Centre for Health Policy, University of the Witwatersrand Centre for Health

Total Page:16

File Type:pdf, Size:1020Kb

Centre for Health Policy, University of the Witwatersrand Centre for Health Centre for Health Policy, University of the Witwatersrand Centre for Health Policy (CHP) School of Public Health Faculty of Health Sciences University of the Witwatersrand P.O. Box 1038 Johannesburg, 2000 Phone + 27 11 489 9936 Fax: +27 11 489-9900 http://www.wits.ac.za/chp/ The Centre for Health Policy (CHP) is an independent multi-disciplinary research unit based at the School of Public Health in the University of the Witwatersrand. The South African Medical Research Council also recognizes it as the Research Group in Health Policy. CHP was established in 1998 to support the development of post-apartheid health policy and now has over 17 years experience on South African health policy. It is one of the largest and oldest research groups looking at health policy in the African continent. The Centre seeks to contribute to excellence in health systems, health policy and health economics research in South Africa and the wider African region. CHP also aims to be a critical participant in health policy processes in South Africa and to ensure that our research is fed back into policy processes. The Centre advocates and promotes policies in support of equity and social justice in health. The primary focus of research at CHP is to support the development of the South African health system in ways that meet the needs of all groups of South Africa, but particularly the most marginal groups. CHP actively seeks to draw together theoretical insights and empirical evidence in understanding health system change and in proposing strategies for future health systems development. CHP’s current research agenda focuses on policy issues in a number of related areas: Health systems; Health equity; Health financing and economics; Human resources; Gender-based Violence; HIV, AIDS & STI’s, and Maternal Health The work of CHP includes undertaking research to inform policy makers, evaluating the impact of health care policy, providing practical support for those implementing new policy, and supporting training and teaching in heath policy research. We play a key role in the University of the Witwatersrand, School of Public Health’s MPH and PHD programme. CHP is committed to developing meaningful international partnerships, both in the African region and elsewhere in the developing world. Currently research collaborations are underway which involve collaboration with researchers in Tanzania, Uganda, Zimbabwe, DRC, Malawi, Zambia, Lesotho, Swaziland and Nigeria. We are also working with researchers in Bangladesh, Thailand, Russia, and the UK. CHP academics have published numerous research reports, chapters in books, and articles in peer reviewed journals; as well as presented at national and international conferences. In 2005 CHP academics have published in WHO Bulletin on sexual assault services in South Africa, in Health Policy maternal health and health systems, in Social Science and Medicine on child sexual abuse, and in Sexually Transmitted Infections on improving the quality of STI care provided by private general practitioners. Academics from CHP have also contributed to and edited a special edition of Social Science and Medicine on Building Trust and Value in Health Systems in Low and Middle-Income Countries. CHP currently employs 15 full time academic staff, and has an annual budget of approximately R6.5 million. For more details about CHP, and our publication list, you can go to the CHP website on http://www.wits.ac.za/chp/ .
Recommended publications
  • South African Palaeo-Scientists the Names Listed Below Are Just Some of South Africa’S Excellent Researchers Who Are Working Towards Understanding Our African Origins
    2010 African Origins Research MAP_Layout 1 2010/04/15 11:02 AM Page 1 South African Palaeo-scientists The names listed below are just some of South Africa’s excellent researchers who are working towards understanding our African origins. UNIVERSITY OF CAPE TOWN (UCT) Dr Thalassa Matthews analyses the Dr Job Kibii focuses PALAEOBIOLOGICAL RESEARCH thousands of tiny teeth and bones of fossil on how fossil hominid Professor Anusuya Chinsamy-Turan is one microfauna to reconstruct palaeoenviron- and non-hominid of only a few specialists in the world who mental and climatic changes on the west faunal communities coast over the last 5 million years. changed over time and African Origins Research studies the microscopic structure of bones of dinosaurs, pterosaurs and mammal-like uses this to reconstruct reptiles in order to interpret various aspects ALBANY MUSEUM, past palaeoenviron- of the biology of extinct animals. GRAHAMSTOWN ments and palaeo- A summary of current research into fossils of animals, plants and early hominids from the beginning of life on Earth to the Middle Stone Age PERMIAN AGE PLANTS ecology. THE HOFMEYR SKULL Dr Rose Prevec studies the “No other country in the world can boast the oldest evidence of life on Earth extending back more than 3 billion years, the oldest multi-cellular animals, the oldest land-living plants, Professor Alan Morris described the Glossopteris flora of South Africa (the PAST HUMAN BEHAVIOUR Hofmeyer skull, a prehistoric, fossilized ancient forests that formed our coal Professor Chris Henshilwood directs the most distant ancestors of dinosaurs, the most complete record of the more than 80 million year ancestry of mammals, and, together with several other African countries, a most remarkable human skull about 36 000 years old deposits) and their end-Permian excavations at Blombos Cave where that corroborates genetic evidence that extinction.
    [Show full text]
  • Sampling and Estimation of Diamond Content in Kimberlite Based on Microdiamonds Johannes Ferreira
    Sampling and estimation of diamond content in kimberlite based on microdiamonds Johannes Ferreira To cite this version: Johannes Ferreira. Sampling and estimation of diamond content in kimberlite based on micro- diamonds. Other. Ecole Nationale Supérieure des Mines de Paris, 2013. English. NNT : 2013ENMP0078. pastel-00982337 HAL Id: pastel-00982337 https://pastel.archives-ouvertes.fr/pastel-00982337 Submitted on 23 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX École doctorale n° 398: Géosciences et Ressources Naturelles Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par l’École nationale supérieure des mines de Paris Spécialité “ Géostatistique ” présentée et soutenue publiquement par Johannes FERREIRA le 12 décembre 2013 Sampling and Estimation of Diamond Content in Kimberlite based on Microdiamonds Echantillonnage des gisements kimberlitiques à partir de microdiamants. Application à l’estimation des ressources récupérables Directeur de thèse : Christian LANTUÉJOUL Jury T M. Xavier EMERY, Professeur, Université du Chili, Santiago (Chili) Président Mme Christina DOHM, Professeur, Université du Witwatersrand, Johannesburg (Afrique du Sud) Rapporteur H M. Jean-Jacques ROYER, Ingénieur, HDR, E.N.S. Géologie de Nancy Rapporteur M.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
    Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism.
    [Show full text]
  • The Stratigraphy and Structure of the Kommadagga Subgroup and Contiguous Rocks
    THE STRATIGRAPHY AND STRUCTURE OF THE KOMMADAGGA SUBGROUP AND CONTIGUOUS ROCKS by ROGER SWART B.Sc . (Hons) Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Department of Geology, Rhodes University ,Grahamstown. January 1982 ABSTRACT The Lake Mentz and Kommadagga Subgroups were deposited i n a marine environment and are characterised by a heterogeneous sequence of sediments, which range in grain size from clays to grits . During the first phase of deposition the Kwee~ vlei Shale and Floriskraal Formations were deposited in a prograding shoreline environment, whereas the succeeding Waaipoort Shale Formation is interpreted as represnting a reworked shoreline. The final phase of deposition of the Cape Supergroup was a regressive one in which the Kommadagga Subgroup wa s fo rmed. The coa rs eni ng upward cycle of thi s subgroup represents a deltaic deposit. A significant time gap appears to exist before the deposition of the glacial-marine Dwyka Tillite Formation. Structurally, the area was subjected to deformation by buckle folding at about 250 Ma into a series of folds with southward dipping axial planes. Only one phase of deformation is recognised in the study area . A decrease in pore space, mineral overgrowths,formation of silica and calcite cements and development of aut~igenic minerals such as opal, stilpnomelane; analcite, prehnite, muscovite and various clay minerals are the characteristic diagenetic features of the sediments.The mineralogical evidence suggests that the maximum temperature
    [Show full text]
  • Open Kosei.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences GEOCHEMISTRY OF ARCHEAN–PALEOPROTEROZOIC BLACK SHALES: THE EARLY EVOLUTION OF THE ATMOSPHERE, OCEANS, AND BIOSPHERE A Thesis in Geosciences by Kosei Yamaguchi Copyright 2002 Kosei Yamaguchi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2002 We approve the thesis of Kosei Yamaguchi Date of Signature ____________________________________ _______________________ Hiroshi Ohmoto Professor of Geochemistry Thesis Advisor Chair of Committee ____________________________________ _______________________ Michael A. Arthur Professor of Geosciences ____________________________________ _______________________ Lee R. Kump Professor of Geosciences ____________________________________ _______________________ Raymond G. Najjar Associate Professor of Meteorology ____________________________________ _______________________ Peter Deines Professor of Geochemistry Associate Head for Graduate Program and Research in Geosciences iii ABSTRACT When did the Earth's surface environment become oxic? The timing and mechanism of the rise of atmospheric pO2 level in the early Precambrian have been long debated but no consensus has been reached. The oxygenation of the atmosphere and oceans has significant impacts on the evolution of the biosphere and the geochemical cycles of redox-sensitive elements. In order to constrain the evolution of the atmosphere, oceans, biosphere, and geochemical cycles of elements, a systematic and multidisciplinary
    [Show full text]
  • South African Research on Volcanic and Related Rocks and Mantle-Derived Materials: 2003-2006
    South African Research on volcanic and related rocks and mantle-derived materials: 2003-2006 J.S. Marsh South African National Correspondent, IAVCEI Department of Geology Rhodes University Grahamstown 6140 South Africa South Africa has no formal organizational or research structures dedicated to the principle aims of International Association of Volcanology and Chemistry of Earth’s Interior (IAVCEI) and over the period of the review there were no national research programmes which advance the main thrusts of IAVCEI. The association has a system of personal membership and the number of IAVCEI members in South Africa has not generally exceeded half a dozen over the period under review, although the potential membership is much greater as there are many scientists carrying out research on volcanic and intrusive rocks as well as mantle materials. These researchers are largely based at universities, the Council for Geoscience, as well as some mining and exploration companies, particularly those with interests in mineralization associated with the Bushveld Complex as well as diamondiferous kimberlite. Over the period of review the research of small informal groups and individuals has produced a substantial number of papers in igneous rocks and mantle materials. These outputs can be conveniently grouped as follows. Archaean Greenstones and Granitoids and Proterozoic Igneous suites. There is a steady output of research in these areas particularly in Archaean suites with interest in both the ultramafic-mafic komatiitic rocks as well as granitoids. Of note is the description of a new class of komatiite characterized by high silica and ultra depletion in incompatible elements. Bushveld Complex The Bushveld Complex one of the world’s largest layered igneous complexes is host to giant ore deposits of Cr, PGE, and V.
    [Show full text]
  • Heptasuchus Clarki, from the ?Mid-Upper Triassic, Southeastern Big Horn Mountains, Central Wyoming (USA)
    The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia) Heptasuchus clarki, from the ?Mid-Upper Triassic, southeastern Big Horn Mountains, Central Wyoming (USA) † Sterling J. Nesbitt1, John M. Zawiskie2,3, Robert M. Dawley4 1 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 2 Cranbrook Institute of Science, Bloomfield Hills, MI, USA 3 Department of Geology, Wayne State University, Detroit, MI, USA 4 Department of Biology, Ursinus College, Collegeville, PA, USA † Deceased author. ABSTRACT Loricatan pseudosuchians (known as “rauisuchians”) typically consist of poorly understood fragmentary remains known worldwide from the Middle Triassic to the end of the Triassic Period. Renewed interest and the discovery of more complete specimens recently revolutionized our understanding of the relationships of archosaurs, the origin of Crocodylomorpha, and the paleobiology of these animals. However, there are still few loricatans known from the Middle to early portion of the Late Triassic and the forms that occur during this time are largely known from southern Pangea or Europe. Heptasuchus clarki was the first formally recognized North American “rauisuchian” and was collected from a poorly sampled and disparately fossiliferous sequence of Triassic strata in North America. Exposed along the trend of the Casper Arch flanking the southeastern Big Horn Mountains, the type locality of Heptasuchus clarki occurs within a sequence of red beds above the Alcova Limestone and Crow Mountain formations within the Chugwater Group. The age of the type locality is poorly constrained to the Middle—early Late Triassic and is Submitted 17 June 2020 Accepted 14 September 2020 likely similar to or just older than that of the Popo Agie Formation assemblage from Published 27 October 2020 the western portion of Wyoming.
    [Show full text]
  • Palaeontological Heritage Assessment for Windfarm at Waainek, Grahamstown
    Palaeontological Heritage Assessment for Windfarm at Waainek, Grahamstown Compiled for: Gavin Anderson UMLANDO:Archaeological Tourism & Resource Management PO Box 102532, Meerensee, KwaZulu-Natal 3901 Date: February 2011 Compiled by: Robert Gess Bernard Price Institute for Palaeontological Research University of the Witwatersrand c/o P.O Box 40 Bathurst 6166 [email protected] Contents: page 1: Title page 2: Contents page 3: Geology page 4: Palaeontology page 6: Site visit page 6: Conclusions and Recommendations Geology The stratigraphy of the area comprises the upper portion of the Cape Supergroup. The Cape Supergroup is comprised of sediments deposited along the northern edge of the semi-enclosed Agulhas Sea, which opened in response to early rifting between South America, Africa and Antarctia. It is subdivided, from bottom to top, into the Table Mountain Group, the Bokkeveld Group and the Witteberg Group. Of these only the Witteberg Group outcrops in the study area The Witteberg Group is divided into the (lower) Weltevrede Subgroup and the (upper) Lake Menz Subgroup. Weltevrede Subgroup strata are exposed below the development area alongside the N2 and in the bottom of valleys dividing the ridges. The Lake Menz Subgroup consists of four subunits (the Witpoort, Kweekvlei, Floriskraal and Waaipoot formations. The ridge tops within the study area represent, by and large, the more resilient quartzitic strata of the Witpoort Formation. These strata are deeply folded in the area, and quartzitic layers of the overlying Floriskraal Formation may also be represented. Witpoort Formation quartzites are characteristically a clean whitish colour and are latest Devonian, Famennian (approximately 360 million years old).
    [Show full text]
  • Braincase Anatomy of Almadasuchus Figarii (Archosauria, Crocodylomorpha) and a Review of the Cranial Pneumaticity in the Origins of Crocodylomorpha
    Received: 30 September 2019 | Revised: 8 January 2020 | Accepted: 24 January 2020 DOI: 10.1111/joa.13171 ORIGINAL ARTICLE Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha Juan Martín Leardi1,2 | Diego Pol2,3 | James Matthew Clark4 1Instituto de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Departamento de Abstract Ciencias Geológicas, Facultad de Ciencias Almadasuchus figarii is a basal crocodylomorph recovered from the Upper Jurassic lev- Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina els of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. 2Departamento de Biodiversidad y Biología This taxon is represented by cranial remains, which consist of partial snout and pala- Experimental, Facultad de Ciencias Exactas tal remains; an excellently preserved posterior region of the skull; and isolated post- y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina cranial remains. The skull of the only specimen of the monotypic Almadasuchus was 3Museo Paleontológico Egidio Feruglio, restudied using high-resolution computed micro tomography. Almadasuchus has an CONICET, Chubut, Argentina apomorphic condition in its skull shared with the closest relatives of crocodyliforms 4Department of Biological Sciences, George Washington University, Washington, DC, (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the USA otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several Correspondence cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal ca- Juan Martín Leardi, CONICET, Instituto rotids) on the occipital surface of the skull. The endocast is tubular, as previously de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Facultad de Ciencias Exactas reported in thalattosuchians, but has a marked posterior step, and a strongly pro- y Naturales, Departamento de Ciencias jected floccular recess as in other basal crocodylomorphs.
    [Show full text]
  • Sixth International Kimberlite Conference: Extended Abstracts
    KIMBERLITES - WHY, WHEN, AND WHERE? A HIERARCHY OF GEOTECTONIC CONTROLS. Helmstaedt1, H.H., Gurney2, J.J. 1. Department of Geological Sciences, Queen’s University, Kingston, Ontario, Canada K7L 3N6 2. Department of Geological Sciences, University of Cape Town, Rondebosch 7700, Republic of South Africa In spite of many attempts in the literature to explain the temporal and spatial distribution of kimberlites, no consensus has emerged regarding their geotectonic controls. Among others, kimberlite magmatism has been correlated with lithospheric flexures, regional uplifts above upwelling convection currents (mantle diapirs, mantle hot spots), rifting of continents, flat-dipping subduction zones, non-laminar flow above subduction zones, transform faults, and magneto-hydrodynamic activity in the core, however, none of these models can explain all the aspects of the problem. Much of the uncertainty about the geotectonic controls derives from the fact that our knowledge of virtually every aspect of the complex process of kimberlite formation and ascent to the surface is still very speculative. In addition, there is the problem of correlation between the mainly sublithospheric processes involved in kimberlite formation and the geotectonic environment in the upper parts of the lithospheric plates through which the kimberlites erupt. The problem of explaining timing and locations of kimberlites may be more tractable by considering the various aspects of kimberlite formation in an appropriate geotectonic hierarchy. Assuming that kimberlites result from partial melting of "fertilized" garnet peridotite in the lower lithosphere or sublithospheric mantle, we must identify for each kimberlite province: 1. What processes or events can fertilize the upper mantle so that it may yield a kimberlitic melt? 2.
    [Show full text]
  • Introduction to the Tetrapod Biozonation of the Karoo Supergroup
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342446203 Introduction to the tetrapod biozonation of the Karoo Supergroup Article in South African Journal of Geology · June 2020 DOI: 10.25131/sajg.123.0009 CITATIONS READS 0 50 4 authors, including: Bruce S Rubidge Michael O. Day University of the Witwatersrand Natural History Museum, London 244 PUBLICATIONS 5,724 CITATIONS 45 PUBLICATIONS 385 CITATIONS SEE PROFILE SEE PROFILE Jennifer Botha National Museum Bloemfontein 82 PUBLICATIONS 2,162 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Permo-Triassic Mass Extinction View project Permo-Triassic palaeoecology of southern Africa View project All content following this page was uploaded by Michael O. Day on 24 August 2020. The user has requested enhancement of the downloaded file. R.M.H. SMITH, B.S. RUBIDGE, M.O. DAY AND J. BOTHA Introduction to the tetrapod biozonation of the Karoo Supergroup R.M.H. Smith Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050 South Africa Karoo Palaeontology, Iziko South African Museum, P.O. Box 61, Cape Town, 8000, South Africa e-mail: [email protected] B.S. Rubidge Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] M.O. Day Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] J. Botha National Museum, P.O. Box 266, Bloemfontein, 9300, South Africa Department of Zoology and Entomology, University of the Free State, 9300, South Africa e-mail: [email protected] © 2020 Geological Society of South Africa.
    [Show full text]