UNIVERSITY of CALIFORNIA, SAN DIEGO Beyond the Scalar Higgs, In
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
Melting of the Higgs Vacuum: Conserved Numbers at High Temperature
PURD-TH-96-05 CERN-TH/96-167 hep-ph/9607386 July 1996 Melting of the Higgs Vacuum: Conserved Numbers at High Temperature S. Yu. Khlebnikov a,∗ and M. E. Shaposhnikov b,† a Department of Physics, Purdue University, West Lafayette, IN 47907, USA b Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We discuss the computation of the grand canonical partition sum describing hot mat- ter in systems with the Higgs mechanism in the presence of non-zero conserved global charges. We formulate a set of simple rules for that computation in the high-temperature approximation in the limit of small chemical potentials. As an illustration of the use of these rules, we calculate the leading term in the free energy of the standard model as a function of baryon number B. We show that this quantity depends continuously on the Higgs expectation value φ, with a crossover at φ ∼ T where Debye screening overtakes the Higgs mechanism—the Higgs vacuum “melts”. A number of confusions that exist in the literature regarding the B dependence of the free energy is clarified. PURD-TH-96-05 CERN-TH/96-167 July 1996 ∗[email protected] †[email protected] Screening of gauge fields by the Higgs mechanism is one of the central ideas both in modern particle physics and in condensed matter physics. It is often referred to as “spontaneous breaking” of a gauge symmetry, although, in the accurate sense of the word, gauge symmetries cannot be broken in the same way as global ones can. One might rather say that gauge charges are “hidden” by the Higgs mechanism. -
Physical Masses and the Vacuum Expectation Value
View metadata, citation and similar papers at core.ac.uk brought to you by CORE PHYSICAL MASSES AND THE VACUUM EXPECTATION VALUE provided by CERN Document Server OF THE HIGGS FIELD Hung Cheng Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A. and S.P.Li Institute of Physics, Academia Sinica Nankang, Taip ei, Taiwan, Republic of China Abstract By using the Ward-Takahashi identities in the Landau gauge, we derive exact relations between particle masses and the vacuum exp ectation value of the Higgs eld in the Ab elian gauge eld theory with a Higgs meson. PACS numb ers : 03.70.+k; 11.15-q 1 Despite the pioneering work of 't Ho oft and Veltman on the renormalizability of gauge eld theories with a sp ontaneously broken vacuum symmetry,a numb er of questions remain 2 op en . In particular, the numb er of renormalized parameters in these theories exceeds that of bare parameters. For such theories to b e renormalizable, there must exist relationships among the renormalized parameters involving no in nities. As an example, the bare mass M of the gauge eld in the Ab elian-Higgs theory is related 0 to the bare vacuum exp ectation value v of the Higgs eld by 0 M = g v ; (1) 0 0 0 where g is the bare gauge coupling constant in the theory.We shall show that 0 v u u D (0) T t g (0)v: (2) M = 2 D (M ) T 2 In (2), g (0) is equal to g (k )atk = 0, with the running renormalized gauge coupling constant de ned in (27), and v is the renormalized vacuum exp ectation value of the Higgs eld de ned in (29) b elow. -
B1. the Generating Functional Z[J]
B1. The generating functional Z[J] The generating functional Z[J] is a key object in quantum field theory - as we shall see it reduces in ordinary quantum mechanics to a limiting form of the 1-particle propagator G(x; x0jJ) when the particle is under thje influence of an external field J(t). However, before beginning, it is useful to look at another closely related object, viz., the generating functional Z¯(J) in ordinary probability theory. Recall that for a simple random variable φ, we can assign a probability distribution P (φ), so that the expectation value of any variable A(φ) that depends on φ is given by Z hAi = dφP (φ)A(φ); (1) where we have assumed the normalization condition Z dφP (φ) = 1: (2) Now let us consider the generating functional Z¯(J) defined by Z Z¯(J) = dφP (φ)eφ: (3) From this definition, it immediately follows that the "n-th moment" of the probability dis- tribution P (φ) is Z @nZ¯(J) g = hφni = dφP (φ)φn = j ; (4) n @J n J=0 and that we can expand Z¯(J) as 1 X J n Z Z¯(J) = dφP (φ)φn n! n=0 1 = g J n; (5) n! n ¯ so that Z(J) acts as a "generator" for the infinite sequence of moments gn of the probability distribution P (φ). For future reference it is also useful to recall how one may also expand the logarithm of Z¯(J); we write, Z¯(J) = exp[W¯ (J)] Z W¯ (J) = ln Z¯(J) = ln dφP (φ)eφ: (6) 1 Now suppose we make a power series expansion of W¯ (J), i.e., 1 X 1 W¯ (J) = C J n; (7) n! n n=0 where the Cn, known as "cumulants", are just @nW¯ (J) C = j : (8) n @J n J=0 The relationship between the cumulants Cn and moments gn is easily found. -
Cosmological Relaxation of the Electroweak Scale
Selected for a Viewpoint in Physics week ending PRL 115, 221801 (2015) PHYSICAL REVIEW LETTERS 27 NOVEMBER 2015 Cosmological Relaxation of the Electroweak Scale Peter W. Graham,1 David E. Kaplan,1,2,3,4 and Surjeet Rajendran3 1Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA 2Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA 3Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720, USA 4Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan (Received 22 June 2015; published 23 November 2015) A new class of solutions to the electroweak hierarchy problem is presented that does not require either weak-scale dynamics or anthropics. Dynamical evolution during the early Universe drives the Higgs boson mass to a value much smaller than the cutoff. The simplest model has the particle content of the standard model plus a QCD axion and an inflation sector. The highest cutoff achieved in any technically natural model is 108 GeV. DOI: 10.1103/PhysRevLett.115.221801 PACS numbers: 12.60.Fr Introduction.—In the 1970s, Wilson [1] had discovered Our models only make the weak scale technically natural that a fine-tuning seemed to be required of any field theory [9], and we have not yet attempted to UV complete them which completed the standard model Higgs sector, unless for a fully natural theory, though there are promising its new dynamics appeared at the scale of the Higgs mass. -
10. Electroweak Model and Constraints on New Physics
1 10. Electroweak Model and Constraints on New Physics 10. Electroweak Model and Constraints on New Physics Revised March 2020 by J. Erler (IF-UNAM; U. of Mainz) and A. Freitas (Pittsburg U.). 10.1 Introduction ....................................... 1 10.2 Renormalization and radiative corrections....................... 3 10.2.1 The Fermi constant ................................ 3 10.2.2 The electromagnetic coupling........................... 3 10.2.3 Quark masses.................................... 5 10.2.4 The weak mixing angle .............................. 6 10.2.5 Radiative corrections................................ 8 10.3 Low energy electroweak observables .......................... 9 10.3.1 Neutrino scattering................................. 9 10.3.2 Parity violating lepton scattering......................... 12 10.3.3 Atomic parity violation .............................. 13 10.4 Precision flavor physics ................................. 15 10.4.1 The τ lifetime.................................... 15 10.4.2 The muon anomalous magnetic moment..................... 17 10.5 Physics of the massive electroweak bosons....................... 18 10.5.1 Electroweak physics off the Z pole........................ 19 10.5.2 Z pole physics ................................... 21 10.5.3 W and Z decays .................................. 25 10.6 Global fit results..................................... 26 10.7 Constraints on new physics............................... 30 10.1 Introduction The standard model of the electroweak interactions (SM) [1–4] is based on the gauge group i SU(2)×U(1), with gauge bosons Wµ, i = 1, 2, 3, and Bµ for the SU(2) and U(1) factors, respectively, and the corresponding gauge coupling constants g and g0. The left-handed fermion fields of the th νi ui 0 P i fermion family transform as doublets Ψi = − and d0 under SU(2), where d ≡ Vij dj, `i i i j and V is the Cabibbo-Kobayashi-Maskawa mixing [5,6] matrix1. -
Lepton Flavor at the Electroweak Scale
Lepton flavor at the electroweak scale: A complete A4 model Martin Holthausen1(a), Manfred Lindner2(a) and Michael A. Schmidt3(b) (a) Max-Planck Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (b) ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010, Australia Abstract Apparent regularities in fermion masses and mixings are often associated with physics at a high flavor scale, especially in the context of discrete flavor symmetries. One of the main reasons for that is that the correct vacuum alignment requires usually some high scale mechanism to be phenomenologically acceptable. Contrary to this expectation, we present in this paper a renormalizable radiative neutrino mass model with an A4 flavor symmetry in the lepton sector, which is broken at the electroweak scale. For that we use a novel way to achieve the VEV alignment via an extended symmetry in the flavon potential proposed before by two of the authors. We discuss various phenomenological consequences for the lepton sector and show how the remnants of the flavor symmetry suppress large lepton flavor violating processes. The model naturally includes a dark matter candidate, whose phenomenology we outline. Finally, we sketch possible extensions to the quark sector and discuss its implications for the LHC, especially how an enhanced diphoton rate for the resonance at 125 GeV can be explained within this model. arXiv:1211.5143v2 [hep-ph] 5 Feb 2013 [email protected] [email protected] [email protected] 1 Introduction Much progress has been achieved in the field of particle physics during the last year. -
Composite Higgs Models with “The Works”
Composite Higgs models with \the works" James Barnard with Tony Gherghetta, Tirtha Sankar Ray, Andrew Spray and Callum Jones With the recent discovery of the Higgs boson, all elementary particles predicted by the Standard Model have now been observed. But particle physicists remain troubled by several problems. The hierarchy problem Why is the Higgs mass only 126 GeV? Quantum effects naively 16 suggest that mh & 10 GeV would be more natural. Flavour hierarchies Why is the top quark so much heavier than the electron? Dark matter What are the particles that make up most of the matter in the universe? Gauge coupling unification The three gauge couplings in the SM nearly unify, hinting towards a grand unified theory, but they don't quite meet. It feels like we might be missing something. With the recent discovery of the Higgs boson, all elementary particles predicted by the Standard Model have now been observed. However, there is a long history of things that looked like elementary particles turning out not to be Atoms Nuclei Hadrons Splitting the atom Can we really be sure we have reached the end of the line? Perhaps some of the particles in the SM are actually composite. Compositeness in the SM also provides the pieces we are missing The hierarchy problem If the Higgs is composite it is shielded from quantum effects above the compositeness scale. Flavour hierarchies Compositeness in the fermion sector naturally gives mt me . Dark matter Many theories predict other composite states that are stabilised by global symmetries, just like the proton in the SM. -
8. Quantum Field Theory on the Plane
8. Quantum Field Theory on the Plane In this section, we step up a dimension. We will discuss quantum field theories in d =2+1dimensions.Liketheird =1+1dimensionalcounterparts,thesetheories have application in various condensed matter systems. However, they also give us further insight into the kinds of phases that can arise in quantum field theory. 8.1 Electromagnetism in Three Dimensions We start with Maxwell theory in d =2=1.ThegaugefieldisAµ,withµ =0, 1, 2. The corresponding field strength describes a single magnetic field B = F12,andtwo electric fields Ei = F0i.Weworkwiththeusualaction, 1 S = d3x F F µ⌫ + A jµ (8.1) Maxwell − 4e2 µ⌫ µ Z The gauge coupling has dimension [e2]=1.Thisisimportant.ItmeansthatU(1) gauge theories in d =2+1dimensionscoupledtomatterarestronglycoupledinthe infra-red. In this regard, these theories di↵er from electromagnetism in d =3+1. We can start by thinking classically. The Maxwell equations are 1 @ F µ⌫ = j⌫ e2 µ Suppose that we put a test charge Q at the origin. The Maxwell equations reduce to 2A = Qδ2(x) r 0 which has the solution Q r A = log +constant 0 2⇡ r ✓ 0 ◆ for some arbitrary r0. We learn that the potential energy V (r)betweentwocharges, Q and Q,separatedbyadistancer, increases logarithmically − Q2 r V (r)= log +constant (8.2) 2⇡ r ✓ 0 ◆ This is a form of confinement, but it’s an extremely mild form of confinement as the log function grows very slowly. For obvious reasons, it’s usually referred to as log confinement. –384– In the absence of matter, we can look for propagating degrees of freedom of the gauge field itself. -
New Heavy Resonances: from the Electroweak to the Planck Scale
New heavy resonances : from the electroweak to the planck scale Florian Lyonnet To cite this version: Florian Lyonnet. New heavy resonances : from the electroweak to the planck scale. High Energy Physics - Phenomenology [hep-ph]. Université de Grenoble, 2014. English. NNT : 2014GRENY035. tel-01110759v2 HAL Id: tel-01110759 https://tel.archives-ouvertes.fr/tel-01110759v2 Submitted on 10 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenirle grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité:Physique Subatomiqueet Astroparticules Arrêtéministériel:7août2006 Présentéepar FlorianLyonnet ThèsedirigéeparIngoSchienbein préparéeau sein Laboratoirede Physique Subatomiqueet de Cosmolo- gie et de Ecoledoctoralede physique de Grenoble New heavy resonances: from the Electroweak to thePlanck scale ThèsesoutenuepubliquementOH VHSWHPEUH , devant le jurycomposéde : Mr. Aldo,Deandrea Prof., UniversitéClaudeBernardLyon 1, Rapporteur Mr. Jean-Loïc,Kneur DR,LaboratoireCharlesCoulombMontpellier,Rapporteur Mr. Roberto Bonciani Dr., UniversitàdegliStudidi Roma”LaSapienza”,Examinateur Mr. MichaelKlasen Prof., UniversitätMünster,Examinateur Mr. FrançoisMontanet Prof.,UniversitéJosephFourierde Grenoble,3UpVLGHQW Mr. JeanOrloff Prof., UniversitéBlaisePascal de Clermont-Ferrand,Examinateur Mr. IngoSchienbein MCF., UniversitéJosephFourier, Directeurde thèse ACKNOWLEDMENGTS My years at the LPSC have been exciting, intense, and I would like to express my sincere gratitude to all the people that contributed to it on the professional as well as personal level. -
Arxiv:0905.3187V2 [Hep-Ph] 7 Jul 2009 Cie Ataryo Xeietlifrain the Information
Unanswered Questions in the Electroweak Theory Chris Quigg∗ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 USA Institut f¨ur Theoretische Teilchenphysik, Universit¨at Karlsruhe, D-76128 Karlsruhe, Germany Theory Group, Physics Department, CERN, CH-1211 Geneva 23, Switzerland This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN’s Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings. It does not make specific predictions for the masses of the quarks and leptons or for the mixing among different flavors. It leaves unexplained how the Higgs-boson mass could remain below 1 TeV in the face of quantum corrections that tend to lift it toward the Planck scale or a unification scale. -
The Minimal Fermionic Model of Electroweak Baryogenesis
The minimal fermionic model of electroweak baryogenesis Daniel Egana-Ugrinovic C. N. Yang Institute for Theoretical Physics, Stony Brook, NY 11794 Abstract We present the minimal model of electroweak baryogenesis induced by fermions. The model consists of an extension of the Standard Model with one electroweak singlet fermion and one pair of vector like doublet fermions with renormalizable couplings to the Higgs. A strong first order phase transition is radiatively induced by the singlet- doublet fermions, while the origin of the baryon asymmetry is due to asymmetric reflection of the same set of fermions on the expanding electroweak bubble wall. The singlet-doublet fermions are stabilized at the electroweak scale by chiral symmetries and the Higgs potential is stabilized by threshold corrections coming from a multi-TeV ultraviolet completion which does not play any significant role in the phase transition. We work in terms of background symmetry invariants and perform an analytic semi- classical calculation of the baryon asymmetry, showing that the model may effectively generate the observed baryon asymmetry for percent level values of the unique invari- ant CP violating phase of the singlet-doublet sector. We include a detailed study of electron electric dipole moment and electroweak precision limits, and for one typical benchmark scenario we also recast existing collider constraints, showing that the model arXiv:1707.02306v1 [hep-ph] 7 Jul 2017 is consistent with all current experimental data. We point out that fermion induced electroweak baryogenesis has irreducible phenomenology at the 13 TeV LHC since the new fermions must be at the electroweak scale, have electroweak quantum numbers and couple strongly with the Higgs.