bioRxiv preprint doi: https://doi.org/10.1101/777326; this version posted September 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation Georgi Dimchev1,2, Behnam Amiri3, Ashley C. Humphries4,7, Matthias Schaks1,2, Vanessa Dimchev1,2, Theresia E.B. Stradal2, Jan Faix5, Matthias Krause6, Michael Way4, Martin Falcke3,*, and Klemens Rottner1,2,8,* 1Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; 2Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany; 3Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany; 4Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, England, UK; 5Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; 6Randall Centre of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK; 8Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, D-38106, Germany 7present address: Icahn School of Medicine at Mount Sinai, New York, USA *Authors for correspondence: Klemens Rottner or Martin Falcke Klemens Rottner: Phone: +49 531 391 3255, Email:
[email protected] Martin Falcke: Phone: +49 30 9406 2753, Email:
[email protected] Running title: Lamellipodin function in protrusion Key words: lamellipodium, VASP, Arp2/3, WAVE regulatory complex Summary statement: We describe how genetic ablation of the prominent actin- and VASP- binding protein lamellipodin combined with software-aided protrusion analysis uncovers mechanistic insights into its cellular function during cell migration.