Detecting User Activities Using the Accelerometer on Android Smartphones

Total Page:16

File Type:pdf, Size:1020Kb

Detecting User Activities Using the Accelerometer on Android Smartphones Detecting User Activities using the Accelerometer on Android Smartphones Sauvik Das —Georgia Institute of Technology LaToya Green —University of Houston Beatrice Perez —University of Puerto Rico,Mayaguez Michael Murphy —Franklin W. Olin College of Engineering Supervisor: Dr.Adrian Perrig July 30, 2010 Contents even have the phone learn new activities. Mul- tiple approaches were implemented to attempt to 1 Abstract 1 find the best results. With individual calibra- tion we obtained accuracy of 93%, which could 2 Introduction 1 be improved with future work. 3 Background Information 2 4 Related Work 3 2 Introduction Smartphone security is becoming increas- 5 Methodology 3 ingly important as consumers rely more 5.1 Background . 3 and more on their smartphones to store 5.2 Data Acquisition . 4 personal information. With the devel- 5.3 Signal Processing . 5 opment of smartphone operating systems, 5.3.1 Preprocessing . 5 such as Apple’s iOs, Google’s Android and 5.3.2 Noise Reduction . 5 Blakcberry’s RIM operating systems on the 5.3.3 Linearization . 6 rise, it is imperative that security measures 5.3.4 Smoothing . 6 are in place to protect the privacy of the user. 5.4 Feature Extraction . 7 This is especially true for Google’s Android 5.5 Classification . 8 platform, being that it has an open develop- ment environment. 6 Results 9 What is Android? 7 Conclusions and Future Work 9 The Android platform is an open platform for mobile devices consisting of an operat- 8 References 10 ing system, applications and middleware1. Android gives users the opportunity to build and publish their own applications by 1 Abstract providing an open development environ- ment. Android treats all applications (na- The purpose of this study is to identify whether tive and third-party) as equals2. Therefore, smartphones pose a security threat to the user. having such an open development environ- The accelerometer and other sensors within the ment requires security measures to be taken device can be used without the users consent. in order to protect the integrity of the An- Our intent in this is to show that the accelerom- droid platform and the privacy of its users. eter can be used to obtain sensitive information Android Security and Permissions about the user. Using the magnitude of the ac- The Android Platform takes advantage celerometer data we found that we could iden- of several mechanisms designed to protect tify general activities preformed by the user, and the privacy and security of Android users, 1 as well as the operating system. These for an application to collect user informa- methods include the Android security ar- tion from these sensors without the user’s chitecture, application certificates, and ap- knowledge. plication permissions. The purpose of the Accelerometers Android security architecture is to prevent The accelerometer in Android phones applications from being able to automati- measures the acceleration of the device on cally perform operations that could jeopar- the x (lateral), y (longitudinal), and z (ver- dize the security of other applications, the tical) axes. Accelerometers can be used to operating system or the user. Certificates detect movement and the rate of change of are used to identify the author of a spe- the speed of movement. As stated above, cific application and to prevent users from the use of accelerometers in Android ap- installing fraudulent software on their de- plications does not require the application vices. Android will not install an applica- to have permission to use it. Therefore, it tion that has not been signed with a certifi- is possible for an application to collect a cate. Therefore, the origin of all published user’s accelerometer data without the user’s applications is traceable. knowledge. With accelerometer data and Android security permissions are han- the use of a server to collect the informa- dled by the AndroidManifest.xml file tion, it is a fairly simple task for someone to present within all application files. When gain a user’s personal information, their lo- a user downloads an application onto their cation, or to figure out what a user is doing device, they are automatically notified of or typing. the permissions the application has access to. This informs the user of what type of information an application is able to collect 3 Background Information from the device as well as the hardware the application can use. Accelerometers have been used for a variety The AndroidManifest.xml file takes care of uses throughout the world today, from of both software and hardware permissions. medical to research, from car performance But while Android does require permis- to robotics. However, with the advent of sions for the use of hardware devices such the iPhone and Android, accelerometers are as the camera and vibrator, it does not re- much more commonplace in the world of quire permissions to be set in place for the today. The most commonly used accelerom- use of any available sensors, including the eter within our phones is the LIS311DLH, at accelerometer, orientation, and gyroscope 3x3x1 millimeters, it is a tiny, low power, sensors3. But we have found that these sen- high performance linear accelerometer. It sors, when used alongside other tools such senses the forces of acceleration in the X Y as the internet and GPS, can also pose as se- and Z planes to a precision of six decimal curity threat to the user. And it is possible places. In order to investigate the possible 2 link between cyber security and physical se- but not implemented, such as a path track- curity, we set out to see how these sensors in ing device using only accelerometer data, smart phones, specifically this accelerome- or the use of accelerometer to transmit data ter could be used. In our research we wish other than the data of acceleration. Such to see if this device can turn what seems to phones could then be used as tracking de- be a harmless application on the Android vices for the creators, able to see their user’s Marketplace into a potential spying device, daily lives through accelerometer data. able to detect what actions the user is taking Current location tracking systems offer at the moment. high accuracy using GPS and other such methods; however, those require consent from the user. In this paper we attempt to 4 Related Work show such things as location and activity can be detected and recorded without the Many groups have developed sensor knowledge of the user, using simply the ac- recording and processing devices, such as celerometer within their phone. the eWatch, a wearable sensor that is in- tended for use of monitoring elderly and sick, identify non-responsiveness and keep 5 Methodology taps on their position5. A Japanese com- pany, KDDI, has developed something sim- 5.1 Background ilar to this, a system to keep track of em- ployee’s actions throughout the day, and The data received from the accelerometer send it back to a central mother server. was in the form of a three-valued vector This device can detect such activities such of floating point numbers that represented as walking, climbing stairs, or even clean- the individual accelerations of the smart- ing. However, little thought from the com- phone device in the X, Y, and Z axes sub- pany has gone into the potential security tracted by the gravity vector G. The ac- violations6. Many other universities have celeration values were recorded in meters m explored activity recognition using video per second squared( s2 ). Thus, layed flat instead of accelerometer data7. While this on a level surface, the expected reading of is not exactly related, it also explores the the accelerometer would be approximately idea of using a system we don’t have on our [0,0,-9.81]. The process of converting these minds as being a security threat, in fact, the acceleration vectors into known activities opposite, a security tool - cameras - as some- occured in four broad phases: data acqui- thing to invade privacy. Indeed, some uni- sition,signal processing, feature extraction and versities also attempted activity recognition classification. using cell phones as well8. Other systems During the preprocessing stage, each sam- have been suggested by the world today, pled acceleration vector was combined into 3 a single magnitude; in the noise reduction stage, the received signal was linearized and smoothed to reduce noise; in the feature ex- traction stage, features were extracted for each sample window of a predetermined number of 512 samples; in the classification stage, unknown patterns of data were clas- sified via feature comparison of known pat- terns of data, using the Nearest Neighbor and Naive Bayes classifiers. Two versions of the classification stage were implemented, online one –which was done on the fly as data Figure 1: The data acquisition application running was being received–and one offline–which on the Motorola Droid was done on a server after all relevant data had been collected. Prior to implementation, we had decided . Following reasonable success with these on attempting to classify the following five additions, users would be allowed to enter activities: customized gesture patterns. Phone Detached: The user is not cur- • rently holding the phone Idle: The user is holding the phone in • an idle state 5.2 Data Acquisition Walking: The user is walking • Running: The user is running • The device used was the Motorola Droid. Jumping: The user is jumping To acquire the accelerometer data, we cre- • ated an application for the Droid using the . Having achieved significant accuracy Android SDK. Training data was acquired in classifying the aforementioned activities, by having users perform an instructed task two additional activities were added to the (e.g., walking, running, jumping) while the list: data was either being exported to a server or Descending Stairs: The user is de- written to the Droid’s SD card.
Recommended publications
  • Wireless Accelerometer - G-Force Max & Avg
    The Leader in Low-Cost, Remote Monitoring Solutions Wireless Accelerometer - G-Force Max & Avg General Description Monnit Sensor Core Specifications The RF Wireless Accelerometer is a digital, low power, • Wireless Range: 250 - 300 ft. (non line-of-sight / low profile, capacitive sensor that is able to measure indoors through walls, ceilings & floors) * acceleration on three axes. Four different • Communication: RF 900, 920, 868 and 433 MHz accelerometer types are available from Monnit. • Power: Replaceable batteries (optimized for long battery life - Line-power (AA version) and solar Free iMonnit basic online wireless (Industrial version) options available sensor monitoring and notification • Battery Life (at 1 hour heartbeat setting): ** system to configure sensors, view data AA battery > 4-8 years and set alerts via SMS text and email. Coin Cell > 2-3 years. Industrial > 4-8 years Principle of Operation * Actual range may vary depending on environment. ** Battery life is determined by sensor reporting Accelerometer samples at 800 Hz over a 10 second frequency and other variables. period, and reports the measured MAXIMUM value for each axis in g-force and the AVERAGE measured g-force on each axis over the same period, for all three axes. (Only available in the AA version.) This sensor reports in every 10 seconds with this data. Other sampling periods can be configured, down to one second and up to 10 minutes*. The data reported is useful for tracking periodic motion. Sensor data is displayed as max and average. Example: • Max X: 0.125 Max Y: 1.012 Max Z: 0.015 • Avg X: 0.110 Avg Y: 1.005 Avg Z: 0.007 * Customer cannot configure sampling period on their own.
    [Show full text]
  • Measurement of the Earth Tides with a MEMS Gravimeter
    1 Measurement of the Earth tides with a MEMS gravimeter ∗ y ∗ y ∗ ∗ ∗ 2 R. P. Middlemiss, A. Samarelli, D. J. Paul, J. Hough, S. Rowan and G. D. Hammond 3 The ability to measure tiny variations in the local gravitational acceleration allows { amongst 4 other applications { the detection of hidden hydrocarbon reserves, magma build-up before volcanic 5 eruptions, and subterranean tunnels. Several technologies are available that achieve the sensi- p 1 6 tivities required for such applications (tens of µGal= Hz): free-fall gravimeters , spring-based 2; 3 4 5 7 gravimeters , superconducting gravimeters , and atom interferometers . All of these devices can 6 8 observe the Earth Tides ; the elastic deformation of the Earth's crust as a result of tidal forces. 9 This is a universally predictable gravitational signal that requires both high sensitivity and high 10 stability over timescales of several days to measure. All present gravimeters, however, have limita- 11 tions of excessive cost (> $100 k) and high mass (>8 kg). We have built a microelectromechanical p 12 system (MEMS) gravimeter with a sensitivity of 40 µGal= Hz in a package size of only a few 13 cubic centimetres. We demonstrate the remarkable stability and sensitivity of our device with a 14 measurement of the Earth tides. Such a measurement has never been undertaken with a MEMS 15 device, and proves the long term stability of our instrument compared to any other MEMS device, 16 making it the first MEMS accelerometer to transition from seismometer to gravimeter. This heralds 17 a transformative step in MEMS accelerometer technology.
    [Show full text]
  • A GUIDE to USING FETS for SENSOR APPLICATIONS by Ron Quan
    Three Decades of Quality Through Innovation A GUIDE TO USING FETS FOR SENSOR APPLICATIONS By Ron Quan Linear Integrated Systems • 4042 Clipper Court • Fremont, CA 94538 • Tel: 510 490-9160 • Fax: 510 353-0261 • Email: [email protected] A GUIDE TO USING FETS FOR SENSOR APPLICATIONS many discrete FETs have input capacitances of less than 5 pF. Also, there are few low noise FET input op amps Linear Systems that have equivalent input noise voltages density of less provides a variety of FETs (Field Effect Transistors) than 4 nV/ 퐻푧. However, there are a number of suitable for use in low noise amplifier applications for discrete FETs rated at ≤ 2 nV/ 퐻푧 in terms of equivalent photo diodes, accelerometers, transducers, and other Input noise voltage density. types of sensors. For those op amps that are rated as low noise, normally In particular, low noise JFETs exhibit low input gate the input stages use bipolar transistors that generate currents that are desirable when working with high much greater noise currents at the input terminals than impedance devices at the input or with high value FETs. These noise currents flowing into high impedances feedback resistors (e.g., ≥1MΩ). Operational amplifiers form added (random) noise voltages that are often (op amps) with bipolar transistor input stages have much greater than the equivalent input noise. much higher input noise currents than FETs. One advantage of using discrete FETs is that an op amp In general, many op amps have a combination of higher that is not rated as low noise in terms of input current noise and input capacitance when compared to some can be converted into an amplifier with low input discrete FETs.
    [Show full text]
  • Utilising Accelerometer and Gyroscope in Smartphone to Detect Incidents on a Test Track for Cars
    Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Carl-Johan Holst Data- och systemvetenskap, kandidat 2017 Luleå tekniska universitet Institutionen för system- och rymdteknik LULEÅ UNIVERSITY OF TECHNOLOGY BACHELOR THESIS Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Author: Examiner: Carl-Johan HOLST Patrik HOLMLUND [email protected] [email protected] Supervisor: Jörgen STENBERG-ÖFJÄLL [email protected] Computer and space technology Campus Skellefteå June 4, 2017 ii Abstract Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Every smartphone today includes an accelerometer. An accelerometer works by de- tecting acceleration affecting the device, meaning it can be used to identify incidents such as collisions at a relatively high speed where large spikes of acceleration often occur. A gyroscope on the other hand is not as common as the accelerometer but it does exists in most newer phones. Gyroscopes can detect rotations around an arbitrary axis and as such can be used to detect critical rotations. This thesis work will present an algorithm for utilising the accelerometer and gy- roscope in a smartphone to detect incidents occurring on a test track for cars. Sammanfattning Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Alla smarta telefoner innehåller idag en accelerometer. En accelerometer analyserar acceleration som påverkar enheten, vilket innebär att den kan användas för att de- tektera incidenter så som kollisioner vid relativt höga hastigheter där stora spikar av acceleration vanligtvis påträffas.
    [Show full text]
  • Basic Principles of Inertial Navigation
    Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation • Pilotage, which essentially relies on recognizing landmarks to know where you are. It is older than human kind. • Dead reckoning, which relies on knowing where you started from plus some form of heading information and some estimate of speed. • Celestial navigation, using time and the angles between local vertical and known celestial objects (e.g., sun, moon, or stars). • Radio navigation, which relies on radio‐frequency sources with known locations (including GNSS satellites, LORAN‐C, Omega, Tacan, US Army Position Location and Reporting System…) • Inertial navigation, which relies on knowing your initial position, velocity, and attitude and thereafter measuring your attitude rates and accelerations. The operation of inertial navigation systems (INS) depends upon Newton’s laws of classical mechanics. It is the only form of navigation that does not rely on external references. • These forms of navigation can be used in combination as well. The subject of our seminar is the fifth form of navigation – inertial navigation. 2 A few definitions • Inertia is the property of bodies to maintain constant translational and rotational velocity, unless disturbed by forces or torques, respectively (Newton’s first law of motion). • An inertial reference frame is a coordinate frame in which Newton’s laws of motion are valid. Inertial reference frames are neither rotating nor accelerating. • Inertial sensors measure rotation rate and acceleration, both of which are vector‐ valued variables. • Gyroscopes are sensors for measuring rotation: rate gyroscopes measure rotation rate, and integrating gyroscopes (also called whole‐angle gyroscopes) measure rotation angle.
    [Show full text]
  • Full Auto-Calibration of a Smartphone on Board a Vehicle Using IMU and GPS Embedded Sensors
    Full auto-calibration of a smartphone on board a vehicle using IMU and GPS embedded sensors Javier Almaz´an, Luis M. Bergasa, J. Javier Yebes, Rafael Barea and Roberto Arroyo Abstract| Nowadays, smartphones are widely used Smartphones provide two kinds of measurements. The in the world, and generally, they are equipped with first ones are relative to the world, such as GPS and many sensors. In this paper we study how powerful magnetometers. The second ones are relative to the the low-cost embedded IMU and GPS could become for Intelligent Vehicles. The information given by device, such as accelerometers and gyroscopes. Knowing accelerometer and gyroscope is useful if the relations the relation between the smartphone reference system between the smartphone reference system, the vehicle and the world reference system is very important in order reference system and the world reference system are to reference the second kind of measurements globally [3]. known. Commonly, the magnetometer sensor is used In other words, working with this kind of measurements to determine the orientation of the smartphone, but its main drawback is the high influence of electro- involves knowing the pose of the smartphone in the magnetic interference. In view of this, we propose a world. novel automatic method to calibrate a smartphone Intelligent Vehicles can be helped by using in-vehicle on board a vehicle using its embedded IMU and smartphones to measure some driving indicators. On the GPS, based on longitudinal vehicle acceleration. To one hand, using smartphones requires no extra hardware the best of our knowledge, this is the first attempt to estimate the yaw angle of a smartphone relative to a mounted in the vehicle, offering cheap and standard vehicle in every case, even on non-zero slope roads.
    [Show full text]
  • Accelerometers
    JOHNS HOPKINS UNIVERSITY,PHYSICSAND ASTRONOMY AS.173.111 – GENERAL PHYSICS LABORATORY I Accelerometers 1L EARNING OBJECTIVES At the conclusion of this activity you should be able to: • Use your smartphone to collect acceleration data. • Use measured acceleration to estimate the distance of a free fall • Use measured acceleration to estimate kinematic quantities that describe an elevator ride. 2B ACKGROUND 2.1A CCELERATION,VELOCITY, AND POSITION We know from Classical Mechanics that we can move between position, velocity, and acceleration by repeatedly taking time derivatives of the position of an object. Similarly, starting from acceleration, we can take subsequent integrals with respect to time to obtain velocity and position respectively. Description Differential Form Integral Form Z Position ~x ~x ~vdt Æ d~x Z Velocity ~v ~v ~adt Æ dt Æ d 2~x d~v Acceleration ~a ~a Æ dt 2 Æ dt 2.2C OLLECTING DATA WITH A SMARTPHONE Most modern smart phones come packed with sensors that make them ideal to use as physics instru- ments. Many cell phones come packaged with an air pressure sensor, light meter, 3-axis accelerometers, 3-axis magnetometer, gyroscope, and of course a microphone. Many great physics measurements can be made using your smart phone. Several apps exist for collecting data from these packaged sensors. For this lab activity, we will use the PhyPhox app. You may download the app to your phone here: https://phyphox.org/ Revised: Wednesday 10th March, 2021 16:32 ©2014 J. Reid Mumford PhyPhox is also available in both the Google Play and Apple app stores. 2.3A CCELEROMETERS Your smartphone is packaged with a small integrated circuit package called a Microelectromechanical Systems (MEMS).
    [Show full text]
  • Development of MEMS Capacitive Sensor Using a MOSFET Structure
    Extended Summary 本文は pp.102-107 Development of MEMS Capacitive Sensor Using a MOSFET Structure Hayato Izumi Non-member (Kansai University, [email protected]) Yohei Matsumoto Non-member (Kansai University, [email protected] u.ac.jp) Seiji Aoyagi Member (Kansai University, [email protected] u.ac.jp) Yusaku Harada Non-member (Kansai University, [email protected] u.ac.jp) Shoso Shingubara Non-member (Kansai University, [email protected]) Minoru Sasaki Member (Toyota Technological Institute, [email protected]) Kazuhiro Hane Member (Tohoku University, [email protected]) Hiroshi Tokunaga Non-member (M. T. C. Corp., [email protected]) Keywords : MOSFET, capacitive sensor, accelerometer, circuit for temperature compensation The concept of a capacitive MOSFET sensor for detecting voltage change, is proposed (Fig. 4). This circuitry is effective for vertical force applied to its floating gate was already reported by compensating ambient temperature, since two MOSFETs are the authors (Fig. 1). This sensor detects the displacement of the simultaneously suffer almost the same temperature change. The movable gate electrode from changes in drain current, and this performance of this circuitry is confirmed by SPICE simulation. current can be amplified electrically by adding voltage to the gate, The operating point, i.e., the output voltage, is stable irrespective i.e., the MOSFET itself serves as a mechanical sensor structure. of the ambient temperature change (Fig. 5(a)). The output voltage Following this, in the present paper, a practical test device is has comparatively good linearity to the gap length, which would fabricated.
    [Show full text]
  • Gravitation and Geodesy with Inertial Sensors, from Ground to Space
    Testing in Aerospace Research P. Touboul (ONERA) Gravitation and Geodesy G. Métris (Geoazur – CNRS/UMR) with Inertial Sensors, H. Sélig from Ground to Space (ZARM Space Science Department University of Bremen) ince the years 2000, three space missions, CHAMP, GRACE, and GOCE, have led S us to consider the Earth's gravitational field and its measurement in a new light, O. Le Traon, A. Bresson, using dedicated sensors and adequate data processing, revealing the changes in the N. Zahzam, B. Christophe, M. Rodrigues Earth's field as the true signal rather than the disturbing terms in addition to the geo- (ONERA) static reference field. Besides the possibilities offered by new technologies for the development of inertial sensors, a space environment of course involves special con- E-mail: [email protected] straints, but also allows the possibility of a specific optimization of the concepts and techniques well suited for microgravity conditions. We will analyze and compare with DOI: 10.12762/2016.AL12-11 others the interest in the electrostatic configuration of the instruments used in the main payload of these missions, and we will consider the recent MICROSCOPE mission, which takes advantage of the same mission configuration as a gradiometry mission to test the universality of free fall whatever the mass composition. A few days after launching the satellite in April 2016, we will show how we intend to validate the future result, the existence or not of a violation signal of the equivalence principle, taking into account the laboratory tests, where available, and the in-flight demonstrated perfor- mance during the calibration phases and the scientific measurements.
    [Show full text]
  • Motion Microscopy for Visualizing and Quantifying Small Motions
    Motion microscopy for visualizing and quantifying small motions Neal Wadhwaa,1, Justin G. Chena,b, Jonathan B. Sellonc,d, Donglai Weia, Michael Rubinsteine, Roozbeh Ghaffarid, Dennis M. Freemanc,d,f, Oral Buy¨ uk¨ ozt¨ urk¨ b, Pai Wangg, Sijie Sung, Sung Hoon Kangg,h,i, Katia Bertoldig, Fredo´ Duranda,f, and William T. Freemana,e,f,2 aComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cHarvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139; dResearch Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139; eGoogle Research, Google Inc. Cambridge, MA 02139; fDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139; gSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; hDepartment of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; and iHopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218 Edited by William H. Press, University of Texas at Austin, Austin, TX, and approved August 22, 2017 (received for review March 5, 2017) Although the human visual system is remarkable at perceiving local frequency information and has an amplitude Ar,θ(x; y) and and interpreting motions, it has limited sensitivity, and we can- a phase φr,θ(x; y). not see motions that are smaller than some threshold. Although To amplify motions, we compute the unwrapped phase differ- difficult to visualize, tiny motions below this threshold are impor- ence of each coefficient of the transformed image at time t from tant and can reveal physical mechanisms, or be precursors to its corresponding value in the first frame, large motions in the case of mechanical failure.
    [Show full text]
  • Inverted Pendulum Two-Wheel Robot Usingaccelerometer and Gyroscope for Its Sensors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Widya Mandala Catholic University Surabaya Repository VOL. 11, NO. 11, JUNE 2016 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com INVERTED PENDULUM TWO-WHEEL ROBOT USINGACCELEROMETER AND GYROSCOPE FOR ITS SENSORS Hartono Pranjoto, Diana Lestariningsih, Widya Andyardja and Calvin Prasetya Limantara Department of Electrical Engineering, Faculty of Engineering, Widya Mandala Catholic University, Jalan Kalijudan, Surabaya, Indonesia E-Mail: [email protected] ABSTRACT An inverted pendulum is a pendulum - a free body hung from a fix point and can swing freely in all directions – that has its center of mass above its pivot point. Unlike regular pendulum which is inherently stable, an inverted pendulum is inherently unstable and must be actively balanced in order to remain upright by applying some force at the pivot point, thus moving the pivot point horizontally as a feedback system. The pivot point is moved using a simple vehicle consisting of two wheels that moves freely in one direction. The feedback control to move the pivot point horizontally is a sensor system consisting of solid state accelerometer and gyroscope. The accelerometer will detect the angle of the inverted pendulum device and the gyroscope will detect the rate of rate of change of angle and therefore measure the angular velocity. The vehicle robot is a two-wheel vehicle which is controlled independently using two independent DC motor. The DC motors are controlled by a microprocessor which controls the speed of the motors using pulse width modulation independently for each motor and the feedback on how to move the robot horizontally is by the accelerometer and gyroscope system which is mounted on the top of the robot.
    [Show full text]
  • User Activity Tracker Using Android Sensor
    USER ACTIVITY TRACKER USING ANDROID SENSOR THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University By Chenxi Song Graduate Program in Electrical and Computer Engineering The Ohio State University 2015 Master's Examination Committee: Prof. Xiaorui Wang, Advisor Prof. Liang Guo c Copyright by Chenxi Song 2015 ABSTRACT Physical activity is a prescription for helping decrease stress; relieve depression, anxiety, heartburn and constipation; increase happiness; and prevent diseases. Ev- eryone knows that exercise is vital to maintaining health, yet many people can't keep regular exercise even they had set targets for themselves. A main reason is that they don't have a convenient method to keep being aware of where they are against their goals at any given point in the process. In this thesis, we explore methods about using cell phone sensors to detect and track users daily activities and help the user to set personalized exercise goals, which includes: detect different motion pattern, measure amount of exercise of each pattern, calculate total amount of calories consumed and give a daily report of user activities - help user find their fit, stay motivated, and see how small steps make a big impact. Key Words: Android, Sensor, Pattern Match, Adaptive algorithm, Calorie Count Algorithm ii This document is dedicated to my dear families and friends. iii ACKNOWLEDGMENTS Without the help of the following people, I would not have been able to complete my thesis. My heartfelt thanks to: Dr. Xiaorui Wang, for being my mentor in research.
    [Show full text]