Many Ways to Cope with Winter

Total Page:16

File Type:pdf, Size:1020Kb

Many Ways to Cope with Winter Many Ways to Cope With Winter Animals that overwinter in cold climates have adapted to the rigorous conditions of snow, ice, and cold in one of three ways. 1) They migrate, sometimes hundreds of miles to a more plentiful food supply, a few hundred yards to a protected area such as the winter deeryards, or even a few inches to the underside of a rotting log. 2) They may hibernate or enter periods of dormancy through the coldest parts of the winter or 3) they may remain active, foraging and feeding as best they can. Temperature is a key factor for overwintering animals. Until late December the earth continues to retain some of its summer heat, but even so the ground may freeze to a depth varying from a few inches to many feet. The lowest level of freezing is the frost line, below which many animals try to burrow to reduce the chances of freezing to death. Snow helps to hold the earth's warmth by forming a protective insulating layer for the plants and animals underneath it. Absence of snow can cause severe damage and hardship. One study showed that Hibernation or dormancy is the alternative to the temperature of the soil two inches below the migration for animals that cannot remain active in surface was 1.4°F where the ground was bare, and winter. Specific physical adaptations that include, for 30.2°F where soft snow covered the ground, both at instance, a build-up of fat in vertebrate animals and a the same air temperature. Even more dangerous to buildup of an antifreeze type substance in many hibernators, especially insects are intermittent warm insects, enable animals to sleep relatively safely and cold spells. Ideal conditions are steady cold with through all or much of the winter. True hibernators insulating snow cover. breathe slowly and unevenly, their heartbeats slow Migration is not the survival device used by most down, their temperatures drop way down, and they mammals, but on a small scale, downward migration remain in this state throughout the winter months. is how many insects and spiders, reptiles and Three true hibernating mammals are the woodchuck, amphibians arrive at their winter quarters. little brown bat, and jumping mouse. Overwintering insects and spiders who have The bodily processes of dormant animals also summered in bushes and trees descend to weeds and slow way down and the animals become inactive and grass roots. Ground-dwelling insects, snails, “sleep” for part of the winter, but their body earthworms, and salamanders hide under leaf litter temperatures remain higher than those of and in rotten logs; toads burrow into the soil below hibernators, and they may either venture forth during the frost line. Pond creatures creep down into the mild spells or wake and eat some of their stored food. mud or swim to deeper water, which is usually about The skunk, raccoon, and chipmunk are common 39°F. Some amphibians such as leopard frogs and dormant mammals; there continues to be differences pickerel frogs return to the pond in winter. Many of opinion as to whether the bear hibernates or is snakes migrate to their winter quarters, the same dormant. group usually on about the same date each year. The most obvious migrators, of course, are the birds who From Hands-On Nature By J. Lingelbach must move to insure having Vt. Institute of Natural Science 1986 adequate food supplies. Thus warblers and swallows go south to find active insects, water birds seek open water with available food, and sparrows look for uncovered seeds. Hibernation does not happen all of a sudden. Ivy Creek's Mammals in Winter Periods of drowsiness and wakefulness alternate until profound lethargy takes over. A study of DEER will feed all winter although in this area woodchucks showed a variation of from three they will lose 25% of their body weight. Bucks days to a month interval between full activity and will be solitary or in small groups. Does, fawns, deep sleep. Although hibernating animals merely and yearlings tend to group together. look asleep, they are really in quite a different state. The body position of the majority of SQUIRRELS are usually active all winter, eating hibernating mammals is curled up with the hind stored caches of nuts, seeds, and acorns. legs covering the head so the eyes are hidden. RABBITS are active all winter, living in heavy They are motionless, often for days at a time, and brush patches eating bark, twigs, & sedges. breathe very slowly, as little as once per minute. FOX are active, eating mice, rabbits, insects, fruit, Body temperatures fall; a woodchuck's and carrion. hibernating temperature may be as low as 37.4°F, while his summer temperature is around 96.8°F. MICE AND VOLES stay active but may tend to The heart beats slowly and irregularly during gather more in groups for warmth. hibernation, for a woodchuck averaging four to BEAVERS stay active, sometimes holing up in five times per minute, as opposed to 160 times their lodge during cold spells living off of young per minute when active. Awakening from branches which they long ago stored underwater hibernation seems to start with accelerated in preparation for winter. heartbeat followed by a rise in temperature. Finally, the animal opens its eyes, uncurls, RACCOONS will be less active in winter with stretches, and rises to its feet. some long periods of sleep during cold spells. The third, and among mammals most Raccoon, beaver, muskrat and mink are all common, way of coping with winter is to remain trapped in winter as that is when their fur is active. Many active over-wintering animals go thickest and therefore favored. through physiological changes to prepare for OPOSSUMS AND SKUNKS are more inclined to winter. Fat accumulates and fur thickens on most dormancy although their sleep is light and body mammals; a white-tailed deer's winter coat is temperatures only slightly lowered. They come actually composed of hollow hairs to trap extra out to forage during warm days. body heat. Some animals’ feet change in the GROUNDHOG AND CHIPMUNKS are true winter to make walking on the snow easier; for hibernators but may show less pronounced example, scaly projections on the toes of grouse reductions in temperature and activity in VA's and extra fur on the feet of snowshoe hares. The temperate climate. greatest challenge is to find enough food to provide energy for hunting or foraging lvy Creek BATS are all insectivorous and and for keeping warm. Some, like the mink, therefore must migrate to warmer climates or weasel, deer, and rabbit must hunt their hibernate in cracks, trees, & old buildings food daily, having no instinct to store food. lowering their body temperature Others, such as red squirrels and mice, rely on considerably and staying completely caches of hidden seeds and nuts. inert until spring. .
Recommended publications
  • Do Not Disturb Hibernating Bats Or Nursery Colonies Debbie C
    Part 2-Conservation, Management, Ethics: Buecher-Do Not Disturb Bats 43 Section A-Identifying and Protecting Cave Resources Do Not Disturb Hibernating Bats or Nursery Colonies Debbie C. Buecher In the United States, caving has increased in popularity during the last three decades. Unfortunately, human visitation in caves, even by the most conscientious cavers, gradually leaves negative impacts. Because we love our caves there is increasing awareness among the caving community toward performing ongoing restoration or building secure gates to maintain the integrity of caves we visit. However, we must consider the negative implications that our restoration efforts may have on the cave organisms adapted to this unique environment. Roosting Sites and Nursery Colonies Bats are extremely intolerant of human intrusion into their roosting sites (Mann and others 2002, Tuttle 1979) and roost disturbance over time can negatively impact population size (Mohr 1972). (See bat sensitivity, page 40.) Some people mistakenly believe that bats can use any cave or portion of a cave as their daily roosting area. Unfortunately this is not the case (Kunz 1982). Bats choose sites because ofa constrained range of tolerant temperature and humidity requirements-conditions that help insure their survival (McNab 1982). There are two extremely critical times in a bat's life when the roosting site is particularly important, during reproduction and during hibernation (Twente 1955). The location where female bats give birth and rear their young is called a maternity roost. For most temperate bat species that use caves, mating occurs in the fall, the bats then hibernatc until late spring, Figure t.
    [Show full text]
  • Our Legacy of Caring, Scholarship, and Scientific Discovery
    Our Legacy of Caring, Scholarship, and Scientific Discovery Duke Lemur Center EST. 1966, DUKE UNIVERSITY The Duke Lemur Center An extraordinary place exists in the heart of Duke Forest: an 80-acre campus of buildings and forested animal enclosures bustling with students, scientists, and visitors from around the world. They are drawn to this place to see, learn about, and explore the animals that call this place home: a colony of more than 200 of the most endangered mammals on Earth—lemurs. A world leader in the study, care, and protection of lemurs, the Duke Lemur Center (DLC) was established in 1966 on the campus of Duke University in Durham, NC. For over 50 years, the DLC has brought together scientists, conservation biologists, and educators to understand and protect these extraordinary primates and make new and exciting discoveries through interdisciplinary non-invasive research. The DLC works tirelessly not just in Durham but also in in Madagascar, the only place on Earth where lemurs exist in the wild. We’re proud to work with the organizations and people of Madagascar to create opportunities for positive change, and to play a leading role in preventing the island’s legendary population of endemic and endangered national treasures from being lost forever. “To look at the Duke Lemur Center today, you would never know it was once an unknown part of the Duke University campus. Today it’s a thriving hub of learning where Duke students and alumni, scientists, and animal lovers of all ages from around the world explore the importance of lemurs, scientific discovery, and conservation.
    [Show full text]
  • Reproductionreview
    REPRODUCTIONREVIEW Focus on Implantation Embryonic diapause and its regulation Flavia L Lopes, Joe¨lle A Desmarais and Bruce D Murphy Centre de Recherche en Reproduction Animale, Faculte´ de Me´decine Ve´te´rinaire, Universite´ de Montre´al, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S7C6 Correspondence should be addressed to B D Murphy; Email: [email protected] Abstract Embryonic diapause, a condition of temporary suspension of development of the mammalian embryo, occurs due to suppres- sion of cell proliferation at the blastocyst stage. It is an evolutionary strategy to ensure the survival of neonates. Obligate dia- pause occurs in every gestation of some species, while facultative diapause ensues in others, associated with metabolic stress, usually lactation. The onset, maintenance and escape from diapause are regulated by cascades of environmental, hypophyseal, ovarian and uterine mechanisms that vary among species and between the obligate and facultative condition. In the best- known models, the rodents, the uterine environment maintains the embryo in diapause, while estrogens, in combination with growth factors, reinitiate development. Mitotic arrest in the mammalian embryo occurs at the G0 or G1 phase of the cell cycle, and may be due to expression of a specific cell cycle inhibitor. Regulation of proliferation in non- mammalian models of diapause provide clues to orthologous genes whose expression may regulate the reprise of proliferation in the mammalian context. Reproduction (2004) 128 669–678 Introduction recently been discussed in depth (Dey et al. 2004). In this presentation we address the characteristics of the embryo Embryonic diapause, also known as discontinuous devel- in diapause and focus on the mechanisms of regulation of opment or, in mammals, delayed implantation, is among this phenomenon, including the environmental and meta- the evolutionary strategies that ensure successful repro- bolic stimuli that induce and terminate this condition, the duction.
    [Show full text]
  • Introduction to Pregnancy in Waiting: Embryonic Diapause in Mammals Proceedings of the Third International Symposium on Embryonic Diapause
    Proceedings of III International Symposium on Embryonic Diapause DOI: 10.1530/biosciprocs.10.001 Introduction to Pregnancy in Waiting: Embryonic Diapause in Mammals Proceedings of the Third International Symposium on Embryonic Diapause BD Murphy1, K Jewgenow2, MB Renfree3, SE Ulbrich4 1Centre de recherche en reproduction et fertilité, Université de Montréal, Canada 2Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany 3School of BioSciences, University of Melbourne, Australia 4Institute of Agricultural Sciences, ETH Zurich, Switzerland The capacity of the mammalian embryo to arrest development during early gestation is a topic that has fascinated biologists for over 150 years. The first known observation of this phenomenon was in a ruminant, the roe deer (Capreolus capreolus) in 1854, later confirmed in a number of studies in the last century [1]. The phenomenon, now known as embryonic diapause, was then found to be present in a wide range of species and across multiple taxa. Since that time, its biological mystery has attracted studies by scientists from around the globe. The First International Symposium on the topic of embryonic diapause in mammals was held in 1963 at Rice University, Houston, Texas. It resulted in a proceedings volume entitled “Delayed Implantation”, edited by A.C. Enders [2]. The symposium was distinguished by the novel recognition of that era that a wide range of species had been identified with embryonic diapause, including rodents, marsupials and carnivores. The emerging technology of the time, particularly structural approaches, permitted new understanding of the events of diapause and embryo reactivation. The newest methods provided key data on the temporal window of implantation in rodents, introduced new physiological approaches, and illustrated some of the first transmission electron microscope investigations of the blastocyst.
    [Show full text]
  • Embryonic Diapause in Mammals and Dormancy in Embryonic Stem Cells with the European Roe Deer As Experimental Model
    CSIRO PUBLISHING Reproduction, Fertility and Development, 2021, 33, 76–81 https://doi.org/10.1071/RD20256 Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model Vera A. van der WeijdenA,*, Anna B. Ru¨eggA,*, Sandra M. Bernal-UlloaA and Susanne E. UlbrichA,B AETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland. BCorresponding author. Email: [email protected] Abstract. In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4–5 months to reach a diameter of approximately 4 mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy. Keywords: dormancy, embryonic diapause, embryonic stem cells, European roe deer Capreolus capreolus. Published online 8 January 2021 Embryonic diapause conditions. The roe deer is the only known ungulate exhibiting The time between fertilisation and embryo implantation varies embryonic diapause.
    [Show full text]
  • WILDLIFE in WINTER Do You Know What Different Animals Do During the Winter?
    WILDLIFE IN WINTER Do you know what different animals do during the winter? Animals have different strategies for surviving the winter. The most common strategies are hibernation, brumation, diapause, torpor, migration and adaptation. Hibernation Torpor Hibernation occurs when an animal enters a deep sleep Torpor is a state that some animals for the entire winter. Animals that hibernate eat extra food enter during the winter. Similar to during the fall to store up fat before winter begins. When it’s hibernation, the animal lowers its body time to hibernate, the animal drops its body temperature temperature and slows its breathing and by 20 °C or more and slows its heart rate and breathing in heart rate. However, animals that use torpor order to use less energy. during the winter may wake up occasionally or regularly to hunt, eat and defecate. Some animals Brumation are also able to go in and out of torpor regularly, like Brumation is a state of inactivity that cold-blooded creatures when it gets very cold at night. enter during winter. Think of this as hibernation for reptiles and amphibians. During extended cold periods, their bodies Migration produce high levels of sugar and slow or shutdown their Migration is the act of moving from one place to another. internal processes. Some animals can even freeze! Some creatures migrate to a warmer location when the weather gets too cold. They may travel alone or in large Diapause groups to areas where food is plentiful. Diapause occurs when insects pause their development to prepare for winter. Some insects stop all body processes and Adaptation sometimes freeze until the weather warms up in the spring, Adaptation to winter weather can take many different forms.
    [Show full text]
  • Telemetry Experiments with a Hibernating Black Bear
    Paper 37 Telemetry Experiments with a Hibernating Black Bear JOHN J. CRAIGHEAD Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59801 J. R. VARNEY Aeronutronic Ford Corporation, 3939 Fabian Way, Palo Alta, California 9430 F. C. CRAIGHEAD,JR. Environmental Research Institute, Moose, Wyoming 83012 J. S. SUMNER Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana 59801 INTRODUCTION During the winter of 1966-67 the body temperature of a male black bear (Ursus americanus) was telemetered in winter sleep under natural denning conditions (Craighead et al. 1971). To improve equipment and techniques for studying the physiology and behavior of bears under natural conditions, a captive black bear was used to continue the investigations during the winter of 1971-72. This paper describes the experiments and the results. Other investigators (Essler and Folk 1961; Folk et al. 1965, 1968, 1972; Hedge et al. 1965) have studied the physiology and hibernation behavior of captive bears under simulated natural conditions. Our own long-range objectives are to develop the means of obtaining ecological, behavioral and physiological data from unrestrained hibernating animals in the wild through the use of recent electronic and technological advances, including earth-orbiting satel- lites (Craighead et al. 1971). The specific objectives of the work described here were to develop and test telemetry equipment suitable for monitoring a typical physiological parameter (body temperature) by satellite; to refine immobilizing and handling techniques; to visually observe a bear throughout the hibernation period and correlate its behavior with body and den temperatures; and to outline surgical techniques for implanting telemetry transmitters in the body of a wild black bear.
    [Show full text]
  • Overwintering in Tegu Lizards
    Overwintering in Tegu Lizards DENIS V. ANDRADE,1 COLIN SANDERS,1, 2 WILLIAM K. MILSOM,2 AND AUGUSTO S. ABE1 1 Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP, Brasil 2 Department of Zoology, University of British Columbia, Vancouver, BC, Canada Abstract. The tegu, Tupinambis merianae, is a large South American teiid lizard, which is active only during part of the year (hot summer months), spending the cold winter months sheltered in burrows in the ground. This pattern of activity is accompanied by seasonal changes in preferred body temperature, metabolism, and cardiorespiratory function. In the summer months these changes are quite large, but during dormancy, the circadian changes in body temperature observed during the active season are abandoned and the tegus stay in the burrow and al- low body temperature to conform to the ambient thermal profile of the shelter. Metabolism is significantly depressed during dormancy and relatively insensitive to alterations in body temperature. As metabolism is lowered, ventilation, gas exchange, and heart rate are adjusted to match the level of metabolic demand, with concomitant changes in blood gases, blood oxygen transport capacity, and acid-base equilibrium. Seasonality and the Tegu Life Cycle As with any other ectothermic organism, the tegu lizard, Tupinambis merianae, depends on external heat sources to regulate body temperature. Although this type of thermoregulatory strategy conserves energy by avoiding the use of me- tabolism for heat production (Pough, 1983), it requires that the animal inhabit a suitable thermal environment to sustain activity. When the environment does not provide the range of temperatures that enables the animal to be active year round, many species of ectothermic vertebrates become seasonally inactive (Gregory, 1982).
    [Show full text]
  • DORMANCY, CHILL ACCUMULATION, REST-BREAKING and FREEZE DAMAGE – What Are the Risks?
    DORMANCY, CHILL ACCUMULATION, REST-BREAKING AND FREEZE DAMAGE – what are the risks? Kitren Glozer Department of Plant Sciences University of California Davis January 5, 2010 Once the chill requirement has been met, continued cold temperatures maintain the buds in a resting state, but the buds are ‘ready’ to begin growing because internal metabolic inhibitors are no longer present to withhold growth. Those inhibitors have decreased over time as the chill requirement has been satisfied. Bud growth will resume once temperatures become favorable and as the buds become less dormant, more metabolically active, cold-hardiness diminishes. Hardiness is lost very rapidly once buds begin growth. At full bloom, no cold-hardiness exists and killing temperatures do not have to be as low as when some or all cold-hardiness was present. Often there can be a warming period in January or early February that tends to increase flower bud respiration, reduce the depth of the dormant state, reducing winter hardiness. Thus, even without swollen buds or open flowers, temperatures can be low enough to reach the ‘critical temperature’ that will kill buds, and temperatures don’t have to be as cold or cold for as long as when buds are fully dormant for freeze damage to occur. Critical temperatures for the various tree fruits have been established in other areas, such as Michigan and Washington, however, California’s growing conditions are different enough that we can’t depend on the critical temperatures established elsewhere, and we do not have equivalents for California that are exact or published. Damage to the Tree Canopy The tree’s canopy (not just buds, flowers and fruits) may also be damaged by freezes, particularly during the transition into dormancy or out of dormancy when tissues are more active and less cold-hardy.
    [Show full text]
  • Hibernation in Pygmy Lorises (Nycticebus Pygmaeus) – What Does It Mean?
    Vietnamese Journal of Primatology (2017) vol.2(5), 51-57 Hibernation in pygmy lorises (Nycticebus pygmaeus) – what does it mean? Ulrike Streicher1,3, Julia Nowack2, Gabrielle Stalder2, Christian Walzer2, Tilo Nadler3 and Thomas Ruf2 1 Current address: Cascades Raptor Center, Eugene, USA 2 University of Veterinary Medicine, Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria, Savoyenstr. 1, 110 Vienna, Austria 3 Endangered Primate Rescue Center, Cuc Phương National Park, Nho Quan District, Ninh Bình Province, Vietnam Corresponding author: Ulrike Streicher <[email protected]> Key words: South-East Asia, primate, torpor, multiday torpor, pygmy loris, hibernation Summary Torpor use in primates appeared to be restricted to African species and was only recently discovered in a species from Asia, the pygmy loris (Nycticebus pygmaeus). This finding has considerable implications for our perception of torpor in this mammal group and demonstrates that torpor is probably more widespread in mammals than commonly thought. This article summarizes the current knowledge on the use of torpor in the pygmy loris and places it into the context of ongoing research on this topic. Hiện tượng ngủ đông ở loài culi nhỏ (Nycticebus pygmaeus) – Ý nghĩa là gì? Tóm tắt Hiện tượng ngủ đông ở các loài linh trưởng được cho rằng chỉ tồn tại ở một số loài linh trưởng ở Châu Phi. Gần đây hiện tượng này được khám phá ở một loài linh trưởng ở Châu Á, loài culi nhỏ (Nycticebus pygmaeus). Phát hiện mới này có thể thay đổi nhận thức của chúng ta về hiện tượng ngủ đông ở nhóm thú này và nó cũng minh chứng rằng hiện tượng ngủ đông có thể phổ biến ở nhiều loài thú khác hơn những gì chúng ta thường nghĩ.
    [Show full text]
  • Hibernation Metabolism
    Hibernation Metabolism Included below are Teacher’s Notes for some but not all of the slides contained in the Hibernation Metabolism PowerPoint Presentation (DVD included in the Black Bear Box 7-12). Additional information on Hibernation can be obtained at: http://www.bear.org/website/bear-pages/black-bear/hibernation.html Additional information on black bears can be found at www.bear.org and www.bearstudy.org. A helpful resource listing link to many topics on black bears is: http://www.bear.org/website/images/stories/education-outreach/resources/Black_Bear_Basics.pdf Hibernation Metabolism Teacher’s Notes • ©North American Bear Center • www.bear.org Slide 6: Metabolism Bears are heterotrophs and get their energy of metabolism from food. Unlike autotrophs (most plants, algae, cyanobacteria) who can build organic compounds, like sugars, from inorganic compounds like water and carbon dioxide, animals must ingest and then digest already made organic compounds into their simpler building blocks by the process of hydrolysis (catabolism). Building blocks of proteins are amino acids, building blocks of carbohydrates are simple sugars, and building blocks of lipids are fatty acids and glycerol. The process of catabolism releases the energy needed by the cell so that it can synthesize, through anabolism, the carbs, proteins, and lipids needed for the organism to function. The sum total of these life processes of catabolism and anabolism is referred to as metabolism. Slide 7: Homeostasis Homeostasis is important in the functioning of all organisms. All creatures have very complicated systems that have to respond to various environmental and internal stimuli in order to keep the organism operating and regulating so it survives.
    [Show full text]
  • Bud Dormancy in Apple Trees After Thermal Fluctuations
    Bud dormancy in apple trees after thermal fluctuations Rafael Anzanello(1), Flávio Bello Fialho(2), Henrique Pessoa dos Santos(2), Homero Bergamaschi(3) and Gilmar Arduino Bettio Marodin(3) (1)Fundação Estadual de Pesquisa Agropecuária, RSC‑470, Km 170,8, Caixa Postal 44, CEP 95330‑000 Veranópolis, RS, Brazil. E‑mail: rafael‑[email protected] (2)Embrapa Uva e Vinho, Rua Livramento, no 515, Caixa Postal 130, CEP 95700‑000 Bento Gonçalves, RS, Brazil. E‑mail: [email protected], [email protected] (3)Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, no 7.712, CEP 91540‑000 Porto Alegre, RS, Brazil. E‑mail: [email protected], [email protected] Abstract – The objective of this work was to evaluate the effect of heat waves on the evolution of bud dormancy, in apple trees with contrasting chilling requirements. Twigs of 'Castel Gala' and 'Royal Gala' were collected in orchards in Papanduva, state of Santa Catarina, Brazil, and were exposed to constant (3°C) or alternating (3 and 15°C for 12/12 hours) temperature, combined with zero, one or two days a week at 25°C. Two additional treatments were evaluated: constant temperature (3°C), with a heat wave of seven days at 25°C, in the beginning or in the middle of the experimental period. Periodically, part of the twigs was transferred to 25°C for daily budburst evaluation of apical and lateral buds. Endodormancy (dormancy induced by cold) was overcome with less than 330 chilling hours (CH) of constant cold in 'Castel Gala' and less than 618 CH in 'Royal Gala'.
    [Show full text]