Geochronology and Geochemistry of the Mesozoic Volcanic Rocks In

Total Page:16

File Type:pdf, Size:1020Kb

Geochronology and Geochemistry of the Mesozoic Volcanic Rocks In Available online at www.sciencedirect.com Lithos 102 (2008) 88–117 www.elsevier.com/locate/lithos Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton ⁎ Wei Yang, Shuguang Li CAS Key laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China Received 17 October 2006; accepted 24 September 2007 Available online 11 October 2007 Abstract Determining the age and petrogenesis of the voluminous Mesozoic magmatic rocks from the North China Craton (NCC) provides critical data for deducing the process and timing of lithospheric thinning. Four Mesozoic magmatic events in the northeast of the craton (Western Liaoning) are delineated by Ar–Ar and U–Pb zircon dating, i.e. the Xinglonggou Formation (177 Ma), the Lanqi Formation (166–153 Ma), the Yixian Formation (126–120 Ma), and the Zhanglaogongtun Formation (∼106 Ma), respectively. The Xinglonggou lavas are high-Mg# adakites with arc-like Sr–Nd–Pb isotopic compositions, suggesting that they originated from the subducted Palaeoasian oceanic crust. The typical “continental” geochemical signatures of the Lanqi basalts and basaltic andesites as well as their 87 86 low ɛNd(t), moderate Sr/ Sri, and extremely unradiogenic Pb isotopes indicate significant involvement of lower crust materials in their magma. These features, coupled with the low Mg, Ni, and Cr contents may suggest significant olivine fractionation and a magma underplating event, which caused the partial melting of the low-middle crust to produce the voluminous low-Mg andesites and acidic volcanic rocks overlying the Lanqi basalts. The Yixian high-Mg adakitic rocks with the lower-crustal Sr–Nd–Pb isotopic compositions suggest foundering of the mafic lower crust into the underlying convecting mantle. The Yixian basalts show similar geochemical characteristics to the Lanqi basalts except the relatively higher Mg, Ni and Cr contents, which could be derived from a newly enriched lithosphere mantle hybridized by partial melts from the foundered lower continental crust. The Zhanglaogongtun lavas are alkaline basalts with MORB-like Sr–Nd–Pb isotopic compositions, suggesting derivation from a depleted mantle. Based on the new data, a multi-stage lithospheric thinning model is proposed. © 2007 Elsevier B.V. All rights reserved. Keywords: North China Craton; Western Liaoning; Lithospheric thinning; Geochronology and geochemistry of volcanic rocks; Magma underplating; Foundering of mafic lower crust 1. Introduction two decades (e.g., Menzies et al., 1993; Deng et al., 1994, 1996; Griffin et al., 1998; Guo et al., 2001; Gao et al., The lithospheric mantle of the North China Craton 2002; Zhang et al., 2002, 2003; Chen et al., 2003; Wu (NCC) has attracted considerable attention over the last et al., 2003; Deng et al., 2004; Xu et al., 2004a,b; Rudnick et al., 2004; Zhang et al., 2004; Zhang, 2005). Studies on ⁎ Corresponding author. diamond-bearing kimberlites and mantle xenoliths indi- 2 E-mail address: [email protected] (S. Li). cate a thick (∼200 km) and cold (∼40 mW/m ) 0024-4937/$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.lithos.2007.09.018 W. Yang, S. Li / Lithos 102 (2008) 88–117 89 lithosphere existing in the NCC during the Paleozoic (Fan petrogenesis of the Mesozoic mantle-derived rocks is still and Menzies, 1992; Griffin et al., 1992, 1998; Zheng controversial. It has been generally suggested that such et al., 2003). However, investigations of Cenozoic basalt- “continental” geochemical signatures were derived from borne spinel lherzolite xenoliths show that the Cenozoic an enriched SCLM or hybridized upwelling astheno- lithosphere is relatively thinner (b80 km) and hotter sphere and three models have been proposed. The first (∼60 mW/m2) beneath the eastern NCC (Fan et al., 2000; model considers that the SCLM has an EMI-type Zheng et al., 2001). This was also demonstrated by composition resulting from subduction-related multiple geophysical data (Ma, 1987). Therefore, it is suggested metasomatism processes in the Archaean and Mesopro- that about 120 km of lithosphere has been removed since terozoic during the accretion of the NCC (e.g., Yang et al., the early Paleozoic. In addition, the Paleozoic lithospheric 2004; Ma and Xu, 2006). The second model suggests that mantle also differs from the Cenozoic one in geochemical the Mesozoic SCLM has been modified by a Si–Al characteristics. The former is characterized by EMII enriched melt from partial melting of deeply subducted isotopic compositions, such as high 206Pb/204Pb (∼20.2), crustal materials from the South China block (SCB) 87 86 significant variation of Sr/ Sr, and negative ɛNd (−5) (Zhang et al., 2002, 2003). The third model proposes that (Zheng and Lu, 1999; Zhang et al., 2002), while the the Mesozoic SCLM was formed by hybridization of the Cenozoic lithospheric mantle shows Sr–Nd–Pb isotopic upwelling asthenospheric mantle and SiO2-rich melts compositions similar to the mid-ocean ridge basalt from partial melting of the foundered mafic lower (MORB) and ocean island basalt (OIB) (Peng et al., continental crust (Gao et al., 2004; Lustrino, 2005; 1986; Song et al., 1990; Basu et al., 1991). Apparently, the Huang et al., 2007a,b). geochemical features of the lithospheric mantle in eastern Mesozoic volcanic rocks with variable ages are widely China have been significantly changed during the developed in Western Liaoning, the north margin of the evolution from the Paleozoic to the Cenozoic. NCC (Chen et al., 1997, 1999). Four major periods of The reason for the removal and replacement of the volcanism have been identified by stratigraphic studies Paleozoic lithospheric mantle has not been well under- (Chen et al., 1997; Wang et al., 1989): the early Jurassic stood yet. Possible mechanisms include destabilization of (Xinglonggou Formation), the mid-Jurassic (Lanqi For- the NCC due to the Indo-Eurasian collision (Menzies mation in Western Liaoning or Tiaojishan Formation in et al., 1993), mechanical–chemical erosion and replace- Northern Hebei), the early Cretaceous (Yixian Formation), ment by asthenosphere upwelling (Menzies and Xu, and the late early Cretaceous (Zhanglaogongtun Forma- 1998; Xu, 2001; Xu et al., 2004a,b), delamination and tion) (Table 1). Geochronological and geochemical studies foundering of thickened lower continental crust (Gao of these Jurassic–Cretaceous rocks provide an excellent et al., 2004; Wu et al., 2005), destruction of the lithosphere opportunity to probe the evolution of the underlying due to the subduction of oceanic crust in the Paleozoic and lithospheric mantle and to give constraints on the NCC continental crust in the Mesozoic beneath both the lithospheric thinning process. Previous studies have northern and southern margins of the NCC (Zhang mainly focused on the origin of the Mesozoic volcanic et al., 2003), and hydro-weakening of the sub-continental rocks in Western Liaoning (e.g., Chen et al., 1997; Li et al., lithospheric mantle (SCLM) due to migratory or slab- 2001; Shao et al., 2001; Li et al., 2002; Zhang et al., 2003; derived fluids (Niu, 2005). Gao et al., 2004; Wang et al., 2005; Zhang and Zhang, In addition, the mantle sources of the Mesozoic basalts 2005; Zhang et al., 2005a; Li, 2006). However, more data from the NCC are highly heterogeneous, with negative are still required, because (1) only the timing of the Yixian 87 86 ɛNd (up to −20), variable Sr/ Sri,unradiogenicPb Formation (126–120 Ma) has been well dated by both U– isotope ratios, and typical “continental” geochemical Pb and Ar–Ar methods (Swisher et al., 1999, 2001; Wang signatures such as enrichment of large ion lithophile et al., 2001a,b; Zhou et al., 2003; Ji et al., 2004; Yang et al., elements (LILE, e.g., Rb and Ba) and depletion of high 2007) due to the discovery of the famous Jehol biota in the field strength element (HFSE, e.g., Nb and Ta) (Qiou formation (Hou et al., 1995; Hou, 1996; Chen et al., 1998; et al., 1997; Fan et al., 2001; Guo et al., 2001; Qiou et al., Ji et al., 1998), (2) previous geochemical studies mainly 2002; Zhang and Sun, 2002; Zhang et al., 2002, 2003; focused on the high-Sr, low-Yandesites, but neglected the Guo et al., 2003; Chen and Zhai, 2003; Li and Yang, 2003; basalts (e.g., Chen et al., 1997; Li et al., 2001, 2002; Gao Liu et al., 2004a; Xu et al., 2004a,b; Yang et al., 2004; et al., 2004;Wang et al., 2005; Zhang and Zhang, 2005; Zhang et al., 2004, 2005b; Zhang, 2005). These features Zhangetal.,2005a;Li,2006), and (3) the published are not consistent with a source in either the Paleozoic or geochemical data have not been well related to the regional Cenozoic lithospheric mantle (Peng et al., 1986; Song tectonic evolution, which is critical in discussion of the et al., 1990; Basu et al., 1991; Zhang et al., 2002). The mechanism of the lithospheric thinning. 90 W. Yang, S. Li / Lithos 102 (2008) 88–117 Table 1 A summary table showing the strata units in Western Liaoning, volcanic rock types, ages, geochemical characteristics, tectonic settings and interpretations Strata Isotopic age Rock types Geochemical Tectonics Interpretations range (Ma) characteristics The Sunjiawan Formation The Zhanglaogongtun ca. 106 Basalt Alkaline basalts Asthenospheric Formation with MORB-like upwelling caused by Sr–Nd–Pb isotopic ratios. the large scale E–W extension. The Fuxin Formation The strike-slip Tan-Lu fault was transformed into an extensional graben. The Jiufotang Formation The Yixian 126–120 Basalt, Basalts and basaltic andesites Large sale strike-slip Foundering of the Formation basaltic andesite, show the typical continent of the Tan-Lu fault, mafic lower andesite and rhyolite. geochemical signatures and which caused the continental crust relative higher Mg, Ni and Cr lithosphere destruction contents.
Recommended publications
  • Uplift, Rupture, and Rollback of the Farallon Slab Reflected in Volcanic
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Uplift, rupture, and rollback of the Farallon slab reflected 10.1002/2017JB014517 in volcanic perturbations along the Yellowstone Key Points: adakite hot spot track • Volcanic perturbations in the Cascadia back-arc region are derived from uplift Victor E. Camp1 , Martin E. Ross2, Robert A. Duncan3, and David L. Kimbrough1 and dismemberment of the Farallon slab from ~30 to 20 Ma 1Department of Geological Sciences, San Diego State University, San Diego, California, USA, 2Department of Earth and • Slab uplift and concurrent melting 3 above the Yellowstone plume Environmental Sciences, Northeastern University, Boston, Massachusetts, USA, College of Earth, Ocean, and Atmospheric promoted high-K calc-alkaline Sciences, Oregon State University, Corvallis, Oregon, USA volcanism and adakite generation • Creation of a seismic hole beneath eastern Oregon resulted from thermal Abstract Field, geochemical, and geochronological data show that the southern segment of the ancestral erosion and slab rupture, followed by Cascades arc advanced into the Oregon back-arc region from 30 to 20 Ma. We attribute this event to thermal a period of slab rollback uplift of the Farallon slab by the Yellowstone mantle plume, with heat diffusion, decompression, and the release of volatiles promoting high-K calc-alkaline volcanism throughout the back-arc region. The greatest Supporting Information: • Supporting Information S1 degree of heating is expressed at the surface by a broad ENE-trending zone of adakites and related rocks • Data Set S1 generated by melting of oceanic crust from the Farallon slab. A hiatus in eruptive activity began at ca. • Data Set S2 22–20 Ma but ended abruptly at 16.7 Ma with renewed volcanism from slab rupture occurring in two separate • Data Set S3 regions.
    [Show full text]
  • Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From
    feart-08-00121 May 7, 2020 Time: 11:30 # 1 ORIGINAL RESEARCH published: 08 May 2020 doi: 10.3389/feart.2020.00121 Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From Edited by: Marina Manea, Geochemical and Seismic National Autonomous University of Mexico, Mexico Tomographic Data Reviewed by: 1,2 1,2 1,2 1,2 Luca Ferrari, Sofía B. Iannelli *, Lucía Fernández Paz , Vanesa D. Litvak , Guido Gianni , Geosciences Center, National Lucas M. Fennell1,2, Javiera González3, Friedrich Lucassen4, Simone Kasemann4, Autonomous University of Mexico, Verónica Oliveros3 and Andrés Folguera1,2 Mexico 1 2 Jiashun Hu, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Estudios 3 California Institute of Technology, Andinos ‘Don Pablo Groeber’, CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento 4 United States de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile, MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany *Correspondence: Sofía B. Iannelli sofi[email protected] Since the initial proposal of the past existence of a southward-directed mid-ocean ridge–subduction interaction in the Andes during Late Cretaceous–Paleogene times, Specialty section: This article was submitted to several studies have been devoted to uncover the tectonomagmatic evidence of this Structural Geology and Tectonics, process. The collision of a spreading ridge against a subduction margin provokes a section of the journal important tectonomagmatic changes, including, between them, variations in arc-related Frontiers in Earth Science magmatic activity and in the plate-margin stress regime.
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Masterarbeit
    MASTERARBEIT Titel der Masterarbeit Late Cretaceous Volcaniclastic Rocks in the Pontides (NW Turkey) verfasst von Katharina Böhm BSc angestrebter akademischer Grad Master of Science (M.Sc.) Wien, 2015 Studienkennzahl lt. Studienblatt: A 066 815 Studienrichtung lt. Studienblatt: Erdwissenschaften Betreuerin / Betreuer: Ao. Univ.-Prof. Dr. Michael Wagreich Declaration ”I hereby declare that this master’s thesis was authored by myself independently, without use of other sources than indicated. I have explicitly cited all material which has been quoted either literally or by content from the used sources. Further this work was neither submitted in Austria nor abroad for any degree or examination.” Contents Declaration2 1. Introduction8 1.1. Project.................................. 9 1.1.1. Goals............................... 9 1.2. Geographical setting.......................... 10 1.3. Geological setting............................ 12 1.3.1. The Pontides........................... 14 1.3.2. The Pontides in the Cretaceous................ 18 1.3.3. Correlation with relative ages.................. 24 2. Nomenclature 28 3. Methods 29 3.1. ICP-ES and ICP-MS........................... 29 3.2. PXRD.................................. 29 3.3. Heavy mineral extraction........................ 30 4. Results 31 4.1. Mineralogy................................ 31 4.1.1. Powder X-Ray diffraction.................... 31 4.1.2. Thin sections.......................... 33 4.1.3. Mineral Extraction: Dating of minerals............. 34 4.2. Geochemistry.............................. 36 5. Interpretation of the geochemical results 37 5.1. Mobility of elements........................... 37 5.2. Alteration of minerals.......................... 39 5.3. Determining the rock type........................ 41 3 5.4. Discriminating volcanic series..................... 48 5.5. Revealing the tectonic setting...................... 52 5.6. Plotting geochemical element patterns................. 60 5.7. Summary of the geochemical classification.............. 62 6.
    [Show full text]
  • Experimental Constraints on Adakitic Metasomatism of Mantle Wedge Peridotites Below Patagonia
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Experimental constraints on adakitic metasomatism of mantle wedge peridotites below Patagonia Alexandre Corgne * and Manuel Schilling D. Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile *Contact email: [email protected] Abstract. We performed a series of high-pressure (1.5 and Quaternary alkali lavas in the back-arc region (e.g. GPa) and high-temperature (1000-1300 ºC) experiments to Stern and Kilian, 1996; Gorring et al., 1997). The back-arc investigate the geochemical imprints of adakitic lavas are hosts of frequent mantle xenoliths, the study of metasomatism on mantle wedge peridotite. Reaction which has contributed to a better understanding of the couples were prepared using a powdered adakite from petrological and geochemical variability of the sub- Cerro Pampa (Argentina) placed next to a fragment of continental lithospheric mantle (e.g. Stern et al., 1990, spinel lherzolite from Pali Aike (Chile). Preliminary results 1999; Gorring and Kay, 2000; Laurora et al., 2001; show that the main changes in phase relations are Bertotto, 2002; Kilian and Stern, 2002; Bjerg et al., 2005, incongruent dissolution of olivine and associated 2009; Schilling et al., 2005; Rivalenti et al., 2004; Ntaflos precipitacion of secondary orthopyroxene, incongruent dissolution of primary spinel and formation of secondary et al., 2007; Wang et al., 2008; Dantas et al. 2009). spinel, as well as precipitation of secondary clinopyroxene and in some instances zoned plagioclase.
    [Show full text]
  • The Cretaceous Igneous Rocks in Southeastern Guangxi and Their Implication for Tectonic Environment in Southwestern South China Block
    Open Geosciences 2020; 12: 518–531 Research Article Yang Liu, Nianqiao Fang*, Menglin Qiang, Lei Jia, and Chaojie Song The Cretaceous igneous rocks in southeastern Guangxi and their implication for tectonic environment in southwestern South China Block https://doi.org/10.1515/geo-2020-0160 Keywords: high-magnesian andesites 1, I-type granite 2, received January 9, 2020; accepted May 13, 2020 clastoporphyritic lava 3, Neo-Tethyan Subduction 4, Abstract: Southeastern Guangxi is located in the south- Southwestern South China Block 5 western South China Block and to the northwest of the South China Sea (SCS), with abundant records of the Cretaceous magmatism. A detailed study of igneous rocks will contribute to a better understanding of the late 1 Introduction Mesozoic tectonic environment. Zircon U–Pb dating yields ages of 93.37 ± 0.43 Ma for Yulin andesites and 107.6 ± South China Block lies between the Tethyan tectonic belt fi [ ] 1.2 Ma for Luchuan granites. Yulin andesites are hornblende and Paci c tectonic belt 1 .Itisacrucialperiodfor andesites, of which w(MgO) is between 7.72% and 8.42%, magmatic rocks and mineralization in southwestern South and Mg# is between 66.7 and 68.0, belonging to high China Block in Cretaceous, especially in the range of – [ ] magnesian andesites (HMAs) from peridotite sources. 100 90 Ma 2 . These magmatic rocks are a key to study Luchuan granites are medium- to fine-grained monzogra- the tectonic evolution in this region. More research has - nites. Monzogranites and clastoporphyritic lava are high-K been done by predecessors, including Kunlunguan bath calc-alkaline series and metaluminum to weakly peralumi- olith, Dali rock mass and Dachang dike group with nous series, which belong to the I-type granites.
    [Show full text]
  • Potassic “Adakite” Magmas and Where They Come From: a Mystery Solved? John Clemens Kingston University (London) Long Xiao China University of Geosciences (Wuhan)
    1 Potassic “adakite” magmas and where they come from: a mystery solved? John Clemens Kingston University (London) Long Xiao China University of Geosciences (Wuhan) 2 3 4 . Adakites are volcanic and intrusive igneous rocks with 55 to 65 wt% SiO2, Al2O3 > 15 wt%, K2O/Na2O typically < 0.6, high La/Yb and Sr/Y ratios and strong depletion in Yb, Y, and HFSE. The name is from Adak island in the Alaskan Aleutians (Aleut “adak” = father). They are typically found in island and continental arc settings. Some believe then to be equivalents of Archæan TTG rocks – hence their importance. Their geochemical and isotopic characteristics suggest an origin by partial melting of mafic crust at pressures high enough to stabilise garnet and eliminate plagioclase. 5 . Adakites that occur in arcs have been interpreted as melts of the down-going slab. Thermal models suggest that slab melting should be restricted to young, hot subduction zones. Atherton and Petford (1993) suggested melting of young lower crustal rocks, in the upper plate, as an alternative to slab melting. There is some direct geological evidence for this alternative in some areas. 6 . Late Mesozoic granitoids in eastern China occur over wide areas, and lack either temporal or spatial association with subduction. Apart from their SiO2 contents, some have all the other geochemical attributes of typical subduction-related adakites, including a lack of Eu anomalies in their REE spectra, except that their K2O/Na2O > 0.95. This is possibly an erroneous attribution as “adakitic”. However this occurrence casts doubt on the assumption of a subduction-related origin for all adakitic magmas.
    [Show full text]
  • Experimental Early Crystallization of K-Feldspar in Granitic Systems. Implications on the Origin of Magmatic Fabrics in Granitic Rocks
    Geologica Acta, Vol.15, Nº 4, December 2017, 261-281 DOI: 10.1344/GeologicaActa2017.15.4.2 J. Díaz-Alvarado, 2017 CC BY-SA Experimental early crystallization of K-feldspar in granitic systems. Implications on the origin of magmatic fabrics in granitic rocks J. DÍAZ-ALVARADO1 1Departamento de Geología. Universidad de Atacama Copayapu 485, Copiapó, Chile. E-mail: [email protected] ABS TRACT One of the most outstanding characteristics of some granodioritic to granitic rocks is the presence of K-feldspar megacrysts. For instance, granodiorites and monzogranites of the Spanish Central System batholith present variable amounts of large (up to 10cm in length) euhedral K-feldspar crystals. The porphyritic textures, the euhedral shape, the alignment of plagioclase and biotite inclusions and the magmatic fabrics point to a magmatic origin for these megacrysts. This work presents a phase equilibria study in a high-K2O granodioritic system. A series of experiments were conducted with a granodioritic composition (GEMbiot) to study the crystallization sequence at the emplacement conditions in the Gredos massif, i.e. 4 H2O wt.% and 0.4GPa. Experimental results show that orthopiroxene is the liquidus phase at 1010ºC, which reacts with the H2O-rich melt to stabilize biotite between 980 and 940ºC. Plagioclase crystallizes at around 910ºC, and K-feldspar crystallizes in the matrix between 750 and 700ºC when the crystal fraction is around 0.5. However, at 850ºC, a pelite-doped experiment shows euhedral K-feldspar (≈5vol%) in both the reactive xenolith domain together with cordierite and the granodioritic domain, where the K2O wt.% rose from 4.5 in the normal experiment to 5.9 in the doped experiment.
    [Show full text]
  • Ammonoid Genus Argentiniceras from Kachchh (India) and Its Relevance to J Urassic/Cretaceous Boundary
    Newsl. Stratigr. Berlin · Stuttgart, 28. 3. 1991 Discovery of Lower Berriasian (Lower Creataceous) Ammonoid Genus Argentiniceras from Kachchh (India) and its Relevance to J urassic/Cretaceous Boundary by jAr KRISHNA with 1 plate, 2 figures and 4 tables Abstract. The ammonoid genus Argentiniceras SPATH 1924 (= Andesites GERTH 1925) is described and illustrated from Umia Member (Green Oolitic bed) North of Lakhapar, Western Kachchh, Gujarat. The genus Argentiniceras is a Lower Berriasian form known so far only from South America (Colombia, Peru, Chile, Argentina) and Antarctica (Alexander Island) i.e. the Andean marine fauna! province (also known as S. American or SE Pacific) and it is considered a good marker of Lower Berriasian. This is the first report of this genus from anywhere outside the Andean Province. Its discovery in Jurassic/Cretaceous passage beds helps more precise and better delineation of the Jurassic/Cretaceous boundary in Kachchh. Further, together with the earlier reports of some South American Upper Tithonian genera from India, the present discovery also strengthens the evidence of direct marine connection between Andean and Indo-East-African marine fauna! provinces near the Jurassic/Cretaceous boundary. Resume. Le genre Argentiniceras SPATH 1924 (= Andesites GERTH 1925) decouvert clans le membre Umia (couche oolithique verte) au Nord de Lakhapar (Gujarat, Ouest de l'Inde) est decrit et illustre. D'age Berriasien inferieur, il etait connu jusqu'a present uniquement du Sud de l'Amerique (Colombie, Perou, Chili, Argentine) et de l'Antarctique (Ile Alexander), c'est-a-dire de la province andine. Le genre est considere comme un bon marqueur stratigraphique du Berriasien inferieur et pour la premiere fois est cite en-dehors de la province andine, clans les couches de passage Jurassique-Cretace.
    [Show full text]
  • River Ecosystem Assessment and Application in Ecological Restorations: a Mathematical
    G Model ECOENG-2995; No. of Pages 7 ARTICLE IN PRESS Ecological Engineering xxx (2014) xxx–xxx Contents lists available at ScienceDirect Ecological Engineering jou rnal homepage: www.elsevier.com/locate/ecoleng River ecosystem assessment and application in ecological restorations: A mathematical approach based on evaluating its structure and function a a a,∗ b Xin Jiang , Shiguo Xu , Yuyu Liu , Xuedong Wang a Institute of Water and Environmental Research, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China b Beipiao Ling River Reserve Administration, Beipiao 122100, China a r t i c l e i n f o a b s t r a c t Article history: The river is an essential part of water resources, which has unique ecological structure and function. With Received 30 December 2013 the rapid socio-economic development, the improper use of water resources has led to a series of struc- Received in revised form 3 April 2014 tural and functional decline of the river system, such as water pollution, environmental degradation and Accepted 26 April 2014 river shrinkage. How to restore damaged river ecosystems to an ecologically healthy status has become Available online xxx one of the important environmental issues, which is the key to achieve the goal of productivity improve- ment, ecosystem balance and sustainable development. And also, the structure and function of the river Keywords: ecosystem should be pre-assessed before the restoration. In this paper, the Liangshui River, a tributary of River ecosystem Structure Daling River in the arid region of western Liaoning Province, is selected as a study site.
    [Show full text]
  • Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet: Implications for Mid-Ocean Ridge Subduction and Crustal Growth
    Lithos 190–191 (2014) 240–263 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth Yuan-chuan Zheng a,b,⁎, Zeng-qian Hou b, Ying-li Gong c, Wei Liang a,Qing-ZhongSunb,SongZhanga, Qiang Fu a, Ke-Xian Huang a, Qiu-Yun Li a,WeiLia a School of Earth Sciences and Resources, China University of Geosciences, Beijing 100082, PR China b Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, PR China c Laboratory of Department of Thermal Engineering, Tsinghua University, Beijing 100084, PR China article info abstract Article history: We have conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf–Oisotopic Received 15 August 2013 compositional study of rocks in southern Tibet from the Langxian igneous suite (including a lamprophyre Accepted 16 December 2013 dyke, mafic enclaves, a granodiorite, and a two-mica granite) and the Nuri igneous suite (a quartz–diorite). U– Available online 24 December 2013 Pb zircon dating indicates that the timing of crystallization of the mafic enclaves and host granodiorite of the Langxian suite are ca. 105 Ma and 102 Ma, respectively, that the Langxian lamprophyre dyke and the two- Keywords: – – Geochemistry mica granite were emplaced at ca. 96 Ma and 80 76 Ma, respectively, and that the Nuri quartz diorite was fi U–Pb zircon ages emplaced at ca. 95 Ma. With the exception of the lamprophyre dyke and ma c enclaves in the Langxian area, Zircon Hf–Oisotopes felsic rocks from the Langxian and Nuri igneous suites all show signs of a geochemical affinity with adakite- 18 Adakite-like rocks like rocks.
    [Show full text]
  • Can Slab Melting Be Caused by Flat Subduction? Geology
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234073692 Can slab melting be caused by flat subduction? Geology Article in Geology · June 2000 DOI: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2 CITATIONS READS 428 1,167 4 authors, including: M.-A. Gutscher René C Maury Université de Bretagne Occidentale Université de Bretagne Occidentale 164 PUBLICATIONS 5,573 CITATIONS 356 PUBLICATIONS 11,783 CITATIONS SEE PROFILE SEE PROFILE Erwan Bourdon CFG Services 38 PUBLICATIONS 1,092 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: ACTIVEMARGINS View project Eastern Indonesian Geodynamic Evolution View project All content following this page was uploaded by M.-A. Gutscher on 20 May 2014. The user has requested enhancement of the downloaded file. Can slab melting be caused by flat subduction? Marc-André Gutscher* Laboratoire GTS, UMR 5573, Université Montpellier II, F-34095 Montpellier, France René Maury IUEM/Université Bretagne Occidentale, Place Nicolas Copernic, F-29280 Plouzané, France Jean-Philippe Eissen IRD Centre de Bretagne, B.P. 70, F-29280 Plouzané, France Erwan Bourdon ABSTRACT tion of adakitic magmas for these cases, related to Slab melting has been suggested as a likely source of adakitic arc magmas (i.e., andesitic an unusual subduction geometry known as flat and dacitic magmas strongly depleted in Y and heavy rare earth elements). Existing numerical subduction (Fig. 3) (Sacks, 1983; Pennington, and petrologic models, however, restrict partial melting to very young (<5 Ma) oceanic crust 1984; Cahill and Isacks, 1992; Abbott et al., (typically at 60–80 km depth).
    [Show full text]