The Neat Surrender

Total Page:16

File Type:pdf, Size:1020Kb

The Neat Surrender NOTES NOTES THE NEAT 1941 Terylene SURRENDER Tougher and more resilient than nylon, the first commercial polyester Andy Thomas meets John Simons, fibre was patented by British pioneer of the mod aesthetic chemists John Rex Whinfield and James Tennant for the Calico Printers’ Association. ‘It may only have been a small shop dressed men of his neighbourhood. was a real eye opener for me. Of around 80% of the male market – named by Simons after Rod 1958 tucked away in what was at that time ‘Back then everyone went to bespoke course you also had Ronnie’s and from thugs to presidents.’ Harrington: a character played by a rather quiet corner of Covent tailors and the East End was full of The Flamingo and other little jazz Inspired by both American and Ryan O’Neal in a soap opera called Spandex Garden, but John Simons’ clothes them, places like Alfred Myers and clubs like The Florida, there were so European tailoring – but wanting to Peyton Place. ‘I went to see A polyether-polyurea copolymer shop became the fulcrum of a whole Millers,’ he recalls. It wasn’t long many places like that. At 16, I was provide something fresh for London’s Baracuta (the company who made invented by Joseph Shivers for kind of scene,’ writes JP Gaul in The before John was being measured up like a piece of blotting paper soaking young modernists – Simons opened the G9) and asked if I could see DuPont. An acronym of ‘expands’ Ivy Look. ‘Men of all backgrounds at his first tailors. ‘I got a shirt made in all this new music, style and art. his first shop, Clothesville, in 1963, their export stuff,’ recalls Simons. due to its elasticity, it is also known came together to get hold of the very for my Bar Mitzvah by Ron And soon us young guys into all this next door to the Hackney Empire. ‘There was this guy called John as Lycra in certain markets, best of traditional American style, Hitchins,’ he says. ‘He was a stuff were being called modernists,’ ‘The first pieces were inspired by a Beddingfield who was a great jazz including the UK, Brazil, Australia Oxford cloth, button-down popovers he recalls. ‘We were buying all the short corduroy coat by Burberry – drummer working there. He would and Israel. from Troy Guild, soft, finely tailored modern jazz records coming out of but with a button-down collar,’ he take the slight seconds and put natural shoulder jackets from Linet, ‘YOU’D GET THE America and seeing all the covers says. ‘We followed it with these them aside for us at really low the G9 blouson… it was all there.’ BARROW BOYS NEXT TO with people like Miles Davis, Chet reefer jackets. It was basically things prices. And all this was informing It was 1981 and JP Gaul was doing Baker and Jimmy Smith – all looking that we wanted to wear.’ the new mod culture that had been 1973 what in-the-know modernists had THE LANDED GENTRY’ extremely stylish. In Soho, you’d see After the success of the Hackney created by then.’ In 1969 he opened been doing since the Sixties: all these young Italian waiters who store, he opened another Clothesville his first West End store, The Squire Kevlar searching the rails of John Simons’ were really well dressed. So these in Walthamstow, but it was in South Shop on Brewer Street, followed A para-aramid introduced by shop to feed their Ivy League habit. barrow-boy-turned-sculptor and were all expressions of modernism West London that Simons really two years later by The Village Gate DuPont, with outstanding strength- And nearly 40 years on from that cutting-edge shirt designer… so a coming from America and Europe.’ made his name. In the summer of on Old Compton Street. to-weight properties, used in body mod revival, John Simons’ latest real New Wave individual.’ Central to the modernists’ style 1965, at the height of the mod By the late Seventies the mod armour, sports equipment and the store on London’s Chiltern Street is Simons would soon be meeting aesthetic was the Ivy League look movement, Simons opened The Ivy revival had created a new interest in aerospace industry. equally revered by men who know other alluring London characters that would seep into the public’s Shop – inspired by his trips to New the old Ivy League styles. In a new their Wingtips from their Weejuns. when he started working in the West consciousness through film stars like York. ‘I was buying all the clearance documentary on John Simons, The Brought up in Hackney, East End as an apprentice window dresser Steve McQueen, Paul Newman and lines over there,’ he says. ‘It wasn’t Neat Offensive, Paul Weller recalls London, John Simons’ passion for at Cecil Gee on Charing Cross Road. Anthony Perkins. ‘I first became too hard to get hold of this stuff at a first going to the J. Simons’ store on 2002 clothes began at an early age. ‘My ‘The man who gave England the aware of the Ivy League style around decent price as I was the only one Covent Garden’s Russell Street: ‘It dad had several brothers – and I new stylish Continental look,’ in the the age of 15 when I started looking from England doing it.’ was interesting for me to find stuff PLA remember when I was about 11 or 12 words of Paul Anderson in Mods: in the windows of Austin’s shop on Haspel seersucker jackets, Bass that I hadn’t seen for such a long Confusingly a polymer and not a them going to Europe and bringing The New Religion, Cecil Gee opened Shaftesbury Avenue,’ says Simons. ‘I Weejuns loafers, Oxford shirts by time.’ The film, which also features poly acid, Polylactic acid is now these lovely clothes back with them,’ up a whole new world to the young started to yearn for a shirt like the Lion of Troy or Sero buttondowns long-time admirers Kevin Rowland, one of the most popular manmade he says, sitting under a row of East Ender. ‘You had people like American ones I saw. And as a with the perfect roll – The Ivy Shop Robert Elms, and GQ editor Dylan materials on earth. Derived from Pendleton board shirts and J. Keydge Ronnie Scott coming in buying his youngster this whole silhouette just dressed the sharpest mods from Jones, is a fitting tribute to Simons’ renewable resources such as corn Ivy Slack jackets in the Marylebone stuff,’ says Simons. ‘Soho was such became really hip to me.’ across London. ‘Although we were 60 years in retail. starch or sugarcane, it is store he now runs with his son Paul. an amazing place then, full of ‘In America, Ivy League was an originally an Ivy League shop, we ‘Whether I’ve still got the same biodegradable and used in 3D The year was 1952 – and Simons brilliant artists, photographers and egalitarian tradition and a rigid became a pivot point for the mods,’ passion now I’m not sure… but I printing, injection moulding and would spend the weekends at his musicians. If you went to a jazz club format of dress. And they did it in an says Simons. There was one item that can pull it out when I need to,’ says medical implants. family’s barbershop on the Kingsland like Cy Laurie’s, you’d get the barrow incredible way. Everyone wore it. came to become most associated with Simons. ‘It’s always inside me.’ Road, Dalston, watching the sharply boys next to the landed gentry, so it Around 1959, the Ivy shape held MARTIN EMILY the shop: the Harrington G9 jacket, johnsimons.co.uk 42 43.
Recommended publications
  • Una Historia Sobre La Evolución Humana Y Los Avances Tecnológicos
    madera piedra metales materiales Una historia sobre textiles la evolución humana y los avances tecnológicos plásticos vidrio nanomateriales papel materiales Una historia sobre la evolución humana y los avances tecnológicos EXPOSICIÓN ONLINE EBOOK Organiza: Producción audiovisual y entorno web: Coordinación: © LOS AUTORES Universidad de Burgos Gonzalo Andrés López © UNIVERSIDAD DE BURGOS Coordinación audiovisual: y Rodrigo Alonso Alcalde Colabora: David Serrano Fernández Edita: Fundación Española para la Ciencia Documentación: Servicio de Publicaciones e Imagen y la Tecnología (FECYT). Ministerio Vídeo: Adán Ruiz Román Institucional de Ciencia e Innovación. David Serrano Fernández y Gonzalo de Pedro Andrés UNIVERSIDAD DE BURGOS y Fernando Muñoz Cifuentes Edificio de Administración y Servicios Comisariado: Asesoría científica: C/ Don Juan de Austria, 1 Gonzalo Andrés López Realidad virtual: Prehistoria: Marta Navazo Ruiz 09001 BURGOS – ESPAÑA y Rodrigo Alonso Alcalde Samuel Arias Tejedor Piedra:Verónica Calderón Carpintero [email protected] y Ángel Rodríguez Saiz Coordinación: Guión y locución: Madera: Smara Gonçalves ISBN: Jordi Rovira Carballido Samuel Pérez Gutiérrez Metales: Jesús Manuel Alegre Calderón 978-84-16283-95-8 (edición impresa) y Pedro Miguel Bravo Díez 978-84-16283-96-5 (ebook) Comité científico: Diseño web: Textiles: Juan José Martín García Prehistoria: Marta Navazo Ruiz David Serrano Fernández y Óscar Raúl Melgosa Oter Depósito Legal Piedra:Verónica Calderón Carpintero y Sonia Hurtado Manso Papel: Luis Santos y Ganges BU.-119-2020 y Ángel Rodríguez Saiz y Sonia Serna Serna Madera: Smara Gonçalves Administración y gestión: Vidrio: Pilar Alonso Abad Andrés López, G. y Alonso Alcalde, R. Metales: Jesús Manuel Alegre Calderón María Isabel Soto Muñoz Plásticos: José Miguel García Pérez, (Coords.) 2020: Materiales.
    [Show full text]
  • Telas Que Estiran
    APRENDA CORTE DE ROPA PARA ALTA COSTURA SISTEMA CyC Telas que estiran En el mercado existen textiles, como el género La fibra utilizada para combinar con los de punto principalmente (tejido de punto) que textiles es el Elastano o Spandex®, mejor solos o combinados con fibras elásticas (Lycra® conocido como Lycra®, es una fibra sintética o Spandex®) nos ofrecen características especia- muy conocida por su gran elasticidad. Fue les que son utilizadas en la industria textil para inventada en DuPont en 1959 por el químico confección de ropa deportiva o de calle. Este tipo Joseph Shivers. Combinada con el tejido de telas brindan al cuerpo un mayor ajuste sin de punto y otros textiles como: el algodón, perder libertad de movimiento, agregando otras lana, seda o nylon nos ofrecen una gran características como ajuste, mayor suavidad, variedad de productos para fabricar prendas transpiración y comodidad. que pueden presentar diferentes niveles de estiramiento y recuperación (elongación) dependiendo del porcentaje de Lycra® en Entre los tejidos, los géneros de punto se fabrican ellos utilizados. en telares planos o circulares y se pueden agrupar en cuatro categorías: Esta fibra revolucionó muchas áreas de la industria textil. Hoy en día es utilizada en todo tipo de prendas, y sobre todo en el ámbito a. Los tejidos de punto sencillos de peso deportivo gracias a su flexibilidad y ligereza; ligero, tienen la característica de que no esto nos permite confeccionar ropa para se estiran a lo largo pero sí a lo ancho diferentes actividades como por ejemplo la como el jersey, interlock o tricot. danza, la gimnasia, el ciclismo, la natación, el atletismo, aerobics, incluyendo ropa de calle o de diario.
    [Show full text]
  • Marketing Introduction
    Marketing Introduction Agenda • What is Lycra and Spandex • Why special adhesion is needed • Printing Under Armour, Nike and other performance wear • Printing volleyball uniforms • Printing yoga pants/leggings • Printing nylon outerwear • Optimizing printing costs What is Lycra, Spandex and Elastane Spandex, Lycra or elastane is a synthetic fiber known for its exceptional elasticity. It is a polyether- polyurea copolymer that was invented in 1958 by chemist Joseph Shivers at DuPont's Benger Laboratory Spandex and Lycra are brand names, but they are all elastane - Wikipedia • Capable of stretching up to 500% original size • Maintains shape • Works well with other fibers often with high content of polyester that will scorch • Printing must stretch and rebound with fabric • Best transfer to use – AquaTru® Heat Printing Performance Wear Common performance wear brands • Under Armour • Nike • Augusta • Sport-Tek Fabric content • 90/10 Poly/Elastane • 98/2 Poly/Elastane For any percentage of elastane, you need a heat transfer that will stretch and rebound Heat Printing Volleyball Uniforms Volleyball Uniforms AquaTru® Numbers • 3 sizes: 4”, 6” and 8” • 3 fonts: Champ, Inline and Avalon • 6 colors: white, black, gold, navy, red, and royal Heat Printing Leggings/Yoga Pants Larger sheet size allows you to print in one application - 19” long Other Products with Elastane-Swim Suits Other Products with Elastane-Compression Shorts Other Products with Elastane-Rash Shirts Heat Printing Nylon Outerwear Nylon - synthetic fibers that also require a specific adhesive Clean edge - no outline needed Optimizing Pricing Tips • Fill the sheet • Same color or colors • 2-3 teams with the same order Optimizing Pricing Next Webinar Comparing Heat Presses • Thursday, July 11 • 2:00 pm ET Thank You For Attending Do you have more questions? Stay in touch.
    [Show full text]
  • Nanogold and Nanosilver Hybrid Polymer Materials
    NANOGOLD AND NANOSILVER HYBRID POLYMER MATERIALS By Maria Parry A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2013 Abstract Significant opportunities exist in both the scientific and industrial sectors for the development of new generation hybrid materials. These multifunctional hybrid materials favourably combine the often disparate characteristics of both precursor components in one material. As such, this field can be very innovative due to the many possible combinations of components providing the opportunity to create a wide variety of new generation materials with a range of known and as yet unknown properties. In this manner the research carried out in this PhD research programme combines particular polymer substrates with gold, silver or silver halide nanoparticles, generating multifunctional hybrid materials which exhibit novel and useful optical, antimicrobial and antifouling properties. As such, these hybrid materials are well suited for applications in the healthcare and biomedical devices, food and packaging, surface coatings and the personal hygiene industries. The novel approach developed and used for the production of these nanogold, nanosilver and nanosilver halide hybrid polymer materials did not use conventional external reducing or stabilising agents. Instead, for the nanogold and nanosilver hybrid polymer materials, the Au3+ or Ag+ ions were first absorbed into the polymer substrates (polyurethane, nylon 6,6, polyurethane K5000 latex paint base and amine coated polyethylene terephthalate) and then upon heating the nitrogen-containing functional groups in the polymer matrices reduced the metal ions to their respective metal nanoparticles Au0 and Ag0.
    [Show full text]
  • Advanced Materials with Properties out of Jay Shyam, CFA Reach of Prior Generations
    EQUITY RESEARCH | September 27, 2016 Innovation isn’t always digital. The Craig Sainsbury insatiable need to make products faster, +61(3)9679-1778 stronger, smaller and lighter is driving the [email protected] Goldman Sachs Australia Pty Ltd. development of new and enhanced Advanced Materials with properties out of Jay Shyam, CFA reach of prior generations. In this report, +61(3)9679-1972 the latest in our Profiles in Innovation [email protected] series, we explore where Advanced Goldman Sachs Australia Pty Ltd. Materials science is on the cusp of Shuhei Nakamura breaking new boundaries and making the +81(3)6437-9932 leap to commercialisation, and we chart [email protected] the interconnected global ecosystem of Goldman Sachs Japan Co., Ltd. public and private companies ripe for Toshiya Hari disruption. We hone in on advances in four (646) 446-1759 key areas—Nanotechnology, Graphene, [email protected] OLEDs and Cheating Moore’s Law—that Goldman, Sachs & Co. can address some of the biggest business Marcus Shin challenges of the day, from rolling out a 5G +82(2)3788-1154 network to improving the efficacy of [email protected] cancer drugs to creating energy Goldman Sachs (Asia) L.L.C., Seoul Branch storage solutions. For the exclusive use of [email protected] PROFILES IN INNOVATION Advanced Materials Faster, Stronger, Smaller, Lighter Goldman Sachs does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report.
    [Show full text]
  • Champions of Motorcycling
    29 OPEN SOURCE LANGUAGE VERSION > CATALÀ Champions of motorcycling by Teresa Vidal PhD Student in design and architecture; curator of the exhibition Photographs: © Museu de l’Estampació de Premià de Mar and Txeni Gil The Premià de Mar Museum of Printing is hosting the temporary exhibition CHAMPIONS OF MOTORCYCLING, from 10 March to 31 December The idea of the exhibition is to show that behind the world of high risk motorsports there is an army of designers, textile engineers and assistants who play a crucial role in providing equipment and apparel for the professional riders. Their creations must be up-to-date and stylish, reflecting the fashion trends of the moment, but must also be fully functional in terms of comfort, flexibility, freedom of movement, protection and safety. And of course the sponsors’ brand names and logos printed on the riders’ clothing must be clearly visible. The exhibition covers various forms of off-road and circuit motorcycle racing, and celebrates the achievements of the champions from the world of Trial, Motocross, Enduro, and Rally Raids. It also includes the media favourite Moto GP on a trip through history featuring riders from Catalonia and elsewhere. The exhibition begins with Trial, an off-road discipline, in which riders overcome a series of obstacles without allowing their body to touch the ground. Trial was invented in the UK in the early twentieth century: in 1909 of the Scottish Six Days Trial was held for the first time, which combined competitions of speed and skill. The first indoor trial was held in Barcelona in 1978, and today this discipline is extremely popular in Catalonia and the UK.
    [Show full text]
  • Unit Chemistry of Textiles: Synthetic Fibres File:///C:/WWW/Courses/CHEM2402/Textiles/Synthetic Fibres.Html
    Unit - Chemistry of Textiles: Synthetic Fibres file:///C:/WWW/Courses/CHEM2402/Textiles/Synthetic_Fibres.html Unit - Chemistry of Garments: Synthetic (man-made) Fibres Acrylic , Aramid ( Twaron , Kevlar , Technora , Nomex ), Microfiber , Modacrylic , Nylon , Olefin Polyester , Polyethylene ( Dyneema , Spectra ), Spandex , Vinylon , Vinyon , Zylon Nylon (Polyamide) Nylon is a thermoplastic silky material, commercially first used in a nylon-bristled toothbrush (1938) , followed more famously by women's stockings ("nylons") in the 1940's. The name may have been derived from 'no-run' to emphasise the durability of the stockings produced from it. Introduction of Nylon in the 1940's, stockings and parachutes . 1 of 12 20/10/2011 08:30 PM Unit - Chemistry of Textiles: Synthetic Fibres file:///C:/WWW/Courses/CHEM2402/Textiles/Synthetic_Fibres.html Preparation and structure of Nylon 6 6 Nylon was the first synthetic fibre to be made. Nylon-66 and Nylon-6 are the two important synthetic fibres belonging to the polyamide group. The numerical suffixes specify the number of carbons donated by the monomers; the diamine first and the diacid second. The most common variant is Nylon 6-6 which refers to the fact that the diamine (hexamethylene diamine, IUPAC name: hexane-1,6-diamine) and the diacid (adipic acid, IUPAC name: hexanedioic acid) each donate 6 carbons to the polymer chain. The Nylon salt so formed on polymerization gives polyhexamethylene adipamide. Crystallinity Note that the molecular graphic images on these pages suggest a high degree of regular crystallinity which is generally not the case. When applied to polymers, the term crystalline has a somewhat ambiguous usage. In some cases, the term crystalline finds identical usage to that used in conventional crystallography.
    [Show full text]
  • Fibre to Finish 2017
    EXT H T ILE S T E E D C A H R N P O L R O A G T T Y U Volume : 56 (1) 2017 Journal of Fibre To Finish h h s s i i n n i i F F o o T T F O e e L r r A N b b R i i U O F F J Published by : Director, Uttar Pradesh Textile Technology Institute, Kanpur (Formerly Known as Govt. Central Textile Institute) Chairman Dr. D.B. Shakyawar Chief Editor Prof. Mukesh Kumar Singh Members Er. S. K. Rajput Dr. Neelu Kambo Journal of Fibre To Finish e lum Vo INDEX 56 Page Sr. Contents No. 1. Silk Dyeing with Lichen (Evernia Mesomorpho) by Harsh Rawat, Ekta Sharma and Nargis Fatima 01 2. Effect of spandex Count on Structral and thermal Properties of single Jersy Knitted Fabric by Swati Sahu and Alka Goel 06 3. Effect of Number of Web Layers on properties of Needle punched Polyester Non Woven Fabric by Asish Hulle, Shweta Kamble, Akash Redekar, Sanyukta Bhosale and Rohini Mhetar 13 4. Thermal Properties of ABS/PA6 Blends compatibilezed with fixed weight ratio SAGMA Copolymer by Hema Singh 20 5. Hybrid Woven Fabric for EMI Shielding by KK Gupta 26 6. An Overview of Electromagnetic inter active Textile by TC Shami, HB Bhaskey and R Kumar 30 7. Anti microbial Finish of Cotton base textile by DB Shakyawar, SK Rajpur and Mukesh Kr Singh 35 8. Thermal and acoustic behaviour non Woven material by Manish Kr Singh, DB Shakyawar, Kamal Kumar and Mukesh Kumar Singh 39 9.
    [Show full text]
  • The Future of Luxury. ITAA Monograph #12, 2018
    THE FUTURE OF LUXURY ITAA Monograph #12 2018 EDITORS: Jana M. Hawley, University of North Texas Nancy Cassill, North Carolina State University Kristie McGowan, North Carolina State University 1 2 THE FUTURE OF LUXURY TABLE OF CONTENTS ABOUT The Future of Luxury MONOGRAPH .....................................PAGE 4 CHAPTER ONE ...................................................................................PAGE 8 LUXURY THROUGHOUT HISTORY: AN EVALUATION OF THE INDUSTRY CHAPTER TWO .................................................................................................. PAGE 16 EMBRACING THE FUTURE OF LUXURY PRODUCTS THROUGH PRODUCT INNOVATION, QUALITY CRAFTSMANSHIP, PRODUCT INTEGRITY, AND DESIGNER TRAINING CHAPTER THREE ............................................................................................... PAGE 28 SUSTAINABLE EXCLUSIVITY FOR THE GLOBAL MARKETPLACE CHAPTER FOUR................................................................................................. PAGE 38 AN OVERVIEW OF THE MILLENNIAL LUXURY MARKET AND IMPLICATIONS FOR LUXURY BRANDS CHAPTER FIVE ................................................................................................... PAGE 47 THE INFLUENCE OF SPORT PERFORMANCE PRODUCTS ON LUXURY GOODS CHAPTER SIX ..................................................................................................... PAGE 59 THE FUTURE OF LUXURY: CASE STUDIES OF THREE PROFESSIONAL WOMEN’S EXPERIENCES WITH DESIGNER FASHION CHAPTER SEVEN..............................................................................................
    [Show full text]
  • Procesos Textiles V
    Procesos Textiles Retintura de Ropa en Tintorería, Lavandería y su Recepción (V). Las Fibras Textiles (Continuación) Las fibras Sintéticas comercializadas por Du Pont. Las poliamidas más conocidas son: Poliamida 6 ( Nurel, Perlón, Nylon 6, LA POLIAMIDA Grilón,) Poliamida 6.6 ( Tactel, Enka, Nylon 6.6,). Su aparición fue de modo casual. Wallace Carothers HISTORIA DEL NYLON investigaba en EE UU (para la DU PONT) el compor- tamiento de las moléculas simples que unidas El Nylon fue la primera fibra producida enteramente pueden formar moléculas gigantes del mismo cuerpo de polímero sintético y se caracterizó por primera vez químico; es decir, formar polímeros a base de en 1899. En 1929, este estudio fue renovado por monómeros. El resultado fue una molécula Carothers en la Compañía Du Pont de Neumors. POLIAMIDA. Las poliamidas como el nylon (fig.1) La primera patente se solicitó en 1931 y fue publicada se comenzaron a emplear como fibras sintéticas, en 1936. En julio de 1935, el nylon 6,6 fue elegido por aunque han terminado por emplearse en la Du Pont para ser introducido en el mercado. Ésta fue fabricación de cualquier material plástico. Vista al seguida por una patente de aplicación que se publicó microscopio electrónico. (fig.2) en 1937. Las principales poliamidas ilustradas en estas dos primeras patentes fueron NYLON-6, NYLON-7, NYLON-8, NYLON-9, NYLON-11 y NYLON-17. La primera patente de aplicación para el NYLON-6,6 se publicó en 1938. Du Pont comenzó la produc- ción experimental del nylon en 1938 y la primera planta comercial comenzó su produc- Figura 1 ción en 1939 en Seaford, Delaware (EE.UU).
    [Show full text]
  • Creativity Anoiko 2011
    Creativity Anoiko 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 27 Mar 2011 10:09:26 UTC Contents Articles Intelligence 1 Convergent thinking 11 Divergent thinking 12 J. P. Guilford 13 Robert Sternberg 16 Triarchic theory of intelligence 20 Creativity 23 Ellis Paul Torrance 42 Edward de Bono 46 Imagination 51 Mental image 55 Convergent and divergent production 62 Lateral thinking 63 Thinking outside the box 65 Invention 67 Timeline of historic inventions 75 Innovation 111 Patent 124 Problem solving 133 TRIZ 141 Creativity techniques 146 Brainstorming 148 Improvisation 154 Creative problem solving 158 Intuition (knowledge) 160 Metaphor 164 Ideas bank 169 Decision tree 170 Association (psychology) 174 Random juxtaposition 174 Creative destruction 175 References Article Sources and Contributors 184 Image Sources, Licenses and Contributors 189 Article Licenses License 191 Intelligence 1 Intelligence Intelligence is a term describing one or more capacities of the mind. In different contexts this can be defined in different ways, including the capacities for abstract thought, understanding, communication, reasoning, learning, planning, emotional intelligence and problem solving. Intelligence is most widely studied in humans, but is also observed in animals and plants. Artificial intelligence is the intelligence of machines or the simulation of intelligence in machines. Numerous definitions of and hypotheses about intelligence have been proposed since before the twentieth century, with no consensus reached by scholars. Within the discipline of psychology, various approaches to human intelligence have been adopted. The psychometric approach is especially familiar to the general public, as well as being the most researched and by far the most widely used in practical settings.[1] History of the term Intelligence derives from the Latin verb intelligere which derives from inter-legere meaning to "pick out" or discern.
    [Show full text]
  • Inventions and Their Inventors A
    Inventions and their Inventors A Vitaly Abalakov (1906–1986), Russia – camming devices, Abalakov thread (or V-thread) gearless ice climbing anchor Ernst Karl Abbe (1840–1905), Germany – Condenser (microscope), apochromatic lens, refractometer Hovannes Adamian (1879–1932), USSR/Russia – tricolor principle of the color television Samuel W. Alderson (1914–2005), U.S. – Crash test dummy Alexandre Alexeieff (1901–1982), Russia/France – Pinscreen animation (with his wife Claire Parker) Rostislav Alexeyev (1916–1980), Russia/USSR – Ekranoplan Randi Altschul (born 1960), U.S. – Disposable cellphone Bruce Ames (born 1928), U.S. – Ames test (Cell biology) Giovanni Battista Amici (1786–1863), Italy – Dipleidoscope, Amici prism Ruth Amos (born 1989), UK – StairSteady Mary Anderson (1866–1953), U.S. – windshield wiper blade Momofuku Ando (1910–2007), Japan – Instant noodles Hal Anger (1920–2005), U.S. – Well counter (radioactivity measurements), gamma camera Anders Knutsson Ångström (1888–1981), Sweden – Pyranometer Ottomar Anschütz (1846–1907), Germany – single-curtain focal-plane shutter, electrotachyscope Hermann Anschütz-Kaempfe (1872–1931), Germany – Gyrocompass Virginia Apgar (1909–1974), U.S. – Apgar score (for newborn babies) Nicolas Appert (1749–1841), France – canning (food preservation) using glass bottles, see also Peter Durand Archimedes (c. 287–212 BC), Greece – Archimedes' screw Guido of Arezzo (c. 991–c. 1033), Italy – Guidonian hand, musical notation, see also staff (music) Ami Argand (1750–1803), France – Argand lamp William George Armstrong (1810–1900), UK – hydraulic accumulator Neil Arnott (1788–1874), UK – waterbed Joseph Aspdin (1788–1855), UK – Portland cement John Vincent Atanasoff (1903–1995), Bulgaria/U.S. – electronic digital computer 1 Inventions and their Inventors B Charles Babbage (1791–1871), UK – Analytical engine (semi-automatic) Tabitha Babbit (1779–1853), U.S.
    [Show full text]