Anita Bandrowski, Scicrunch / NIF / RRID [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Anita Bandrowski, Scicrunch / NIF / RRID Abandrowski@Ucsd.Edu on Anita Bandrowski, Sci Cr unch / NI F / RRI D [email protected] Is Reproducibility really a Problem? Growing Challenge: Ensuring the Rigor and Reproducibility of Science Growing Challenge: Ensuring the Rigor and Reproducibility of Science 4 Rigor and Transparency in Research *New Grant Review Criteria* To support the highest quality science, public accountability, and social responsibility in the conduct of science, NIH’s Rigor and Transparency efforts are intended to clarify expectations and highlight attention to four areas that may need more explicit attention by applicants and reviewers: • Scientific premise • Scientific rigor • Consideration of relevant biological variables, such as sex • Authentication of key biological and/or chemical resources Rigor and Transparency in Research *New Grant Review Criteria* To support the highest quality science, public accountability, and social responsibility in the conduct of science, NIH’s Rigor and Transparency efforts are intended to clarify expectations and highlight attention to four areas that may need more explicit attention by applicants and reviewers: • Scientific premise • Scientific rigor • Consideration of relevant biological variables, such as sex • Authentication of key biological and/or chemical resources What is a Key Biological Resource? • Antibodies • Cell Lines • Organisms (transgenic) Reagents that are the most common failure point in experiments What does it cost to have Key Biological Resource fail sometimes? * Freeman et al, 2017. Reproducibility2020: Progress and priorities Do we know which key biological resources are being used? Papers are currently poor at identifying the simplest part of the paper, the materials used Vasilevsky 2013 Do we publish papers with antibodies that don’t work? How to authenticate antibodies; Validation pillars How to authenticate antibodies; RRID • The authority is antibodyregistry.org • Caveats for antibodies: antibodies may be the same between vendors; check to see if duplicates are reported (catalog number and clone ID may be different, if RRID is the same = same product) • Chose antibodies validated for your application One 3 • Chose antibodies with independent validation: RRID companies • ENCODE ISO 9001: 2008 “discontinued 2016 due to • RRID publications and ISO 13485: animal welfare concerns” • Original manufacturer tag 2003 “Originating Manufacturer of Test each lot for your application this product; Tested • no validation applications: WB/ ELISA” data or MDS “ ENCODE PROJECT External available from Validated by validation DATA SET is released” vendor S cienceExchange Do we publish papers with contaminated cell lines? “Not one of my published papers has led to a retraction by a journal or scientist. Less than 10 corrections have been issued, when each false line I discovered affects the conclusions of hundreds or thousands of papers.” How to authenticate a cell line; What to do ICLAC.org – the International Cell Line Authentication Committee gives some useful guidelines and also provides a list of questionable cell lines. ICLAC suggests: • Verification using sequencing of the cell line as it comes into the lab • Spot checking the cell line on some schedule • Verifying cell line at the end of the experiments • Check with known contaminated cell lines How to authenticate a cell line: RRID Is the cell line, already in my lab, a known problematic cell line? • Check database early and often • http://rrid.site search for your cell line, look for comment “Problematic cell line” • Data is derived from ICLAC list of contaminated cell lines, and it is curated by Cellosaurus • Contamination noted in Not all vendors report 730+ cell lines contamination on their website, note ATCC & ECACC do How can we get better data into papers? • 2009: LAMHDI meeting – project hatched Journals key solution • 2011: Meeting with Society for Neuroscience, Journal of Neuroscience full editorial board presenting the problem and results of text mining study Journals will not change • 2012: Society for Neuroscience – defined the problem for Editors of top Neuroscience journals; sponsored by INCF Journals in aggregate • 2013: NIH Meeting - brought the editors back to define the solution; 2 day workshop sponsored by NIDA and INCF, several IC directors in attendance Funders role • 2013: Society for Neuroscience – mainly publishers, defined the timeline of starting the project • 2014: Neuroscience Information Framework – built scicrunch.org/resources based on NIF technologies and members of the OHSU team populated web pages / instructions etc. RRID based tracking • 2014: Project starts with Journal of Neuroscience, Neuroinformatics, F1000, Brain and Behavior and Journal of Comparative Neurology taking a strong lead Project Management Key • 2015: Paper describing how RRIDs are used by authors of the first 100 papers is co-published in 4 journals • 2016: integration with Hypothes.is tool gives curators an easy way to verify RRIDs, sci-score gives authors an easier way to detect what is a resource Technology innovation RRID Author’s Workflow Journal directs author http://scicrunch.org/resources to RRID portal Author searches for an antibody Paper Author copies becomes ”Cite This” text data into manuscript RRID portal includes: Antibodies 2.5M Paper is Organisms 500K (25 stock center/MODs) published Cell lines 80K Software projects 14K Resources are identifiable! Bandrowski et al, 2015 SciScore, an RRID Shortcut Journal workflow directs methods section to SciScore Report is generated for author Paper becomes Author follows data links adds RRIDs Paper is published SciBot reads a paper and brings back information as an annotation, display is in Hypothes.is https://blog.box.com/b log/introducing- developer-tokens/ Annotated data is used in several applications Data about RRID data fills in the this paper is in data in the Hypothes.is SciCrunch.org/resolver Which other papers used this antibody? RRIDs have been used in ~3000 papers (data is from 1900) 15K RRIDs, 8K are unique so each RRID used avg. twice What are authors saying? July 2016 Who does this? Aug 2016 Sept/Oct 2016 Jan 2016 *Reproducibility of science is critical* *Transparency is achievable* Number of journals where RRIDs are found: 265 Number of journals asking effectively: 15 Number of journals enforcing RRIDs: 10 Next Steps ….we are at 1%, how to get to 100? To ask for RRIDs To bring your journals To help raise awareness of RRIDs (blogs, webinar, newsletters, twitter #RRID) Comments: [email protected] .
Recommended publications
  • Article Reference
    Article Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines BABIC, Zeljana, et al. Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines. Reference BABIC, Zeljana, et al. Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines. eLife, 2019, vol. 8, p. e41676 DOI : 10.7554/eLife.41676 PMID : 30693867 Available at: http://archive-ouverte.unige.ch/unige:119832 Disclaimer: layout of this document may differ from the published version. 1 / 1 FEATURE ARTICLE META-RESEARCH Incidences of problematic cell lines are lower in papers that use RRIDs to identify cell lines Abstract The use of misidentified and contaminated cell lines continues to be a problem in biomedical research.
    [Show full text]
  • EN125-Web.Pdf
    ercim-news.ercim.eu Number 125 April 2021 ERCIM NEWS Special theme: Brain-inspired Computing Also in this issue Research and Innovation: Human-like AI JoinCt ONTENTS Editorial Information JOINT ERCIM ACTIONS ERCIM News is the magazine of ERCIM. Published quarterly, it reports 4 ERCIM-JST Joint Symposium on Big Data and on joint actions of the ERCIM partners, and aims to reflect the contribu - Artificial Intelligence tion made by ERCIM to the European Community in Information Technology and Applied Mathematics. Through short articles and news 5 ERCIM “Alain Bensoussan” Fellowship Programme items, it provides a forum for the exchange of information between the institutes and also with the wider scientific community. This issue has a circulation of about 6,000 printed copies and is also available online. SPECIAL THEME ERCIM News is published by ERCIM EEIG The special theme “Brain-inspired Computing” has been BP 93, F-06902 Sophia Antipolis Cedex, France coordinated by the guest editors Robert Haas (IBM +33 4 9238 5010, [email protected] Research Europe) and Michael Pfeiffer (Bosch Center for Director: Philipp Hoschka, ISSN 0926-4981 Artificial Intelligence) Contributions Introduction to the Special Theme Contributions should be submitted to the local editor of your country 6 Brain-inspired Computing by Robert Haas (IBM Research Europe) and Michael Copyrightnotice Pfeiffer (Bosch Center for Artificial Intelligence) All authors, as identified in each article, retain copyright of their work. ERCIM News is licensed under a Creative Commons Attribution
    [Show full text]
  • The NIDDK Information Network: a Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, and Kidney Diseases
    RESEARCH ARTICLE The NIDDK Information Network: A Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, and Kidney Diseases Patricia L. Whetzel1, Jeffrey S. Grethe1, Davis E. Banks1, Maryann E. Martone1,2* 1 Center for Research in Biological Systems, University of California, San Diego, San Diego, California, a11111 United States of America, 2 Dept of Neurosciences, University of California, San Diego, San Diego, California, United States of America * [email protected] Abstract OPEN ACCESS The NIDDK Information Network (dkNET; http://dknet.org) was launched to serve the needs Citation: Whetzel PL, Grethe JS, Banks DE, Martone of basic and clinical investigators in metabolic, digestive and kidney disease by facilitating ME (2015) The NIDDK Information Network: A access to research resources that advance the mission of the National Institute of Diabe- Community Portal for Finding Data, Materials, and Tools for Researchers Studying Diabetes, Digestive, tes and Digestive and Kidney Diseases (NIDDK). By research resources, we mean the and Kidney Diseases. PLoS ONE 10(9): e0136206. multitude of data, software tools, materials, services, projects and organizations available to doi:10.1371/journal.pone.0136206 researchers in the public domain. Most of these are accessed via web-accessible data- Editor: Chun-Hsi Huang, University of Connecticut, bases or web portals, each developed, designed and maintained by numerous different UNITED STATES projects, organizations and individuals. While many of the large government funded data- Received: February 17, 2015 bases, maintained by agencies such as European Bioinformatics Institute and the National Accepted: July 30, 2015 Center for Biotechnology Information, are well known to researchers, many more that have been developed by and for the biomedical research community are unknown or underuti- Published: September 22, 2015 lized.
    [Show full text]
  • Plos Progress Update 2014/2015 from the Chairman and Ceo
    PLOS PROGRESS UPDATE 2014/2015 FROM THE CHAIRMAN AND CEO PLOS is dedicated to the transformation of research communication through collaboration, transparency, speed and access. Since its founding, PLOS has demonstrated the viability of high quality, Open Access publishing; launched the ground- breaking PLOS ONE, a home for all sound science selected for its rigor, not its “significance”; developed the first Article- Level Metrics (ALMs) to demonstrate the value of research beyond the perceived status of a journal title; and extended the impact of research after its publication with the PLOS data policy, ALMs and liberal Open Access licensing. But challenges remain. Scientific communication is far from its ideal state. There is still inconsistent access, and research is oered at a snapshot in time, instead of as an evolving contribution whose reliability and significance are continually evaluated through its lifetime. The current state demands that PLOS continue to establish new standards and expectations for scholarly communication. These include a faster and more ecient publication experience, more transparent peer review, assessment though the lifetime of a work, better recognition of the range of contributions made by collaborators and placing researchers and their communities back at the center of scientific communication. To these ends, PLOS is developing ApertaTM, a system that will facilitate and advance the submission and peer review process for authors, editors and reviewers. PLOS is also creating richer and more inclusive forums, such as PLOS Paleontology and PLOS Ecology Communities and the PLOS Science Wednesday redditscience Ask Me Anything. Progress is being made on early posting of manuscripts at PLOS.
    [Show full text]
  • EBRAINS Data and Knowledge Services: FAIR Data and Models for the Neuroscience Community Status at M7 (D4.1 - SGA3)
    EBRAINS Data and Knowledge services: FAIR Data and Models for the Neuroscience Community Status at M7 (D4.1 - SGA3) Figure 1 Key services accessible through EBRAINS Data and Knowledge The background image depicts the graph structure of the active and continuously developing content of the EBRAINS Knowledge Graph (derived from https://kg.ebrains.eu/statistics/) D4.1 (D32) SGA3 M8 ACCEPTED 210504.docx PU = Public 4-May-2021 Page 1 / 30 Project Number: 945539 Project Title: HBP SGA3 Document Title: D4.1 EBRAINS FAIR data services (SC1) status at M7 Document Filename: D4.1 (D32) SGA3 M8 ACCEPTED 210504.docx Deliverable Number: SGA3 D4.1 (D32) Deliverable Type: Other Dissemination Level: PU = Public Planned Delivery Date: SGA3 M7 / 30 Oct 2020 Actual Delivery Date: SGA3 M8 / 13 Nov 2020; resubmitted 27 Apr 2021; accepted 04 May 2021 Jan G. BJAALIE, UIO (P81), Andrew DAVISON, CNRS (P10), Ida AASEBØ, UIO (P81), Author(s): Lyuba ZEHL, JUELICH (P20), Oliver SCHMID, EPFL (P134), Mathew ABRAMS, KI (P37), Simisola AKINTOYE, DMU (P16), William KNIGHT, DMU (P16), Damian EKE, DMU (P16) Compiled by: Martha Elisabeth BRIGG and Roman VOLCHENKOV, UIO (P81) Shailesh APPUKUTTAN, CNRS (P10), Onur ATES, CNRS (P10), Timo DICKSCHEID, JUELICH (P20), Tom GILLESPIE (International Neuroinformatics Coordinating Facility), Xiao GUI, JUELICH (P20), Camilla HAGEN BLIXHAVN, UIO (P81), Anna HILVERLING, JUELICH (P20), Heidi KLEVEN, UIO (P81), Stefan KÖHNEN, JUELICH Contributor(s): (P20), Trygve LEERGAARD, UIO (P81), Elodie LEGOUÉE, CNRS (P10), Glynis MATTHEISEN, CNRS (P10), Maja PUCHADES, UIO (P81), Ingrid REITEN, UIO (P81), Ulrike SCHLEGEL, UIO (P81), Benjamin WEYERS, UT(130), Sara ZAFARNIA, JUELICH (P20), Yann ZERLAUT, CNRS (P10) WP QC Review: Timo DICKSCHEID, JUELICH (P20) WP Leader / Deputy Jan G.
    [Show full text]
  • Improving Data Identification and Tagging for More Effective Decision Making in Agriculture Pascal Neveu, Romain David, Clement Jonquet
    Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu, Romain David, Clement Jonquet To cite this version: Pascal Neveu, Romain David, Clement Jonquet. Improving data identification and tagging for more effective decision making in agriculture. Leisa Armstrong. Improving Data Management and Decision Support Systems in Agriculture, 85, Burleigh Dodds Science Publishing, 2020, Series in Agricultural Science, 978-1-78676-340-2. hal-02164149 HAL Id: hal-02164149 https://hal.archives-ouvertes.fr/hal-02164149 Submitted on 11 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France Abstract Data integration, data analytics and decision support methods can help increase agriculture challenges such as climate change adaptation or food security. In this context, smart data acquisition systems, interoperable information systems and frameworks for data structuring are required. In this chapter we describe methods for data identification and provide some recommendations. We also describe how to enrich data with semantics and a way to tag data with the relevant ontology.
    [Show full text]
  • Data Standards and Guidelines 05/11/2020 Online Event
    Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery The Physical Sciences Data-Science Service (PSDS) Patterns Failed it to Nailed it: Data Standards and Guidelines 05/11/2020 Online Event Dr Samantha Kanza & Dr Nicola Knight University of Southampton 10/12/2020 AI3SD-Event-Series:Report-20 Failed it to Nailed it: Data Standards and Guidelines AI3SD-Event-Series:Report-20 10/12/2020 DOI: 10.5258/SOTON/P0033 Published by University of Southampton Network: Artificial Intelligence and Augmented Intelligence for Automated Invest- igations for Scientific Discovery This Network+ is EPSRC Funded under Grant No: EP/S000356/1 Principal Investigator: Professor Jeremy Frey Co-Investigator: Professor Mahesan Niranjan Network+ Coordinator: Dr Samantha Kanza An EPSRC National Research Facility to facilitate Data Science in the Physical Sciences: The Physical Sciences Data science Service (PSDS) This Facility is EPSRC Funded under Grant No: EP/S020357/1 Principal Investigator: Professor Simon Coles Co-Investigators: Dr Brian Matthews, Dr Juan Bicarregui & Professor Jeremy Frey Contents 1 Event Details1 2 Event Summary and Format1 3 Event Background1 4 Talks 2 4.1 Metadata........................................2 4.1.1 Introduction to Metadata...........................2 4.1.2 Introduction to FAIR.............................2 4.1.3 Data generation, data standards, and metadata capture in drug discovery - Dr Martin-Immanuel Bittner (Arctoris)..................2 4.2 Open Data.......................................8 4.2.1 Introduction to Open Data..........................8 4.2.2 Giving your open data the best chance to realise its potential - Mr Chris Gutteridge (University of Southampton)...................8 4.3 Linked Data....................................... 13 4.3.1 Introduction to Semantic Web Technologies................
    [Show full text]
  • Use Cases and Software Source Code Identification SCID WG
    https://tinyurl.com/qpg7n7m Use Cases and Software Source Code Identification SCID WG 27th March 2020 - RDA 15th Plenary Virtual Meeting https://tinyurl.com/qpg7n7m Contributors (alphabetical order by name) ● Alice Allen, Astronomy Source Code Library & U. Maryland, USA ● Anita Bandrowski - University of California San Diego, USA ● Roberto Di Cosmo - Software Heritage, Inria and University of Paris, France ● Martin Fenner - DataCite, Germany ● Morane Gruenpeter - Inria, Software Heritage, France ● Daniel S. Katz - University of Illinois at Urbana-Champaign, USA ● John Kunze - California Digital Library, University of California, USA ● Moritz Schubotz - swMATH, FIZ Karlsruhe, Germany Agenda https://tinyurl.com/qpg7n7m ● Introduction ○ Objectives, Outputs, Connections to other WG ● Use cases (Archiving, Referencing, Describing, Citing, etc.) ○ Audience may suggest additional use cases ● Identifiers schemas ○ DOIs, Hashes, SWH-ID,Wikidata entities, ARKS, ASCL-ID, RRID, swMATH-ID ● Small group discussion ○ documenting the use case : challenges, pros, and cons of different identifiers per use case ● Report-back and discussion ● Wrap-up https://tinyurl.com/qpg7n7m Introduction Software Source Code Identification Working Group Chronology... Co-chairs Spawned at RDA P11 in Berlin from ● Roberto Di Cosmo ● the RDA SSC IG & ● Martin Fenner ● the FORCE11 SCIWG ● Daniel S. Katz 10/2018 - TAB endorsement Web page https://www.rd-alliance.org/groups/software-source-code-iden tification-wg 4/2019 - RDA P13, Philadelphia ● WG kick-off Repository https://github.com/force11/force11-rda-scidwg
    [Show full text]
  • The Resource Identification Initiative: a Cultural Shift in Publishing [Version 2; Peer Review: 2 Approved]
    F1000Research 2015, 4:134 Last updated: 20 SEP 2021 RESEARCH ARTICLE The Resource Identification Initiative: A cultural shift in publishing [version 2; peer review: 2 approved] Anita Bandrowski1, Matthew Brush2, Jeffery S. Grethe 1, Melissa A. Haendel2, David N. Kennedy 3, Sean Hill 4, Patrick R. Hof5, Maryann E. Martone1, Maaike Pols6, Serena Tan7, Nicole Washington8, Elena Zudilova-Seinstra9, Nicole Vasilevsky 2, Resource Identification Initiative Members are listed here: https://www.force11.org/node/4463/members 1Center for Research in Biological Systems, UCSD, la Jolla, CA, 92093, USA 2Department of Medical Informatics & Clinical Epidemiology, OHSU, Portland, Oregon, 97239, USA 3Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01605, USA 4Karolinska Institutet, Stockholm, 171 77, Sweden 5Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 6Scientific Outreach, Faculty of 1000 Ltd, London, W1T 4LB, UK 7John Wiley and Sons, Hoboken, NJ, 07030, USA 8Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA 9Elsevier, Amsterdam, 1043 NX, The Netherlands v2 First published: 29 May 2015, 4:134 Open Peer Review https://doi.org/10.12688/f1000research.6555.1 Latest published: 19 Nov 2015, 4:134 https://doi.org/10.12688/f1000research.6555.2 Reviewer Status Invited Reviewers Abstract A central tenet in support of research reproducibility is the ability to 1 2 uniquely identify research resources,
    [Show full text]
  • The Neuron Phenotype Ontology: a FAIR Approach to Proposing and Classifying Neuronal Types
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278879; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types Thomas H. Gillespie 1 (https://orcid.org/0000-0002-7509-4801) Shreejoy Tripathy2,3 (https://orcid.org/0000-0002-1007-9061) Mohameth François Sy (https://orcid.org/0000-0002-4603-9838) Maryann E. Martone 1, (https://orcid.org/0000-0002-8406-3871) Sean L. Hill2,3,4 (https://orcid.org/0000-0001-8055-860X) 1Department of Neuroscience, University of California, San Diego 2Department of Psychiatry, University of Toronto 3Krembil Center for Neuroinformatics, Centre for Addiction and Mental Health: Toronto 4Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland Corresponding Author: Sean Hill, Ph.D., [email protected] Blue Brain Project Campus Biotech, EPFL chemin des Mines, 9 Geneva, Switzerland CH-1202 Acknowledgements: This work was supported by NIH Brain Initiative award 5U24MH114827-04, a Canadian Institute for Health Research post-doctoral fellowship and National Institutes of Health grant MH111099, the Krembil Foundation, and by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology . Meetings supporting this work were facilitated by the International Neuroinformatics Coordinating Facility (INCF) through the Neuroinformatics for cell types special interest group.
    [Show full text]
  • Top 10 FAIR Data & Software Things
    Top 10 FAIR Data & Software Things 15 September 2019 Sprinters: Albert Meroño Peñuela, Andrea Scharnhorst, Andrew Mehnert, Aswin Narayanan, Chris Erdmann, Danail Hristozov, Daniel Bangert, Eliane Fankhauser, Ellen Leenarts, Elli Papadopoulou, Emma Lazzeri, Enrico Daga, Evert Rol, Francoise Genova, Frans Huigen, Gerard Coen, Gerry Ryder, Iryna Kuchma, Joanne Yeomans, Jose Manzano Patron, Juande Santander-Vela, Katerina Lenaki, Kathleen Gregory, Kristina Hettne, Leonidas Mouchliadis, Maria Cruz, Marjan Grootveld, Matthew Kenworthy, Matthias Liffers, Natalie Meyers, Paula Andrea Martinez, Ronald Siebes, Spyros Zoupanos, and Stella Stoycheva. Organisations: Athena Research Center, Australian Research Data Commons (ARDC), California Digital Library, Centre de Données astronomiques de Strasbourg, Centre for Advanced Imaging, Centre for Microscopy Characterisation and Analysis, Data Archiving & Networked Services (DANS), EIFL, ELIXIR-Europe, EPFL, FORTH-IESL, FOSTER Open Science, GRACIOUS, Greek Ministry of Education, Greendecision, Göttingen State and University Library, Leiden Observatory, Leiden University, Library Carpentry, National Imaging Facility (NIF) and Characterisation Virtual Laboratory (CVL), National Imaging Facility and Centre for Advanced Imaging,National Research Council of Italy, OpenAire, SKA Organisation: Jodrell Bank Observatory, The Open University, The University of Western Australia, Universitaire Bibliotheken Leiden, University of Notre Dame, University of Nottingham, Vrije Universiteit Amsterdam, and Yordas Group. i About The Top 10 FAIR Data & Software Global Sprint was held online over the course of two- days (29-30 November 2018), where participants from around the world were invited to develop brief guides (stand alone, self-paced training materials), called “Things”, that can be used by the research community to understand FAIR in different contexts but also as starting points for conversations around FAIR.
    [Show full text]
  • Detecting Anatomical and Functional Connectivity Relations In
    Detecting Anatomical and Functional Connectivity Relations in Biomedical Literature via Language Representation Models Ibrahim Burak Ozyurt Joseph Menke Anita Bandrowski FDI Lab Dept. of Neuroscience Scicrunch.com FDI Lab Dept. of Neuroscience UCSD La Jolla, USA San Diego, USA UCSD La Jolla, USA [email protected] [email protected] [email protected] Maryann E. Martone FDI Lab Dept. of Neuroscience UCSD La Jolla, USA [email protected] Abstract are they sufficiently detailed to include the granu- lar paths that these nerves travel. Such information Understanding of nerve-organ interactions is would be needed, for example, to understand where crucial to facilitate the development of effec- reliable access points to a particular nerve might tive bioelectronic treatments. Towards the end of developing a systematized and computable be so that stimulation only affects the most rele- wiring diagram of the autonomic nervous sys- vant nerve or to understand the mechanisms behind tem (ANS), we introduce a curated ANS con- stimulation applied at particular locations. Many nectivity corpus together with several neural scientific studies contain information about individ- language representation model based connec- ual nerves and at times the paths they traverse, but tivity relation extraction systems. We also to our knowledge, no systematic approach has been show that active learning guided curation for attempted to bring these large quantities of infor- labeled corpus expansion significantly outper- mation together into a computationally accessible forms randomly selecting connectivity relation candidates minimizing curation effort. Our fi- format. nal relation extraction system achieves F1 = The SPARC project is building a cross-species 72.8% on anatomical connectivity and F1 = connectivity knowledge base that contains detailed 74.6% on functional connectivity relation ex- information about individual nerves, their path- traction.
    [Show full text]