch!:) Raina Krasner, WCV: :) Raina Krasner, WCV: First, what is an owl pellet? Eagle Owl Pellet in Germany, Martin Lindner Wildlife Center Classroom Series: Owl Pellets: Little Packages of Owl Puke Page 1 Raina Krasner, WCV: When an owl eats its prey, it consumes most, if not all, parts of the animal. Raina Krasner, WCV: If you order a fast food hamburger (or a veggie burger!) and it comes to you in a neat little wax paper package, and on the hamburger there is lettuce, tomato, and pickles, you have the luxury of using your utensils or fingers to pull back the wax paper wrapper, and then pick apart the burger and pull off the parts you don’t like, don’t want, or can’t eat. Raina Krasner, WCV: An owl, however, has to eat everything – “wrapper”, toppings, and all. Raina Krasner, WCV: No handy little thumbs and fingers to pick apart the food. -
For Creative Minds
For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to ArbordalePublishing.com and click on the book’s cover to explore all the links. Biologist or Paleontologist? Scientists who study living things (biologists) often observe animals to learn about them. If they are working in the field, they might even see different animal signs (nests with eggs, footprints, or poop) that help them to better understand the animal they are studying. Scientists who study dinosaurs (paleontologists) learn about the animals by studying body or trace fossil clues. They sometimes use knowledge of today’s animals to help them understand the dinosaurs. Identify whether you think the following statements describe the work of a biologist or a paleontologist. Can you explain “why” to someone? 1. The scientist dissected the owl pellet to see what it had eaten. 2. The scientist discovered that the round-looking rock was fossilized poop (coprolite) containing bits of bone from a plant-eating dinosaur. 3. In 2011, scientists found several dinosaur feathers trapped in amber. 4. In 2007, scientists found a duckbilled dinosaur that was so well preserved that even the skin had fossilized. 5. Scientists watched the birds care for their young. 6. Scientists found fossils of an animal sitting on eggs in a nest in Mongolia. 7. Scientists used medical scanners to see inside fossils of a dino skull. Inside the crest were hollow passages similar to the inside of a horn. -
AG-472-02 Snakes
Snakes Contents Intro ........................................................................................................................................................................................................................1 What are Snakes? ...............................................................1 Biology of Snakes ...............................................................1 Why are Snakes Important? ............................................1 People and Snakes ............................................................3 Where are Snakes? ............................................................1 Managing Snakes ...............................................................3 Family Colubridae ...............................................................................................................................................................................................5 Eastern Worm Snake—Harmless .................................5 Red-Bellied Water Snake—Harmless ....................... 11 Scarlet Snake—Harmless ................................................5 Banded Water Snake—Harmless ............................... 11 Black Racer—Harmless ....................................................5 Northern Water Snake—Harmless ............................12 Ring-Necked Snake—Harmless ....................................6 Brown Water Snake—Harmless .................................12 Mud Snake—Harmless ....................................................6 Rough Green Snake—Harmless .................................12 -
Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L. -
Venomous Nonvenomous Snakes of Florida
Venomous and nonvenomous Snakes of Florida PHOTOGRAPHS BY KEVIN ENGE Top to bottom: Black swamp snake; Eastern garter snake; Eastern mud snake; Eastern kingsnake Florida is home to more snakes than any other state in the Southeast – 44 native species and three nonnative species. Since only six species are venomous, and two of those reside only in the northern part of the state, any snake you encounter will most likely be nonvenomous. Florida Fish and Wildlife Conservation Commission MyFWC.com Florida has an abundance of wildlife, Snakes flick their forked tongues to “taste” their surroundings. The tongue of this yellow rat snake including a wide variety of reptiles. takes particles from the air into the Jacobson’s This state has more snakes than organs in the roof of its mouth for identification. any other state in the Southeast – 44 native species and three nonnative species. They are found in every Fhabitat from coastal mangroves and salt marshes to freshwater wetlands and dry uplands. Some species even thrive in residential areas. Anyone in Florida might see a snake wherever they live or travel. Many people are frightened of or repulsed by snakes because of super- stition or folklore. In reality, snakes play an interesting and vital role K in Florida’s complex ecology. Many ENNETH L. species help reduce the populations of rodents and other pests. K Since only six of Florida’s resident RYSKO snake species are venomous and two of them reside only in the northern and reflective and are frequently iri- part of the state, any snake you en- descent. -
Dorsal and Ventral Color Patterns in a South Georgia Population of Agkistrodon Piscivorus Contanti, the Florida Cottonmouth David L
Georgia Journal of Science Volume 75 No. 2 Scholarly Contributions from the Article 13 Membership and Others 2017 Dorsal and Ventral Color Patterns in a South Georgia Population of Agkistrodon piscivorus contanti, the Florida Cottonmouth David L. Bechler Valdosta State University, [email protected] Joseph A. Kirkley Mr. Wiregrass Georgia Technical College, [email protected] John F. Elder Valdosta State University, [email protected] Follow this and additional works at: http://digitalcommons.gaacademy.org/gjs Part of the Life Sciences Commons Recommended Citation Bechler, David L.; Kirkley, Joseph A. Mr.; and Elder, John F. (2017) "Dorsal and Ventral Color Patterns in a South Georgia Population of Agkistrodon piscivorus contanti, the Florida Cottonmouth," Georgia Journal of Science, Vol. 75, No. 2, Article 13. Available at: http://digitalcommons.gaacademy.org/gjs/vol75/iss2/13 This Research Articles is brought to you for free and open access by Digital Commons @ the Georgia Academy of Science. It has been accepted for inclusion in Georgia Journal of Science by an authorized editor of Digital Commons @ the Georgia Academy of Science. Dorsal and Ventral Color Patterns in a South Georgia Population of Agkistrodon piscivorus contanti, the Florida Cottonmouth Cover Page Footnote As the editor-in-chief of the Georgia Journal of Science, upon submission of this manuscript, I, David L. Bechler, have recused myself of all aspects of the review process and assigned the associate editor all aspects of the review process to include acceptance or rejection. This research articles is available in Georgia Journal of Science: http://digitalcommons.gaacademy.org/gjs/vol75/iss2/13 Bechler et al.: Dorsal and Ventral Agkistrodon piscivorus Coloring Patterns DORSAL AND VENTRAL COLOR PATTERNS IN A SOUTH GEORGIA POPULATION OF Agkistrodon piscivorus conanti, THE FLORIDA COTTONMOUTH 1David L. -
Amphibians and Reptiles Of
U.S. Fish and Wildlife Service Amphibians and Reptiles of Aransas National Wildlife Refuge Abundance Common Name Abundance Common Name Abundance C Common; suitable habitat is available, Scientific Name Scientific Name should not be missed during appropriate season. Toads and Frogs Texas Tortoise R Couch’s Spadefoot C Gopherus berlandieri U Uncommon; present in moderate Scaphiopus couchi Guadalupe Spiny Soft-shelled Turtle R numbers (often due to low availability Hurter’s Spadefoot C Trionyx spiniferus guadalupensis of suitable habitat); not seen every Scaphiopus hurteri Loggerhead O visit during season Blanchard’s Cricket Frog U Caretta caretta Acris crepitans blanchardi Atlantic Green Turtle O O Occasional; present, observed only Green Tree Frog C Chelonia mydas mydas a few times per season; also includes Hyla cinerea Atlantic Hawksbill O those species which do not occur year, Squirrel Tree Frog U Eretmochelys imbricata imbricata while in some years may be Hyla squirella Atlantic Ridley(Kemp’s Ridley) O fairly common. Spotted Chorus Frog U Lepidocheyls kempi Pseudacris clarki Leatherback R R Rare; observed only every 1 to 5 Strecker’s Chorus Frog U Dermochelys coriacea years; records for species at Aransas Pseudacris streckeri are sporadic and few. Texas Toad R Lizards Bufo speciosus Mediterranean Gecko C Introduction Gulf Coast Toad C Hemidactylus turcicus turcicus Amphibians have moist, glandular skins, Bufo valliceps valliceps Keeled Earless Lizard R and their toes are devoid of claws. Their Bullfrog C Holbrookia propinqua propinqua young pass through a larval, usually Rana catesbeiana Texas Horned Lizard R aquatic, stage before they metamorphose Southern Leopard Frog C Phrynosoma cornutum into the adult form.