SUMMARY REPORT ICD-9-CM Coordination and Maintenance
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Eur J Vasc Endovasc Surg 16, 254-258 (1998) ENDOVASCULAR AND SURGICAL TECHNIQUES Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique M. S. Whiteley 1, T. R. Magee 1, E. P. H. Torrie 2 and R. B. Galland* Department of ~Surgery and 2Radiology, Royal Berkshire Hospital, London Road, Reading, U.K. Objectives: To describe our experience of a modified technique for carrying out remote endarterectomy for superficial femoral artery occlusive disease. Methods: A 4-French arterial dilator is inserted using a Smart needle into the popliteal artery below the occlusion. A remote endarterectomy is carried out through an arteriotomy in the proximal superficial femoral artery. The atheroma is cut distal to the lower extent of disease using a Moll ring cutter. The lower flap of atheroma is secured with an intraluminaI stent inserted from the arteriotomy in the superficial femoral artery. The arteriotomy is extended into the common femoral artery and closed with a vein patch. Results: The procedure was completed in 21 of 26 limbs. In 18 cases the superficial femoral artery remained patent at 30 days. Of the 21 cases all but four stayed in hospital for one night. A successful femoropopliteal bypass was carried out in the five patients in whom the procedure was not completed. Conclusion: Insertion of the dilator into the popliteal artery distal to the occlusion before carrying out the remote endarterectomy has two advantages. Firstly, the stent insertion is carried out in the correct plane and prevents dissection of the distal cut atheroma when attempting to pass the guidewire from above. -
Members | Diagnostic Imaging Tests
Types of Diagnostic Imaging Tests There are several types of diagnostic imaging tests. Each type is used based on what the provider is looking for. Radiography: A quick, painless test that takes a picture of the inside of your body. These tests are also known as X-rays and mammograms. This test uses low doses of radiation. Fluoroscopy: Uses many X-ray images that are shown on a screen. It is like an X-ray “movie.” To make images clear, providers use a contrast agent (dye) that is put into your body. These tests can result in high doses of radiation. This often happens during procedures that take a long time (such as placing stents or other devices inside your body). Tests include: Barium X-rays and enemas Cardiac catheterization Upper GI endoscopy Angiogram Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA): Use magnets and radio waves to create pictures of your body. An MRA is a type of MRI that looks at blood vessels. Neither an MRI nor an MRA uses radiation, so there is no exposure. Ultrasound: Uses sound waves to make pictures of the inside of your body. This test does not use radiation, so there is no exposure. Computed Tomography (CT) Scan: Uses a detector that moves around your body and records many X- ray images. A computer then builds pictures or “slices” of organs and tissues. A CT scan uses more radiation than other imaging tests. A CT scan is often used to answer, “What does it look like?” Nuclear Medicine Imaging: Uses a radioactive tracer to produce pictures of your body. -
Targeting Endothelial Kruppel-Like Factor 2 (KLF2) in Arteriovenous
Targeting Endothelial Krüppel-like Factor 2 (KLF2) in Arteriovenous Fistula Maturation Failure A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) in the Biomedical Engineering Program Department of Biomedical Engineering College of Engineering and Applied Science 2018 by Keith Louis Saum B.S., Wright State University, 2012 Dissertation Committee: Albert Phillip Owens III, Ph.D. (Committee Chair) Begona Campos-Naciff, Ph.D Christy Holland, Ph.D. Daria Narmoneva, Ph.D. Prabir Roy-Chaudhury, M.D., Ph.D Charuhas Thakar, M.D. Abstract The arteriovenous fistula (AVF) is the preferred form of vascular access for hemodialysis. However, 25-60% of AVFs fail to mature to a state suitable for clinical use, resulting in significant morbidity, mortality, and cost for end-stage renal disease (ESRD) patients. AVF maturation failure is recognized to result from changes in local hemodynamics following fistula creation which lead to venous stenosis and thrombosis. In particular, abnormal wall shear stress (WSS) is thought to be a key stimulus which alters endothelial function and promotes AVF failure. In recent years, the transcription factor Krüppel-like factor-2 (KLF2) has emerged as a key regulator of endothelial function, and reduced KLF2 expression has been shown to correlate with disturbed WSS and AVF failure. Given KLF2’s importance in regulating endothelial function, the objective of this dissertation was to investigate how KLF2 expression is regulated by the hemodynamic and uremic stimuli within AVFs and determine if loss of endothelial KLF2 is responsible for impaired endothelial function. -
Transpulmonary Closure of Giant Persistent Ductus Arteriosus Under Cardiopulmonary Bypass and Normothermic Cardioplegia
Published online: 2019-11-25 THIEME 36 TranspulmonaryPoint of Technique Closure of Giant Persistent Ductus Arteriosus Chowdhury et al. Transpulmonary Closure of Giant Persistent Ductus Arteriosus under Cardiopulmonary Bypass and Normothermic Cardioplegia Ujjwal K. Chowdhury1 Sukhjeet Singh1 Niwin George1 Lakshmi Kumari Sankhyan1 Poonam Malhotra Kapoor2 1Department of Cardiothoracic and Vascular Surgery, All India Address for correspondence Ujjwal K. Chowdhury, MCh, Institute of Medical Sciences, New Delhi, India Department of Cardiothoracic and Vascular Surgery, All 2Department of Cardiac Anaesthesia, All India Institute of Medical India Institute of Medical Sciences, New Delhi 110029, India Sciences, New Delhi, India (e-mail: [email protected]). J Card Crit Care TSS 2020;3:36–38 Abstract A 25-year-old female patient with a giant, short, calcified, hypertensive, window duc- tus arteriosus underwent successful closure via transpulmonary approach under nor- Keywords mothermic cardiopulmonary bypass without circulatory arrest using a Foley catheter ► giant ductus for temporary occlusion. arteriosus ► adult ductus ► cardiopulmonary bypass ► transpulmonary closure ► calcified ductus Introduction chylothorax, or recanalization. Postoperative computerized tomographic angiography revealed complete ductal inter‑ Despite 80 years of experience, correction of persistent duc‑ ruption with no residual shunt or ductal aneurysm (►Fig. 3). tus arteriosus remains a surgical challenge in the subset of 1. Primary median sternotomy is performed. patients -
ICD-10: Clinical Concepts for Internal Medicine
ICD-10 Clinical Concepts for Internal Medicine ICD-10 Clinical Concepts Series Common Codes Clinical Documentation Tips Clinical Scenarios ICD-10 Clinical Concepts for Internal Medicine is a feature of Road to 10, a CMS online tool built with physician input. With Road to 10, you can: l Build an ICD-10 action plan customized l Access quick references from CMS and for your practice medical and trade associations l Use interactive case studies to see how l View in-depth webcasts for and by your coding selections compare with your medical professionals peers’ coding To get on the Road to 10 and find out more about ICD-10, visit: cms.gov/ICD10 roadto10.org ICD-10 Compliance Date: October 1, 2015 Official CMS Industry Resources for the ICD-10 Transition www.cms.gov/ICD10 1 Table Of Contents Common Codes • Abdominal Pain • Headache • Acute Respiratory Infections • Hypertension • Back and Neck • Pain in Joint Pain (Selected) • Pain in Limb • Chest Pain • Other Forms of • Diabetes Mellitus w/o Heart Disease Complications Type 2 • Urinary Tract • General Medical Examination Infection, Cystitis Clinical Documentation Tips • Acute Myocardial • Diabetes Mellitus, Infarction (AMI) Hypoglycemia and • Hypertension Hyperglycemia • Asthma • Abdominal Pain and Tenderness • Underdosing Clinical Scenarios • Scenario 1: Follow-Up: • Scenario: Cervical Kidney Stone Disc Disease • Scenario 2: Epigastric Pain • Scenario: Abdominal Pain • Scenario 3: Diabetic • Scenario: Diabetes Neuropathy • Scenario: ER Follow Up • Scenario 4: Poisoning • Scenario: COPD with -
Breast CT: a New Alternative to Mammography University of California, Davis (UC Davis)
Breast CT: A New Alternative To Mammography University of California, Davis (UC Davis) Computed tomography (CT) is used extensively to identify tumors and other abnormalities in the brain, abdomen and pelvis. In contrast to medical X-rays, which produce a single-layer 2-D image, a CT scan records hundreds of images of multiple tissue layers and assembles them into a 3-D representation. A team working at University of California Davis Cancer Center has developed a breast CT device they believe provides a more comfortable and potentially more sensitive alternative to X-ray based mammography to detect breast cancer. The breast CT device, currently in a Phase II investigational trial, is the invention of Drs. John Boone, professor of radiology at UC-Davis, and Thomas R. Nelson, professor of radiology at University of California, San Diego. CT has not typically been applied to breast cancer detection because of concerns over the radiation dose required. The inventors solved this problem by designing a CT device that scans each breast while the patient lies face down on a special table. The radiation exposure in the breast is equivalent to that of a traditional mammogram, and the thoracic cavity is not irradiated at all, as it would be in a conventional CT scanner. The first 21 patients in the ongoing clinical trial reported that the CT breast scan, which does not require breast compression, caused them less discomfort than mammography. The CT detected 19 of the 21 tumors initially identified by mammography, and Dr. Lindfors believes the prototype machine and method of scanning can be modified to improve on this detection rate. -
Learn More About X-Rays, CT Scans and Mris (Pdf)
What is the difference between X-Rays, CT Scans, and MRIs? X-Rays are a form of electromagnetic radiation, like light. They are less energetic than gamma rays, and more energetic than ultraviolet light. Because they pass easily through soft tissue, like organs and muscles, but not so easily through hard tissue like bones and teeth, we are most familiar with them being used to look at skeletal structures. Sometimes a person ingests or has injected an X-ray opaque fluid that will fill a space of interest for X-ray imaging. This is called an angiogram. A nuclear scan uses an injected gamma ray emitting substance that accumulates in the organ of interest and a special camera records the gamma rays. A CT Scan is usually a series of X-rays taken from different directions that are then assembled into a three dimensional model of the subject in a computer. CT stands for computed tomography, and tomography means a picture of a slice. Where an X-ray may show edges of soft tissues all stacked on top of each other, the computer in a CT scan can figure out how those edges relate to each other in depth, and so the image has much more soft tissue usability. Another kind of CT scan uses positrons. I have to mention this because positrons are antimatter electrons (Yes, antimatter does exist and it is useful!) In Positon Emission Tomography (PET) a positron emitting radionuclide (radioactive material) is attached to a metabolically useful molecule. This is introduced to the tissue, and as emitted positrons decompose they emit gamma rays which can be traced by the machine and computer back to their points of origin, and an image is formed. -
Outpatient Medical Imaging Centers Radiology Scheduling (602) 943-4269
Outpatient Medical Imaging Centers Radiology Scheduling (602) 943-4269 Patient Price List Average CPT/HCPCS Prompt Pay Direct Pay (Estimated) CODE Procedure Description Price (1) Price (2) Total Price (3) 74178 CT Abd & Pelvis w & w/o Cont $ 512 $ 665 $ 1,023 74160 CT Abd w/ Cont $ 459 $ 596 $ 917 74170 CT Abd w/o & w/ Cont $ 512 $ 665 $ 1,023 74150 CT Abd w/o Cont $ 297 $ 386 $ 594 74177 CT Abdomen & Pelvis w Contrast $ 459 $ 596 $ 917 74176 CT Abdomen & Pelvis w/o Cont $ 297 $ 386 $ 594 71260 CT Chest w/ Cont $ 459 $ 596 $ 917 71270 CT Chest w/o & w/ Cont $ 512 $ 665 $ 1,023 71250 CT Chest w/o Cont $ 297 $ 386 $ 594 72126 CT C-Spine w/ Cont $ 459 $ 596 $ 917 72125 CT C-Spine w/o Cont $ 297 $ 386 $ 594 73701 CT Ext Lwr w/ Cont $ 459 $ 596 $ 917 73700 CT Ext Lwr w/o Cont $ 297 $ 386 $ 594 73201 CT Ext Up w/ Cont $ 459 $ 596 $ 917 73202 CT Ext Up w/o & w/ Cont $ 512 $ 665 $ 1,023 73200 CT Ext Up w/o Cont $ 297 $ 386 $ 594 70487 CT Facl Bones w/ Cont $ 459 $ 596 $ 917 70486 CT Facl Bones w/o Cont $ 297 $ 386 $ 594 70460 CT Head/Brain w/ Cont $ 297 $ 386 $ 594 70470 CT Head/Brain w/o & w/ Cont $ 512 $ 665 $ 1,023 70450 CT Head/Brain w/o Cont $ 297 $ 386 $ 594 72132 CT L-Spine w/ Cont $ 459 $ 596 $ 917 72131 CT L-Spine w/o Cont $ 297 $ 386 $ 594 70491 CT Neck w/ Cont $ 459 $ 596 $ 917 70492 CT Neck w/o & w/ Cont $ 512 $ 665 $ 1,023 70490 CT Neck w/o Cont $ 297 $ 386 $ 594 72193 CT Pelvis w/ Cont $ 459 $ 596 $ 917 72192 CT Pelvis w/o Cont $ 297 $ 386 $ 594 70481 CT Temprl Bone w/ Cont $ 459 $ 596 $ 917 70480 CT Temprl Bone w/o Cont $ 297 $ -
PE310 PET / CT Scan
PET / CT Scan What is a PET A positron emission tomography (PET) scan is a safe and non-painful way scan? to take detailed images of the human body. PET scans show how the cells in your child’s body are working and using energy. Since changes in the way cells work often happen before changes in the way they look, a PET scan can help with early diagnosis of cancer, as well as diseases of the brain and heart. A CT (computed tomography) scan is done at the same time as the PET. The CT shows the location of the cells imaged on the PET. What are some PET/CT scans are used most often to find cancer or to check if cancer common uses of treatments are working. PET/CT scans of the brain are used to evaluate patients who have tumors or who have seizure problems that do not the PET/CT scan? respond to medical treatment and may need surgery. How do I prepare If we will be giving your child anesthesia, follow the instructions that the my child? nurse practitioner gives you. If your child has diabetes or needs to take insulin, please tell the technologist the night before the PET/CT scan. 1 of 3 To Learn More Free Interpreter Services • Radiology • In the hospital, ask your nurse. 206-987-2089 • From outside the hospital, call the • Ask your child’s healthcare provider toll-free Family Interpreting Line, 1-866-583-1527. Tell the interpreter • seattlechildrens.org the name or extension you need. PET / CT Scan For all other children: 24 hours before Your child should avoid exercise 24 hours before their PET/CT scan the scan because exercise may interfere with the images. -
CT Scan Telephone: 807-684-6000 (Computed Tomography)
Diagnostics 980 Oliver Road Thunder Bay, ON Canada P7B 6V4 CT Scan Telephone: 807-684-6000 (Computed Tomography) www.tbrhsc.net What will happen during the CT scan? You may be asked to wear a hospital gown. Remove any metal objects, such as jewelry that might interfere with the machine. Some CT scans require you to drink a liquid called “contrast medium” before the scan. You will take this by mouth. Some CT scans require you to get your contrast medium intravenously (IV) that will be inserted into a vein in your arm before you have your scan done. The contrast will be injected through the IV during your CT scan. The contrast medium given through the IV has a slight risk of an allergic reaction. If you How to Prepare for a CT Scan? experience hives, itchiness or swelling in your throat during or after your CT scan, tell the technologist or (Follow the preparation checked off) doctor right away. Do not eat or drink 3 hours before test. You will lie on a narrow table during the exam. Must check in 1 hour before test. The table slides through the round opening of the Do not eat or drink 6 hours before test machine. Must check in 2 hours before test. During the scan the technologist is in a shielded No Prep room to operate the CT scanner. The technologist will be able to see and hear you at all times and talk to you through the intercom. CT scans are painless. What will happen after the CT scan? The radiologist will send the CT report to your physician. -
CT Patient Prep Information
CT Patient Prep Information Imaging Services Cannon Memorial Hospital Watauga Medical Center Table Weight Limits for each facility Cannon Memorial Watauga Medical Hospital Center MRI 1 (High Field) 350 lbs. 440 lbs. MRI 2 (Open) 490 lbs. CT 1 (VCTXT) 500 lbs. CT 2 450 lbs. CT Scan Table 450 lbs. Diagnostic x-ray room 1 300 lbs. 300 lbs. Diagnostic x-ray room 2 300 lbs. Diagnostic x-ray room 3 300 lbs. Diagnostic ER x-ray 460 lbs. Nuclear Medicine 400 lbs. 440 lbs. Ultrasound 500 lbs. Ultrasound Stretcher 500 lbs. Outpatient/Lab Center 460 lbs. X-ray Dexa scan 350 lbs. Dexa table 300 lbs. Scheduling / General information • All Imaging exams must be scheduled with the scheduling department with exception to some diagnostic radiology exams. • To schedule an appointment please contact our scheduling department at 828-268-9037 between the hours of 8:00am-5:00pm. If you reach the voicemail please leave a detailed message and someone will answer your call as soon as possible. • On the day of your exam please arrive 15 minutes prior to your exam time to register at outpatient registration. • To have an imaging exam done there must be a physicians order. • According to the patient preps for certain exams, lab results should be available prior to the exam. Table Weight Limits for each facility Blowing Rock Cannon Memorial Watauga Medical If you have any questions about your exam please call the Hospital Hospital Center Imaging Department MRI 1 (High Field) 350 lbs. 440 lbs. MRI 2 (Open) 490 lbs. Watauga Medical Center: (828) 262-4153 CT 1 (VCTXT) 500 lbs. -
CT Scans in the Emergency Department
CT scans in the emergency department They may not be needed as often as you think If you or someone you care for is in the emergency department, you want the medical staff to do everything they can to find out what’s wrong and provide the right treatment. The doctors in the emergency room (ER) want the same thing. There are times when a CT scan (Computerized Tomography Scan, sometimes called a CAT scan) might be needed to help with the diagnosis. A CT scan uses X-rays to take pictures of your insides. If your doctor orders a CT scan, ask why you need it. And ask if your health problem could be managed without it. These facts about CT scans can help you talk with your doctor about them. CT scans for head injuries Head injuries are a common reason for going to the ER. Most head injuries don’t involve something that needs to be found with a CT scan, such as skull fractures or bleeding in the brain. Each patient is different. So be sure to give your health history and get an exam. The history and exam can help your doctor decide how bad your injury is. If your head injury is not serious, a CT scan will not give your doctor useful information. So there is no reason to do the test. Even if you briefly pass out, you probably don’t need a CT scan unless you have a major head injury. In that case, you will have certain symptoms. For instance, you may keep throwing up or have an altered mental state.