Complete Updated Semantic Framework For

Total Page:16

File Type:pdf, Size:1020Kb

Complete Updated Semantic Framework For Ref. Ares(2020)3851682 - 22/07/2020 VirtualBrainCloud Personalized Recommendations for Neurodegenerative Disease www.VirtualBrainCloud-2020.eu Public Deliverable Report M18 deliverable D3.13 (formerly D3.5.1): “Complete, updated semantic framework for neurodegeneration research documented”. Date May 2020 Stephan Gebel, Sumit Madan, Stephan Springstubbe (Fraunhofer) Authors Petra Ritter (CHARITE) © VirtualBrainCloud consortium Dissemination level: public Website www.VirtualBrainCloud-2020.eu This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement No 826421 Table of content 1. Preface ............................................................................................................................................. 3 2. Introduction ..................................................................................................................................... 4 3. Referential Ontology Hub for Applications within Neurosciences (ROHAN) .................................. 5 Description of ROHAN service ................................................................................................. 5 Clinical Trial Ontology .............................................................................................................. 7 Excerpt of ontology curation guideline ................................................................................... 9 Harmonization of Alzheimer’s disease clinical trial variables with extCTO ........................... 10 4. SCAIView-Neuro, a Semantic Search Engine ................................................................................. 10 5. NeuroImaging Feature Terminology (NIFT) ................................................................................... 14 6. NeuroImaging Data Model (NIDM) ............................................................................................... 15 7. Brain Imaging Data Structure (BIDS) ............................................................................................. 17 8. Minimal Information Neuroscience Data Set (MINDS) ................................................................. 18 9. Conclusions .................................................................................................................................... 19 10. Glossary ..................................................................................................................................... 20 2 of 21 © VirtualBrainCloud | public report 1. Preface A key objective of Task 3.4 “Workflows for clinical data curation and processing” and Task 3.5 “A metadata framework for unified metadata annotations and Data Catalogues” within the wider range of the Work Package 3 “Data Processing, Standardization and Data-FAIRification” is to deliver a semantic framework for neurodegenerative diseases, that serves as a central resource for controlled vocabularies and shared ontologies to access and use them within different TVB-Cloud work packages. Within TVB-Cloud two systems will be implemented and made available for the consortium members: • The Ontology Lookup Service (OLS) from Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), and • the CTS2 system from University of Genova (UNIGE). Figure 1: Schema of the Sematic Framework The two deliverables share the same premise, but one was mainly developed by Fraunhofer SCAI and the other by the University of Genoa. With these two deliverables two demonstrators of the websites are made available at the following addresses: • OLS, the ontology lookup service software is being used to host the Referential Ontology Hub for Applications within Neurosciences (ROHAN), which is accessible at https://rohan.scai.fraunhofer.de/ols/index. • CTS2 compliant interface: The read and query part are open to everyone, while the access to the maintenance part is limited by a login. This access can be given to any member that wants to make a trial. The address is: http://www.medinfo.dibris.unige.it/VBC_CTS2 (for more information see delivery D3.14: “Integrated, open source terminology versioning and management tool CTS2 compliant application shared with partners”). 3 of 21 © VirtualBrainCloud | public report 2. Introduction With the TheVirtualBrain Cloud(TVB-Cloud) project, we are building a reference infrastructure for sharing and processing Health and Biomedical research data, specifically data in the domain of neurodegenerative disease (NDD). To enable users to use the data stored in TVB-Cloud platform, the data need to be annotated – that is they receive labels with a certain meaning. The labels are the metadata. Metadata is the data that provides information about the data contained in the infrastructure. Metadata contain the information that can be searched and queried by users to find out what data are available, how they can be accessed and what data formats can be expected. A metadata standard provides a common understanding of the meaning or semantics of the data, to ensure correct and proper use and interpretation of the data. Metadata is "data about data." Many distinct types of metadata exist and there are specialized and well-accepted models to specify types of metadata. E.g. one differentiates between descriptive, structural, and administrative metadata – but also reference metadata and statistical metadata. Standardized concepts to assemble metadata – so called metadata schemes comprise: metadata standards and metadata models. Metadata standard refers to a common understanding of the meaning or semantics of the data. The metadata model defines the relations between classes of meta data. Terminology refers to a group of specialized words or meanings relating to a particular domain, e.g. NDD. Ontologies define formal naming and definition of classes and the relations between the classes for a given domain. For the type of data that is collected in TVB-Cloud, i.e. domain specific health and biomedical research data those standards for metadata and metadata models do not exist to the full extent that would be required. Tools such as controlled vocabularies, taxonomies, thesauri, data dictionaries, and metadata registries can be used to apply standardization to the metadata. So far, such controlled vocabularies in the domain of brain imaging and neurodegenerative disease are incomplete and therefore, as part of TVB-Cloud we are advancing existing terminologies and ontologies. The major effort of this WP is related to the updating of the ontologies that will be used in semantic framework within TVB-Cloud. These ontologies comprise the majority of relevant entities and their relationships that are required to describe and harmonize data and knowledge about neurodegenerative diseases. The newly developed or revised ontologies are included in an ontology store that provides end-users the browsing and searching ability. Concepts and terms from the integrated ontologies will be used for metadata annotation and mapping of variables thereby enabling interoperability of data from clinical trials (see Task 4.1 “Characterization of clinical data sources for modelling”). In addition, a dedicated literature mining environment for brain research is part of the semantic framework. 4 of 21 © VirtualBrainCloud | public report 3. Referential Ontology Hub for Applications within Neurosciences (ROHAN) Description of ROHAN service The ROHAN service is based on the software ‘Ontology Lookup Service’1 (OLS) that is developed by European Bioinformatics Institute (EBI) for exploring ontologies. This hub is a repository for biomedical resources that aims to provide a single point of access to the latest ontology and terminology versions for translational neurodegeneration disease research. ROHAN is developed in the context of Medical Informatics Platform of Human Brain Project and is being extended in TVB-Cloud (Figure 2). The service provides a web-based user interface for exploring and visualizing the ontologies (Figure 3), and additionally, a flexible RESTful API to access the resources programmatically. It also provides an utility that allows to regularly update ontologies with ease. Furthermore, the service includes a search index for terms and synonyms with autocomplete functionality (Figure 4). To manage ontologies, the service also uses a flexible configuration system. The ROHAN service is available at http://rohan.scai.fraunhofer.de/ols. Figure 2: Referential Ontology Hub for Applications within Neurosciences (ROHAN) 1 Source code is available at https://github.com/EBISPOT/OLS 5 of 21 © VirtualBrainCloud | public report Figure 3 Screenshot of a concept page from OLS Clinical Trials ontology Figure 4: Screenshot of the autocomplete functionality of ROHAN By May 20, 2020 the repository contains 14 terminologies and ontologies. Figure 5 shows a screenshot of the resources page of ROHAN service that lists the ontologies. These ontologies comprise the majority of relevant entities and their relationships that are required to describe and harmonize data and knowledge about neurodegenerative diseases. Updating and revision of the ontologies is an ongoing process within WP3 and WP5. In the next section, we describe the updating of the Clinical Trial Ontology. Other ontologies will be updated accordingly, if necessary. 6 of 21 © VirtualBrainCloud | public report Figure 5: Screenshot of terminologies and ontologies integrated into the ontology hub2. Clinical Trial Ontology To model the field of clinical trials, the Clinical Trial
Recommended publications
  • Article Reference
    Article Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines BABIC, Zeljana, et al. Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines. Reference BABIC, Zeljana, et al. Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines. eLife, 2019, vol. 8, p. e41676 DOI : 10.7554/eLife.41676 PMID : 30693867 Available at: http://archive-ouverte.unige.ch/unige:119832 Disclaimer: layout of this document may differ from the published version. 1 / 1 FEATURE ARTICLE META-RESEARCH Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research.
    [Show full text]
  • EN125-Web.Pdf
    ercim-news.ercim.eu Number 125 April 2021 ERCIM NEWS Special theme: Brain-inspired Computing Also in this issue Research and Innovation: Human-like AI JoinCt ONTENTS Editorial Information JOINT ERCIM ACTIONS ERCIM News is the magazine of ERCIM. Published quarterly, it reports 4 ERCIM-JST Joint Symposium on Big Data and on joint actions of the ERCIM partners, and aims to reflect the contribu - Artificial Intelligence tion made by ERCIM to the European Community in Information Technology and Applied Mathematics. Through short articles and news 5 ERCIM “Alain Bensoussan” Fellowship Programme items, it provides a forum for the exchange of information between the institutes and also with the wider scientific community. This issue has a circulation of about 6,000 printed copies and is also available online. SPECIAL THEME ERCIM News is published by ERCIM EEIG The special theme “Brain-inspired Computing” has been BP 93, F-06902 Sophia Antipolis Cedex, France coordinated by the guest editors Robert Haas (IBM +33 4 9238 5010, [email protected] Research Europe) and Michael Pfeiffer (Bosch Center for Director: Philipp Hoschka, ISSN 0926-4981 Artificial Intelligence) Contributions Introduction to the Special Theme Contributions should be submitted to the local editor of your country 6 Brain-inspired Computing by Robert Haas (IBM Research Europe) and Michael Copyrightnotice Pfeiffer (Bosch Center for Artificial Intelligence) All authors, as identified in each article, retain copyright of their work. ERCIM News is licensed under a Creative Commons Attribution
    [Show full text]
  • The NIDDK Information Network: a Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, and Kidney Diseases
    RESEARCH ARTICLE The NIDDK Information Network: A Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, and Kidney Diseases Patricia L. Whetzel1, Jeffrey S. Grethe1, Davis E. Banks1, Maryann E. Martone1,2* 1 Center for Research in Biological Systems, University of California, San Diego, San Diego, California, a11111 United States of America, 2 Dept of Neurosciences, University of California, San Diego, San Diego, California, United States of America * [email protected] Abstract OPEN ACCESS The NIDDK Information Network (dkNET; http://dknet.org) was launched to serve the needs Citation: Whetzel PL, Grethe JS, Banks DE, Martone of basic and clinical investigators in metabolic, digestive and kidney disease by facilitating ME (2015) The NIDDK Information Network: A access to research resources that advance the mission of the National Institute of Diabe- Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, tes and Digestive and Kidney Diseases (NIDDK). By research resources, we mean the and Kidney Diseases. PLoS ONE 10(9): e0136206. multitude of data, software tools, materials, services, projects and organizations available to doi:10.1371/journal.pone.0136206 researchers in the public domain. Most of these are accessed via web-accessible data- Editor: Chun-Hsi Huang, University of Connecticut, bases or web portals, each developed, designed and maintained by numerous different UNITED STATES projects, organizations and individuals. While many of the large government funded data- Received: February 17, 2015 bases, maintained by agencies such as European Bioinformatics Institute and the National Accepted: July 30, 2015 Center for Biotechnology Information, are well known to researchers, many more that have been developed by and for the biomedical research community are unknown or underuti- Published: September 22, 2015 lized.
    [Show full text]
  • Anita Bandrowski, Scicrunch / NIF / RRID [email protected]
    on Anita Bandrowski, Sci Cr unch / NI F / RRI D [email protected] Is Reproducibility really a Problem? Growing Challenge: Ensuring the Rigor and Reproducibility of Science Growing Challenge: Ensuring the Rigor and Reproducibility of Science 4 Rigor and Transparency in Research *New Grant Review Criteria* To support the highest quality science, public accountability, and social responsibility in the conduct of science, NIH’s Rigor and Transparency efforts are intended to clarify expectations and highlight attention to four areas that may need more explicit attention by applicants and reviewers: • Scientific premise • Scientific rigor • Consideration of relevant biological variables, such as sex • Authentication of key biological and/or chemical resources Rigor and Transparency in Research *New Grant Review Criteria* To support the highest quality science, public accountability, and social responsibility in the conduct of science, NIH’s Rigor and Transparency efforts are intended to clarify expectations and highlight attention to four areas that may need more explicit attention by applicants and reviewers: • Scientific premise • Scientific rigor • Consideration of relevant biological variables, such as sex • Authentication of key biological and/or chemical resources What is a Key Biological Resource? • Antibodies • Cell Lines • Organisms (transgenic) Reagents that are the most common failure point in experiments What does it cost to have Key Biological Resource fail sometimes? * Freeman et al, 2017. Reproducibility2020: Progress and priorities
    [Show full text]
  • Plos Progress Update 2014/2015 from the Chairman and Ceo
    PLOS PROGRESS UPDATE 2014/2015 FROM THE CHAIRMAN AND CEO PLOS is dedicated to the transformation of research communication through collaboration, transparency, speed and access. Since its founding, PLOS has demonstrated the viability of high quality, Open Access publishing; launched the ground- breaking PLOS ONE, a home for all sound science selected for its rigor, not its “significance”; developed the first Article- Level Metrics (ALMs) to demonstrate the value of research beyond the perceived status of a journal title; and extended the impact of research after its publication with the PLOS data policy, ALMs and liberal Open Access licensing. But challenges remain. Scientific communication is far from its ideal state. There is still inconsistent access, and research is oered at a snapshot in time, instead of as an evolving contribution whose reliability and significance are continually evaluated through its lifetime. The current state demands that PLOS continue to establish new standards and expectations for scholarly communication. These include a faster and more ecient publication experience, more transparent peer review, assessment though the lifetime of a work, better recognition of the range of contributions made by collaborators and placing researchers and their communities back at the center of scientific communication. To these ends, PLOS is developing ApertaTM, a system that will facilitate and advance the submission and peer review process for authors, editors and reviewers. PLOS is also creating richer and more inclusive forums, such as PLOS Paleontology and PLOS Ecology Communities and the PLOS Science Wednesday redditscience Ask Me Anything. Progress is being made on early posting of manuscripts at PLOS.
    [Show full text]
  • EBRAINS Data and Knowledge Services: FAIR Data and Models for the Neuroscience Community Status at M7 (D4.1 - SGA3)
    EBRAINS Data and Knowledge services: FAIR Data and Models for the Neuroscience Community Status at M7 (D4.1 - SGA3) Figure 1 Key services accessible through EBRAINS Data and Knowledge The background image depicts the graph structure of the active and continuously developing content of the EBRAINS Knowledge Graph (derived from https://kg.ebrains.eu/statistics/) D4.1 (D32) SGA3 M8 ACCEPTED 210504.docx PU = Public 4-May-2021 Page 1 / 30 Project Number: 945539 Project Title: HBP SGA3 Document Title: D4.1 EBRAINS FAIR data services (SC1) status at M7 Document Filename: D4.1 (D32) SGA3 M8 ACCEPTED 210504.docx Deliverable Number: SGA3 D4.1 (D32) Deliverable Type: Other Dissemination Level: PU = Public Planned Delivery Date: SGA3 M7 / 30 Oct 2020 Actual Delivery Date: SGA3 M8 / 13 Nov 2020; resubmitted 27 Apr 2021; accepted 04 May 2021 Jan G. BJAALIE, UIO (P81), Andrew DAVISON, CNRS (P10), Ida AASEBØ, UIO (P81), Author(s): Lyuba ZEHL, JUELICH (P20), Oliver SCHMID, EPFL (P134), Mathew ABRAMS, KI (P37), Simisola AKINTOYE, DMU (P16), William KNIGHT, DMU (P16), Damian EKE, DMU (P16) Compiled by: Martha Elisabeth BRIGG and Roman VOLCHENKOV, UIO (P81) Shailesh APPUKUTTAN, CNRS (P10), Onur ATES, CNRS (P10), Timo DICKSCHEID, JUELICH (P20), Tom GILLESPIE (International Neuroinformatics Coordinating Facility), Xiao GUI, JUELICH (P20), Camilla HAGEN BLIXHAVN, UIO (P81), Anna HILVERLING, JUELICH (P20), Heidi KLEVEN, UIO (P81), Stefan KÖHNEN, JUELICH Contributor(s): (P20), Trygve LEERGAARD, UIO (P81), Elodie LEGOUÉE, CNRS (P10), Glynis MATTHEISEN, CNRS (P10), Maja PUCHADES, UIO (P81), Ingrid REITEN, UIO (P81), Ulrike SCHLEGEL, UIO (P81), Benjamin WEYERS, UT(130), Sara ZAFARNIA, JUELICH (P20), Yann ZERLAUT, CNRS (P10) WP QC Review: Timo DICKSCHEID, JUELICH (P20) WP Leader / Deputy Jan G.
    [Show full text]
  • Improving Data Identification and Tagging for More Effective Decision Making in Agriculture Pascal Neveu, Romain David, Clement Jonquet
    Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu, Romain David, Clement Jonquet To cite this version: Pascal Neveu, Romain David, Clement Jonquet. Improving data identification and tagging for more effective decision making in agriculture. Leisa Armstrong. Improving Data Management and Decision Support Systems in Agriculture, 85, Burleigh Dodds Science Publishing, 2020, Series in Agricultural Science, 978-1-78676-340-2. hal-02164149 HAL Id: hal-02164149 https://hal.archives-ouvertes.fr/hal-02164149 Submitted on 11 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France Abstract Data integration, data analytics and decision support methods can help increase agriculture challenges such as climate change adaptation or food security. In this context, smart data acquisition systems, interoperable information systems and frameworks for data structuring are required. In this chapter we describe methods for data identification and provide some recommendations. We also describe how to enrich data with semantics and a way to tag data with the relevant ontology.
    [Show full text]
  • Data Standards and Guidelines 05/11/2020 Online Event
    Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery The Physical Sciences Data-Science Service (PSDS) Patterns Failed it to Nailed it: Data Standards and Guidelines 05/11/2020 Online Event Dr Samantha Kanza & Dr Nicola Knight University of Southampton 10/12/2020 AI3SD-Event-Series:Report-20 Failed it to Nailed it: Data Standards and Guidelines AI3SD-Event-Series:Report-20 10/12/2020 DOI: 10.5258/SOTON/P0033 Published by University of Southampton Network: Artificial Intelligence and Augmented Intelligence for Automated Invest- igations for Scientific Discovery This Network+ is EPSRC Funded under Grant No: EP/S000356/1 Principal Investigator: Professor Jeremy Frey Co-Investigator: Professor Mahesan Niranjan Network+ Coordinator: Dr Samantha Kanza An EPSRC National Research Facility to facilitate Data Science in the Physical Sciences: The Physical Sciences Data science Service (PSDS) This Facility is EPSRC Funded under Grant No: EP/S020357/1 Principal Investigator: Professor Simon Coles Co-Investigators: Dr Brian Matthews, Dr Juan Bicarregui & Professor Jeremy Frey Contents 1 Event Details1 2 Event Summary and Format1 3 Event Background1 4 Talks 2 4.1 Metadata........................................2 4.1.1 Introduction to Metadata...........................2 4.1.2 Introduction to FAIR.............................2 4.1.3 Data generation, data standards, and metadata capture in drug discovery - Dr Martin-Immanuel Bittner (Arctoris)..................2 4.2 Open Data.......................................8 4.2.1 Introduction to Open Data..........................8 4.2.2 Giving your open data the best chance to realise its potential - Mr Chris Gutteridge (University of Southampton)...................8 4.3 Linked Data....................................... 13 4.3.1 Introduction to Semantic Web Technologies................
    [Show full text]
  • Use Cases and Software Source Code Identification SCID WG
    https://tinyurl.com/qpg7n7m Use Cases and Software Source Code Identification SCID WG 27th March 2020 - RDA 15th Plenary Virtual Meeting https://tinyurl.com/qpg7n7m Contributors (alphabetical order by name) ● Alice Allen, Astronomy Source Code Library & U. Maryland, USA ● Anita Bandrowski - University of California San Diego, USA ● Roberto Di Cosmo - Software Heritage, Inria and University of Paris, France ● Martin Fenner - DataCite, Germany ● Morane Gruenpeter - Inria, Software Heritage, France ● Daniel S. Katz - University of Illinois at Urbana-Champaign, USA ● John Kunze - California Digital Library, University of California, USA ● Moritz Schubotz - swMATH, FIZ Karlsruhe, Germany Agenda https://tinyurl.com/qpg7n7m ● Introduction ○ Objectives, Outputs, Connections to other WG ● Use cases (Archiving, Referencing, Describing, Citing, etc.) ○ Audience may suggest additional use cases ● Identifiers schemas ○ DOIs, Hashes, SWH-ID,Wikidata entities, ARKS, ASCL-ID, RRID, swMATH-ID ● Small group discussion ○ documenting the use case : challenges, pros, and cons of different identifiers per use case ● Report-back and discussion ● Wrap-up https://tinyurl.com/qpg7n7m Introduction Software Source Code Identification Working Group Chronology... Co-chairs Spawned at RDA P11 in Berlin from ● Roberto Di Cosmo ● the RDA SSC IG & ● Martin Fenner ● the FORCE11 SCIWG ● Daniel S. Katz 10/2018 - TAB endorsement Web page https://www.rd-alliance.org/groups/software-source-code-iden tification-wg 4/2019 - RDA P13, Philadelphia ● WG kick-off Repository https://github.com/force11/force11-rda-scidwg
    [Show full text]
  • The Resource Identification Initiative: a Cultural Shift in Publishing [Version 2; Peer Review: 2 Approved]
    F1000Research 2015, 4:134 Last updated: 20 SEP 2021 RESEARCH ARTICLE The Resource Identification Initiative: A cultural shift in publishing [version 2; peer review: 2 approved] Anita Bandrowski1, Matthew Brush2, Jeffery S. Grethe 1, Melissa A. Haendel2, David N. Kennedy 3, Sean Hill 4, Patrick R. Hof5, Maryann E. Martone1, Maaike Pols6, Serena Tan7, Nicole Washington8, Elena Zudilova-Seinstra9, Nicole Vasilevsky 2, Resource Identification Initiative Members are listed here: https://www.force11.org/node/4463/members 1Center for Research in Biological Systems, UCSD, la Jolla, CA, 92093, USA 2Department of Medical Informatics & Clinical Epidemiology, OHSU, Portland, Oregon, 97239, USA 3Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01605, USA 4Karolinska Institutet, Stockholm, 171 77, Sweden 5Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 6Scientific Outreach, Faculty of 1000 Ltd, London, W1T 4LB, UK 7John Wiley and Sons, Hoboken, NJ, 07030, USA 8Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA 9Elsevier, Amsterdam, 1043 NX, The Netherlands v2 First published: 29 May 2015, 4:134 Open Peer Review https://doi.org/10.12688/f1000research.6555.1 Latest published: 19 Nov 2015, 4:134 https://doi.org/10.12688/f1000research.6555.2 Reviewer Status Invited Reviewers Abstract A central tenet in support of research reproducibility is the ability to 1 2 uniquely identify research resources,
    [Show full text]
  • The Neuron Phenotype Ontology: a FAIR Approach to Proposing and Classifying Neuronal Types
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278879; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types Thomas H. Gillespie 1 (https://orcid.org/0000-0002-7509-4801) Shreejoy Tripathy2,3 (https://orcid.org/0000-0002-1007-9061) Mohameth François Sy (https://orcid.org/0000-0002-4603-9838) Maryann E. Martone 1, (https://orcid.org/0000-0002-8406-3871) Sean L. Hill2,3,4 (https://orcid.org/0000-0001-8055-860X) 1Department of Neuroscience, University of California, San Diego 2Department of Psychiatry, University of Toronto 3Krembil Center for Neuroinformatics, Centre for Addiction and Mental Health: Toronto 4Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland Corresponding Author: Sean Hill, Ph.D., [email protected] Blue Brain Project Campus Biotech, EPFL chemin des Mines, 9 Geneva, Switzerland CH-1202 Acknowledgements: This work was supported by NIH Brain Initiative award 5U24MH114827-04, a Canadian Institute for Health Research post-doctoral fellowship and National Institutes of Health grant MH111099, the Krembil Foundation, and by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology . Meetings supporting this work were facilitated by the International Neuroinformatics Coordinating Facility (INCF) through the Neuroinformatics for cell types special interest group.
    [Show full text]
  • Top 10 FAIR Data & Software Things
    Top 10 FAIR Data & Software Things 15 September 2019 Sprinters: Albert Meroño Peñuela, Andrea Scharnhorst, Andrew Mehnert, Aswin Narayanan, Chris Erdmann, Danail Hristozov, Daniel Bangert, Eliane Fankhauser, Ellen Leenarts, Elli Papadopoulou, Emma Lazzeri, Enrico Daga, Evert Rol, Francoise Genova, Frans Huigen, Gerard Coen, Gerry Ryder, Iryna Kuchma, Joanne Yeomans, Jose Manzano Patron, Juande Santander-Vela, Katerina Lenaki, Kathleen Gregory, Kristina Hettne, Leonidas Mouchliadis, Maria Cruz, Marjan Grootveld, Matthew Kenworthy, Matthias Liffers, Natalie Meyers, Paula Andrea Martinez, Ronald Siebes, Spyros Zoupanos, and Stella Stoycheva. Organisations: Athena Research Center, Australian Research Data Commons (ARDC), California Digital Library, Centre de Données astronomiques de Strasbourg, Centre for Advanced Imaging, Centre for Microscopy Characterisation and Analysis, Data Archiving & Networked Services (DANS), EIFL, ELIXIR-Europe, EPFL, FORTH-IESL, FOSTER Open Science, GRACIOUS, Greek Ministry of Education, Greendecision, Göttingen State and University Library, Leiden Observatory, Leiden University, Library Carpentry, National Imaging Facility (NIF) and Characterisation Virtual Laboratory (CVL), National Imaging Facility and Centre for Advanced Imaging,National Research Council of Italy, OpenAire, SKA Organisation: Jodrell Bank Observatory, The Open University, The University of Western Australia, Universitaire Bibliotheken Leiden, University of Notre Dame, University of Nottingham, Vrije Universiteit Amsterdam, and Yordas Group. i About The Top 10 FAIR Data & Software Global Sprint was held online over the course of two- days (29-30 November 2018), where participants from around the world were invited to develop brief guides (stand alone, self-paced training materials), called “Things”, that can be used by the research community to understand FAIR in different contexts but also as starting points for conversations around FAIR.
    [Show full text]