Schneckenbuntbarsche Des Tan- Ganjikasees Sowohl in Vorträgen Als Auch in Fachveröˆ Entlichungen an Interessierte Aquarianerinnen Und Aquarianer Weiter

Total Page:16

File Type:pdf, Size:1020Kb

Schneckenbuntbarsche Des Tan- Ganjikasees Sowohl in Vorträgen Als Auch in Fachveröˆ Entlichungen an Interessierte Aquarianerinnen Und Aquarianer Weiter Dipl.-Betriebswirt Wilhelm Eugen Klaas, Wilhelm Eugen Klaas Jahrgang 1947, befasst sich seit seinem ach- ten Lebensjahr mit der Haltung und P ege von Fischen und seit über 40 Jahren mit den Buntbarschen der afrikanischen Graben- seen. Seit Jahrzehnten gibt er sein Wissen über die Schneckenbuntbarsche des Tan- ganjikasees sowohl in Vorträgen als auch in Fachverö entlichungen an interessierte Aquarianerinnen und Aquarianer weiter. Faszinierend: die Schneckenbuntbarsche Die P ege und Zucht von Buntbarschen Schneckenbuntbarsche des Tanganjikasees mit ihrem einzigartigen aus den großen Seen Ostafrikas hat in den Brutverhalten in den Schneckenhäusern letzten Jahren einen wechselhaften Verlauf im Sandbodenlitoral. Unter dem Schwer- genommen. Stets konkurrierten die Bewoh- Kobolde des Tanganjikasees punkt Haltung und P ege im Aquarium ner von Malawisee und Tanganjikasee um beschreibt Wilhelm Eugen Klaas die im die Gunst der Aquarianer auf der ganzen deutschsprachigen Raum gep egten Ar- Welt. Die außergewöhnliche Brutp ege ten. Seine auf eigenen, umfangreichen Er- und die ligranen Farbmuster – aber auch fahrungen mit Schneckenbuntbarschen im das aquaristisch begrenzte Platzangebot – Aquarium basierenden P egeanleitungen bewegten Aquarianer vielfach dazu, sich für sollen die Begeisterung für diese spezielle die kleinwüchsigen Bewohner des Tangan- Fischgruppe auf die Leserinnen und Leser jikasees zu entscheiden. übertragen und sie ermun tern, sich neugie- rig vom Schneckenbuntbarschvirus anste- cken zu lassen. Klaas • Schneckenbuntbarsche Aus dem Inhalt: » Lebensraum Tanganjikasee » Biologie der Schneckenbuntbarsche » Allgemeine Charakterisierung und Erkennungsmerkmale » Fundorte und Verhalten im Biotop » Ernährung und P ege im Aquarium » Praktische Erfahrungen und Beachtenswertes www.vkgw.de ISBN 978 3 89432 136 9 Schneckenbuntbarsche Kobolde des Tanganjikasees Wilhelm Eugen Klaas Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 5 1 Was sind Schneckenbuntbarsche? 8 2 Lebensraum Tanganjikasee 10 2.1 Entstehungs- und Erforschungsgeschichte 12 2.2 Geografie 14 2.3 Zonierung 14 2.4 Pflanzenwuchs 16 3 Biologie der Schneckenbuntbarsche 20 3.1 Besonderheiten 20 3.2 Territorialverhalten 22 3.3 Fortpflanzungsverhalten 24 3.4 Wohnung Schneckenhaus 26 4 Schneckenbuntbarsche im Aquarium 29 4.1 Allgemeine Überlegungen 29 4.2 Wasserchemie und Wasserpflege 32 4.3 Einrichtungsgegenstände 32 4.4 Ernährung 34 6 Inhaltsverzeichnis 5 Arten 35 Neolamprologus boulengeri 36 Neolamprologus brevis 39 Neolamprologus callipterus 44 Neolamprologus calliurus 48 Neolamprologus hecqui 51 Neolamprologus kungweensis 53 Neolamprologus laparogramma 57 Neolamprologus meeli 59 Neolamprologus meleagris 62 Neolamprologus multifasciatus 66 Neolamprologus ocellatus 69 Neolamprologus ornatipinnis 71 Neolamprologus signatus 74 Neolamprologus similis 78 Neolamprologus speciosus 81 Neolamprologus wauthioni 84 Das Schneckenhaus: Heimat weiterer Buntbarscharten 88 Literatur/mündliche Berichte 94 Register 95 7 Kapitel 2 2.1 Entstehungs- und Erforschungsgeschichte Der Tanganjikasee gehört mit zu den ältesten Seen der Erde. Er entstand vor etwa 20 Millionen Jahren im Miozän. Der Ostafrikanische Graben, in dessen westlichem Teil der Tanganjikasee liegt, war nicht das Ergebnis einer urplötzlichen Umweltkatastrophe. Vielmehr ent- stand er durch eine ständig fortschreitende Absenkung des Untergrunds infol- ge gewaltiger vulkanischer Aktivitäten. Diese Absenkung war verbunden mit einem Gegendruck an den Rändern der Spalte, der zur Bildung der umliegen- den Gebirge führte. Gespeist wurde der Tanganjikasee vom Fluss Malagarasi, der – so wird ange- nommen – sein Wasser über den Fluss Lukuga und zu einem kleinen Teil über den Fluss Zaire (heute Kongo) abführte, Letzteres insbesondere dann, wenn der Tanganjikasee über seine Ufer trat. Zunächst stellte sich der Tanganjikasee als recht isoliert dar. Als jedoch Böhm im Jahre 1883 an dessen Ufer ein Hohltier fand, war dies für viele Forscher eine Bestätigung für deren Annahme, dass der Tanganjikasee eine Verbindung zum Meer gehabt haben müsse. Unterstützt wurde damals diese These durch von Speke, der bereits 1858 mit einigen Weichtierschalen aufwarten konnte, die er am Ufer des Tanganjikasees gefunden hatte. Diese hatten eine große Ähnlich- keit mit Schalen von Weichtieren aus dem Meer. 1896 entschied sich die Royal Society Englands, eine Expedition zum Tangan- jikasee in Auftrag zu geben. Seine Erlebnisse und Ergebnisse fasste der teilneh- mende Forscher Moore im Jahre 1903 in einem Buch mit dem Titel »The Tan- ganyika Problem« zusammen. In seinen Darstellungen verteidigte er die Hypo- these, dass der Tanganjikasee mit dem Meer verbunden gewesen sein müsse. Dieser Hypothese widersprach jedoch Boulenger aufgrund seiner Forschungs- ergebnisse, die er – fast zeitgleich zu Moores Expedition – durch Untersuchun- gen an Fischen des Tanganjikasees gewann. Dabei stellte er fest, dass es keiner- lei verwandtschaftliche Verbindungen zwischen den von ihm im Tanganjikasee angetroffenen Fischen und Meeresfischen gab, sondern – seiner Meinung nach – eher zu anderen Fischarten aus verschiedenen afrikanischen Flüssen. Auf die erste Expedition an den Tanganjikasee folgten weitere. Die bekann- testen Expeditionen standen unter der Leitung von Cunnington, Stappers, Kufferath, Leloup, Marlier, Matthes und dem meiner Meinung nach be- rühmtesten Wissenschaftler, der Untersuchungen am Tanganjikasee durchführ- te: Max Poll. Seine Ausarbeitungen bilden die Grundlage für fast alle Kenntnis- se, die wir heute über die Cichliden des Tanganjikasees haben. 12 Lebensraum Tanganjikasee i iz z 0 50 100 u km R Bujumbura BURUNDI Burton Bay Nyanza Kigoma M alagarasi uga Kalemie Luk Kungwe Bay Bulu Point Katibili TANSANIA Cape Tembwe Tanganjika- see Moba DEMOKRATISCHE REPUBLIK KONGO Isanga Bay Kalam bo SAMBIA Grafik: ELISABETH GALAS Mpulungu 13 Kapitel 2 2.2 Geografie Der Tanganjikasee erstreckt sich von 3° 20‘ bis 8° 48‘ südlich und 29° 5‘ bis 31° 15‘ östlich. Er liegt 782 m über dem Meeresspiegel und hat ein Einzugsgebiet von ca. 230 000 km². Sein Hauptzufluss ist der Ruzizi im Norden, weitere Zu- flüsse sind der Kalambo und der Malagarasi. Der See entwässert in den Lukuga, der wiederum in den Kongo abfließt. Mit einer Länge von 650 km, einer Breite von 40–70 km und einer Wasserober- fläche von 34 000 km² gehört der Tanganjikasee zu den größten Seen unserer Erde. Er hält ein Sechstel der Süßwasserreserven der Erde. Mit einer Tiefe von ca. 1 300 m im nördlichen Teil und ca. 1 400 m im südlichen Teil ist er zudem der zweittiefste See. Die größte Tiefe wird mit 1 470 m angegeben. Allerdings bieten die Wasserschichten unterhalb von etwa 200 m aufgrund der fehlenden Wasserumwälzung und des daraus resultierenden Sauerstoffmangels keinen Lebensraum für die Buntbarsche. 2.3 Zonierung Die für die Aquaristik importierten Schneckenbuntbarsche aus dem Tanganji- kasee sind schwerpunktmäßig in den Uferzonen anzutreffen: • Geröllzone, vom Ufer bis 20 m in den See reichend, mit faust- bis fußball- großen, glattgerundeten Steinen; sehr fischreich. • Felszone, mit großen quaderförmigen Gesteinsbrocken; Prof. Dr. Eysel be- richtete mir von riesigen ungeordneten Gesteinsformationen, die er bei sei- nen Tauchgängen zum Teil schon knapp unter der Wasseroberfläche antraf, darunter oft mehrere Meter hohe Steinsäulen, die in Richtung Sonne über und über mit Algen bewachsen sind. • Sandzone, mit unterschiedlichstem Pflanzenwuchs; Heimat einiger Schne- ckenbuntbarscharten, dominierend sind hier jedoch Buntbarsche der Arten Xenotilapia und Triglachromis. • Freiwasserzone, mit zum Teil riesigen Fischschwärmen, nicht selten Bunt- barsche, vor allem jedoch große Schwärme von Cyprichromis. Im Tanganjikasee sind Schlammböden sehr häufig anzutreffen. Die meisten Bö- den unterhalb 50 m Wassertiefe kann man als schlammig bezeichnen. Bezogen auf unseren Schneckenbuntbarsch sind die Schlammböden in einer Wassertiefe von 10–50 m von Bedeutung: Es handelt sich hier nicht um einen Schlamm, den wir vielleicht aus unserem Gartenteich kennen, sondern es ist eine eher feste Substanz, die es den Schneckenbuntbarschen auch ermöglicht, Tunnel zu gra- ben, ohne dass diese einstürzen. 14 Lebensraum Tanganjikasee Felsküste an der Isanga Bay, Sambia. Foto: Harald Kahden Buntes Treiben am Markt in Mpulungu, Sambia. Foto: Harald Kahden 15 Kapitel 3 3.3 Fortpflanzungsverhalten Zur Darstellung des Fortpflanzungsverhaltens muss man zum einen unter- scheiden zwischen Höhlen- und Freibrütern, zum anderen, ob sehr viele kleine Eier oder aber große, jedoch weniger Eier gelegt werden. Größe und Zahl der Eier beeinflussen die Entwicklungszeiten: Bei Arten, die über eine große Anzahl von Eiern verfügen, liegen sie bei etwa sechs bis neun Tagen, bei jenen mit einer geringeren Produktion (meist weniger als 20 Eier) bei über 30 Tagen. Bei Freibrütern dominiert die Paarbildung, man kann Freibrüter in der Regel als monogam bezeichnen. Manche Schneckenbuntbarscharten betreiben jedoch auch Haremsbildung: Das Männchen bewacht in einem bestimmten Revier mehrere Weibchen, die hier ihre Eier legen und später die Jungen aufziehen. Maulbrüter hingegen kann man als agam (»ehelos«) bezeichnen. Es besteht kei- ne klare Bindung zwischen bestimmten Männchen und Weibchen; zu beobach- ten ist bei manchen Arten eine Gruppenbildung, also das Zusammenleben von mehreren Männchen und Weibchen. Die Zeit der Brutpflege ist bei Freibrütern länger als bei Maulbrütern: In den ersten Wochen nach dem Schlüpfen der Jungbrut stehen meist beide Elternteile bewachend bei den
Recommended publications
  • Cichlid Diversity, Speciation and Systematics: Examples from the Great African Lakes
    Cichlid diversity, speciation and systematics: examples from the Great African Lakes Jos Snoeks, Africa Museum, Ichthyology- Cichlid Research Unit, Leuvensesteenweg 13, B-3080 Ter­ vuren,.Belgium. Tel: (32) 2 769 56 28, Fax: (32) 2 769 56 42(e-mail: [email protected]) ABSTRACT The cichlid faunas of the large East African lakes pro vide many fascina ting research tapies. They are unique because of the large number of species involved and the ir exceptional degree ofendemicity. In addition, certain taxa exhibit a substantial degree of intra~lacustrine endemism. These features al one make the Great African Lakes the largest centers of biodiversity in the vertebrate world. The numbers of cichlid species in these lakes are considered from different angles. A review is given of the data available on the tempo of their speciation, and sorne of the biological implications of its explosive character are discussed. The confusion in the definition of many genera is illustrated and the current methodology of phylogenetic research briefly commented upon. Theresults of the systematic research within the SADC/GEFLake Malawi/NyasaBiodiversity Conservation Project are discussed. It is argued that systematic research on the East African lake cichlids is entering an era of lesser chaos but increasing complexity. INTRODUCTION The main value of the cichlids of the Great African Grea ter awareness of the scientific and economi­ Lakes is their economie importance as a readily cal value of these fishes has led to the establishment accessible source of protein for the riparian people. In of varioüs recent research projects such as the three addition, these fishes are important to the specialized GEF (Global Environmental Facility) projects on the aquarium trade as one of the more exci ting fish groups larger lakes (Victoria, Tanganyika, Malawi/Nyasa).
    [Show full text]
  • Neolamprologus Longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika
    Japan. J. Ichthyol. 魚 類 学 雑 誌 42(1): 39-43, 1995 42(1): 39-43, 1995 Neolamprologus longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika Kazuhiro Nakaya1 and Masta Mukwaya Gashagaza2 Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido1 University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041, Japan 2Centre de Recherche en Hydrobiologie , Uvira, Zaire, B.P. 254, Bujumbura, Burundi (Received September 9, 1994; in revised form February 10, 1995; accepted March 17, 1995) Abstract A new cichlid, Neolamprologus longicaudatus sp. nov. is described , based on three specimens from the north Zairean coast of Lake Tanganyika. Although similar to N. furcifer, N. christyi and N. buescheri in having an elongate body, strongly emarginate caudal fin, and vertical fins partly covered with scales, this species is distinguishable from them by its small orbit, light grayish-brown coloration of body, dorsal fin lacking a submarginal dark band, 37 longitudinal body scales, 8 gill rakers on lower limb of the 1st gill arch, and a long pointed snout. Neolamprologus is a genus of the family Cichlidae Neolamprologus longicaudatus sp. nov. in Lake Tanganyika, one of the Great Rift Valley (Figs. 1, 2) lakes in the central east Africa. Lake Tanganyika is famous for its remarkable endemism seen in the Neolamprologussp. "Kavalla" Konings and Dieckhof ,f cichlid fishes, and the genus Neolamprologus is also 1992:150, fig. (Milima Island, Zair e) . endemic to the lake. Neolamprologus is the largest Holotype. HUMZ (Laboratory of Marine Zoolog y , genus among Lake Tanganyikan cichlids, and 42 Faculty of Fisheries, Hokkaido University) 12767 0 , species are presently known from the lake (Biischer, 85.5mm in standard length (SL), Cape Banza, Ubwar i 1991, 1992a, 1992b, 1993; Marechal and Poll, 1991).
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Does Cichlid Predation Affect Gastropod Reproductive Strategies? Feeding Choice of Neolamprologus Tretocephalus on Two Lavigeria Species
    Does cichlid predation affect gastropod reproductive strategies? Feeding choice of Neolamprologus tretocephalus on two Lavigeria species Students: Stephanie Miller & Mbalassa Mulongaibalu Mentor: Ellinor Michel Introduction The reproductive strategies of Lake Tanganyika gastropods vary widely. Among closely related endemic Lavigeria species, average brood size varies from 25 individuals to 150 individuals between species (Kingma & Michel, 2000). Offspring size also varies between an average of 2.5 mm to 0.75 mm at hatching between species. Gastropod reproductive strategies may be affected by environmental factors including the variability of the environment, primary production, and physiochemical factors (Thorp 1991). In Lake Tanganyika, Lavigeria grandis and Lavigeria coronata are largely sympatric, yet vary markedly in their reproductive strategies. Mean brood size of L. grandis is approximately 50 individuals while mean L. coronata brood size is approximately 110 individuals (Kingma & Michel 2000). Mean size at hatching is 2.5 mm for L. grandis while 1.5 mm from L. coronata. Because these species are subject to similar environmental conditions, reasons for this variation are unclear. Whereas crabs are the dominant predator of adult Lavigeria, they are less likely to consume immature snails (Michel, personal communication). Several Tanganyikan fish species may crush and consume small snails; two cichlid species are known to consume these snails regularly. Gut contents analysis of Neolamprologus tretocephalus reveal that small gastropods are a dominant prey item and that Lavigeria species are the dominant genera consumed (Nduwarugira 1999, Michel et al 1999). The ability and preferences of these fish may affect reproductive decision-making in prey snails. To test whether fish vary in their ability and preference for snail size, we performed 10 feeding trials using individual Neolamprologus tretocephalus.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika
    Zootaxa 3492: 30–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F49C00E7-C7CF-4C2C-A888-A3CAA030E9F4 Lepidiolamprologus kamambae, a new species of cichlid fish (Teleostei: Cichlidae) from Lake Tanganyika SVEN O. KULLANDER1, MAGNUS KARLSSON2 & MIKAEL KARLSSON2 1Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] 2African Diving Ltd, P. O. Box 7095, Dar es Salaam, Tanzania. E-mail: [email protected] Abstract Lepidiolamprologus kamambae is described from the Kamamba Island off the southeastern coast of Lake Tanganyika. It is similar to L. elongatus, L. kendalli, and L. mimicus in the presence of three horizontal rows of dark blotches along the sides. It differs from those species in the presence of a distinct suborbital stripe across the cheek. It is further distinguished from L. elongatus and L. mimicus by the presence of a marbled pattern on the top of the head, and narrower interorbital width (4.9–5.9% of SL vs. 6.0–7.0%). It is distinguished from L. kendalli by a shorter last dorsal-fin spine (11.2–13.3% of SL vs. 13.3–15.1 %) and presence of distinct dark blotches on the side instead of contiguous blotches forming stripes separated by light interspaces. Lepidiolamprologus profundicola is unique in the genus having the cheeks covered with small scales. Scales are absent from the cheek in L. kamambae, and in the other species scales are either absent or very few and deeply embedded.
    [Show full text]
  • Effects of Increased Temperature And
    EFFECTS OF INCREASED TEMPERATURE AND DECREASED FOOD QUALITY ON METABOLISM AND GROWTH OF AN ALGIVOROUS CICHLID, TROPHEUS DUBOISI, AND EFFECT OF FOOD HABIT ON THE FIELD METABOLISM OF AFRICAN CICHLIDS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By LESLEY YU-JUNG KIM B.S., The Ohio State University, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL September 2, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lesley Yu-Jung Kim ENTITLED Effect of Increased Temperature and Decreased Food Quality on Metabolism and Growth of an Algivorous cichlid, Tropheus duboisi, and Effect of Food Habit on the Field Metabolism of African Cichlids BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. __________________________ Yvonne Vadeboncoeur, Ph.D. Thesis Director __________________________ David Goldstein, Ph.D. Chair, Department of Biological Sciences Committee on Final Examination __________________________ Yvonne Vadeboncoeur, Ph.D. __________________________ Lynn Hartzler, Ph.D. __________________________ Volker Bahn, Ph.D. __________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Kim, Lesley Yu-Jung. M.S. Department of Biological Sciences, Wright State University, 2014. Effect of increased temperature and decreased food quality on metabolism and growth of an algivorous cichlid, Tropheus duboisi, and effect of food habit on the field metabolism of African Cichlids. The metabolic rate of an organism is influenced by mass, temperature, and diet. Climate change is anticipated to increase ambient temperatures of aquatic systems and decrease the quality of food available to algivorous fish.
    [Show full text]
  • Neolamprologus Brichardi, a Singular Tanganyika Cichlid Text & Photos: José María Cid Ruiz
    Neolamprologus brichardi, a singular Tanganyika cichlid Text & Photos: José María Cid Ruiz This species of attractive appearance and unique parental behavior, is one of the many endemic species that make the Lake Tanganyika (East Africa, originated 3-7 million years ago), a unique ecosystem with excep- tional biodiversity, such as is credited by 250 cichlid species and other 150 fish species from different families that inhabit its waters. As is well known, Neolamprologus brichardi1 (Poll,1974), was initially descri- bed as a subspecies of Lamprologus savoryi (L.savoryi elongatus) (Trewavas & Poll, 1952). The species has a laterally compressed body, which together with its long caudal in the form of "lyre", conveys an impression of great slender- ness. It's really a beautiful cichlid, with a uniform beige color on which stands out a peculiar drawing behind and below the eye, consisting of two black spots and a third spot in yellow-orange. It also highlights a metallic blue iridescence under the eye and at the edge of the fins. In the literature it is cited with sizes Averaging the various references consulted, we would consider a temperature in up to 10 cm, but generally, more developed adult males do not exceed the 8-9 shallow waters of 25-26 ° C. The pH in the majority of sample points has a value cm and females always measure something less. of 8.4 but there are areas with measurements of 9.2. Total hardness is moved in a range of GH: 7-11°d, while carbonate hardness ranges KH: 15 to 18°d.
    [Show full text]
  • Strategic and Tactical Fighting Decisions in Cichlid Fishes With
    Behaviour 151 (2014) 47–71 brill.com/beh Strategic and tactical fighting decisions in cichlid fishes with divergent social systems a b b, Kristina Hick , Adam R. Reddon , Constance M. O’Connor ∗ and Sigal Balshine b a Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1 b Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1 *Corresponding author’s e-mail address: [email protected] Accepted 9 August 2013; published online 2 October 2013 Abstract The costs and benefits of engaging in a contest will differ depending on the social situation of the individuals involved. Therefore, understanding contest behaviour can help to elucidate the trade- offs of living in differing social systems and shed light on the evolution of social behaviour. In the current study, we compared contest behaviour in two closely related species of Lamprologine cichlid fish. Neolamprologus pulcher and Telmatochromis temporalis are both pair-breeding cich- lids, but N. pulcher are highly social, group-living fish, while T. temporalis display no grouping behaviour. To examine how competition varies by species, sex and familiarity, we staged same-sex conspecific contests over a shelter, a resource that is highly valued by both species, where contes- tants were either familiar or unfamiliar to one another. When we examined tactical and strategic components of these contests, we found that the highly social species had shorter contests and engaged in fewer costly aggressive acts than did the non-social species. Individuals of the highly social species were also more likely to resolve conflicts through the use of submissive displays, while individuals of the non-social species were more likely to flee from conflict.
    [Show full text]
  • A Revised Synonymy of Telmatochromis Temporalis (Teleostei, Cichlidae) from Lake Tanganyika (East Africa)
    Journal of Fish Biology (2001) 58, 639–655 doi:10.1006/jfbi.2000.1475, available online at http://www.idealibrary.com on REGULAR PAPERS A revised synonymy of Telmatochromis temporalis (Teleostei, Cichlidae) from Lake Tanganyika (East Africa) M. H* J. S Africa Museum, Vertebrate Section, Ichthyology, Cichlid Research Unit, Leuvensesteenweg, 13, B-3080 Tervuren, Belgium (Received 4 July 2000, Accepted 13 October 2000) The taxonomic status of the nominal species Telmatochromis temporalis, T. lestradei, T. burgeoni and Julidochromis macrolepis has been reviewed. The synonymy of T. lestradei with T. temporalis is confirmed. A comparison of Telmatochromis burgeoni with Telmatochromis temporalis revealed no significant differences either. Hence T. burgeoni is considered synony- mous with T. temporalis. Examination of the type of Julidochromis macrolepis showed it to be conspecific with Telmatochromis dhonti and not with T. temporalis, as had been suggested. 2001 The Fisheries Society of the British Isles Key words: Telmatochromis; Lake Tanganyika; cichlids; synonymy; taxonomy. INTRODUCTION The systematics of the cichlids of the East African Lakes are very complicated and at present taxonomic knowledge is still poor (Fryer & Iles, 1972; Coulter et al., 1986; Greenwood, 1991; Rossiter, 1995; Snoeks, 2000). Even for the relatively well-known Lake Tanganyika, taxa with a supposedly stable taxonomy turn out to be problematic when a revision is made (Verheyen et al., 1996; Hanssens et al., 1999; Ru¨ber et al., 1999). As a result of an ongoing study on the taxonomy and distribution patterns of the lamprologine cichlids from Lake Tanganyika (Snoeks et al., 1994) several problems were encountered within the genus Telmatochromis Boulenger, 1898.
    [Show full text]
  • Direct Benefits and Evolutionary Transitions to Complex Societies
    ARTICLES PUBLISHED: 18 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0137 Direct benefits and evolutionary transitions to complex societies Cody J. Dey1, 2 †, Constance M. O’Connor1 †, Holly Wilkinson3, Susanne Shultz3, Sigal Balshine1 and John L. Fitzpatrick3, 4* The selective forces that drive the evolution of cooperation have been intensely debated. Evolutionary transitions to coop- erative breeding, a complex form of cooperation, have been hypothesized to be linked to low degrees of promiscuity, which increases intragroup relatedness and the indirect (that is, kin selected) benefits of helping. However, ecological factors also promote cooperative breeding, and may be more important than relatedness in some contexts. Identifying the key evolution- ary drivers of cooperative breeding therefore requires an integrated assessment of these hypotheses. Here we show, using a phylogenetic framework that explicitly evaluates mating behaviours and ecological factors, that evolutionary transitions to cooperative breeding in cichlid fishes were not associated with social monogamy. Instead, group living, biparental care and diet type directly favoured the evolution of cooperative breeding. Our results suggest that cichlid fishes exhibit an alternative path to the evolution of complex societies compared to other previously studied vertebrates, and these transitions are driven primarily by direct fitness benefits. ooperative breeding, where individuals in social groups pro- evolution of cooperative societies, because social monogamy is also vide care for offspring that are not their own, is a complex favoured under particular ecological factors14 and therefore apparent Cform of sociality1 that has arisen repeatedly across the animal relationships between monogamy and cooperative breeding could kingdom. Cooperative breeders are of great interest for evolutionary actually be driven by relationships between ecology and coopera- biologists, as individuals that forgo their own reproduction appear tive breeding15,16.
    [Show full text]
  • Replicated Divergence in Cichlid Radiations Mirrors a Major
    Downloaded from http://rspb.royalsocietypublishing.org/ on January 27, 2016 Replicated divergence in cichlid radiations rspb.royalsocietypublishing.org mirrors a major vertebrate innovation Matthew D. McGee1, Brant C. Faircloth2, Samuel R. Borstein3, Jimmy Zheng4, C. Darrin Hulsey5, Peter C. Wainwright1 and Michael E. Alfaro4 Research 1Department of Evolution and Ecology, University of California, Davis, CA 95616, USA 2Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Cite this article: McGee MD, Faircloth BC, LA 70803, USA 3 Borstein SR, Zheng J, Darrin Hulsey C, Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Wainwright PC, Alfaro ME. 2016 Replicated 5Department of Biology, University of Konstanz, Konstanz, Germany divergence in cichlid radiations mirrors a major vertebrate innovation. Proc. R. Soc. B Decoupling of the upper jaw bones—jaw kinesis—is a distinctive feature of the 283: 20151413. ray-finned fishes, but it is not clear how the innovation is related to the extra- http://dx.doi.org/10.1098/rspb.2015.1413 ordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity—African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Received: 11 June 2015 Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent Accepted: 30 November 2015 of jaw kinesis in the premaxillary and maxillary bones.
    [Show full text]