Metallurgical Abstracts (General and Non-Ferrous)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Damage Tolerance Behaviour of Integral Aircraft Structures Obtained by Stationary Shoulder Friction Stir Welding
Damage Tolerance Behaviour of Integral Aircraft Structures Obtained by Stationary Shoulder Friction Stir Welding Vom Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Alessandro Barbini aus Pisa (Italien) 2021 1. Gutachter: Prof. Dr.-Ing. Norbert Huber 2. Gutachter: Prof. Dr.-Ing Xiang Zhang Vorsitzende: Prof. Dr. Erica Lilleodden Mündliche Prüfung: 3. Juli 2020 Abstract Research focusing on new ways to achieve weight reduction without sacrificing the safety performances of an aircraft is the subject of a constant push in the aeronautical industry. The use of riveting to join skin and stringer is highly optimised but in order to reduce structural weight, aside from the continuous development of new materials, it is important to use the already available materials in an efficient way. For this reason, friction stir welding (FSW) was looked at for many years as a suitable replacement alternative for riveting but the focus of the research was mostly driven with a material science point of view. Therefore, the development of a new solid-state welding technology ensuring good material properties and, at the same time, being investigated as a structural joint is still a necessity. The present-study addresses the development of a new procedure for joining skin and stringers made of dissimilar aluminium alloys by stationary shoulder friction stir welding (SSFSW), which is to be applied in primary aircraft structures. Three different joint configurations were developed, and their performances were compared. At first, a fundamental analysis of the correlation between the two main process parameters, welding speed and rotational speed on heat development and joint formation, was conducted. -
Inhaltsverzeichnis Seite Schrifttum 5 Abkürzungen 6 Einleitung I Waren
Inhaltsverzeichnis Seite Schrifttum 5 Abkürzungen 6 Einleitung i Waren. — Warenkunde. — Einteilung der Waren. — Hilfs- wissenschaften der Warenkunde 7— 8 I. Metalle und Metallwaren 8 A. Edelmetalle. 1. Gold. — 2. Silber. — 3. Platin. — 4. Queck- silber 10—18 B. Unedle Schwermetalle. 1. Eisen und Eisenwaren (Roh- eisen, schmiedbares Eisen, Erzeugnisse aus Eisen und Stahl). — 2. Kupfer. — 3. Blei. — 4. Zink. — 5. Zinn. — 6. Nickel. — 7. Arsen. — 8. Antimon. — 9. Wismut 18—35 C. Leichtmetalle. 1. Aluminium. — 2. Magnesium 35—37 D. Legierungen. 1. Bronze. — 2. Tombak. — 3. Messing. — 4. Neusilber. — 5. Konstantan .— 6. Britanniametall. — 7. Schriftmetall. — 8. Lagermetalle. — 9. Duralumin. — lO.Hydronalium. — 11. Silumin. —12. Elektron. — 13. Heus- ler'sche Legierungen 37—40 II. Edelsteine und Schmucksteine 40 A. Edelsteine. 1. Diamant. — 2. Rubin und Saphir. — 3. Spinell. — 4. Chrysoberyll. — 5. Smaragd. — 6. Topas. — 7. Zirkon. — 8. Granat. — 9. Türkis. — 10. Edelopal 41—46 B. Schmucksteine. 1. Quarz. — 2. Chalcedon. — S.Mond- stein. — 4. Lasurstein. — 5. Malachit. — 6. Blutstein. — 7. Bernstein 46—48 III. Bildhauersteine 48 1. Marmor. — 2. Alabaster. — 3. Serpentin. — 4. Meer- schaum. — 5. Talk 48—51 IV. Baustoffe 51 A. Bausteine. 1. Kalkstein. — 2. Sandsteine. — 3. Granit. — 4. Porphyr. — 5. Basalt. — 6. Magnesit. — 7. Kunststeine .... 51—53 B. Bindemittel. 1. Branntkalk. — 2. Zement. — 3. Gips 54—56 V. Schleif- und Glättemittel, Mühlsteine 57 1. Schleifsteine. — 2. Schmirgel. — 3. Gemeiner Korund. — 4. Siliziumkarbid. — 5. Bimsstein. — 6. Tripel. — 7. Polier- rot. — 8. Zinnasche. — 9. Wiener Kalk. — 10. Schlämm- kreide.—11. Mühlsteine 67—58 VI. Tonwaren 59 Ton. — 1. Porzellan. — 2. Steinzeug. — 3. Steingut. — 4. Töpferware. — 5. Ziegel. — 6. Feuerfeste Steine 59—67 VII. -
29 the Term Short Crack I . Reserved for a Crack Whose
29 The term short crack I . reserved for a crack whose maximum dimensions are small relative to either:- 1 . some microstructurally important dimension (eg. grain size), ie a continuum mechanics limitation, or 2 . some local plastic field with which the crack might be associated, or 3. simply physically small. Short crack growth below the threshold stress intensity found for large cracks is not surprising if one considers that cracks generally initiate from very small initial defects. Since AK is proportional to Aaja sarly crack growth must involve very low stress intensity ranges [107], This does not, however, explair <hv short cracks grow faster than long tracks, nor why some material exhibit extensive short crack behaviour while others exhibit practically none [2 , 108]. To summarise, short crack behaviour comprises two aspects :- 1. Short cracks grow faster than long cracks under nominally identical stress Intensity ranges (AK) and at values below the 1 _.ng crack threshold. 2, Short cracks exhibit transient dips and peaks in the growth late curve. 2.5.1 Reason* for faster short crack growth Various reasons have been suggested to explain faster short crack growth, however, many are limited to certain situations and they may not occur concurrently. 1. Short cracks initially proceed along the most favourable slip band system, or along "soft spots" (crystal logr -' 'ically favourable growth) [80, 45], 2. Where plastic damage occurs prior to initiation in alloys in whicn initiation takes a long time, more rapid growth might be expected in the high damage aren [109], 3. Crack tip strains and crack tip opening displacements for short cracks have been reported to be larger than for long cracks [79, 80, 110-113]; at lov stresses these differences can exceed an order of magnitude. -
Abstracts from the Scientific and Technical Press Titles And
December, ig4j Abstracts from the Scientific and Technical Press " (No. 117. October, 1943) AND Titles and References of Articles and Papers Selected from Publications (Reviewed by R.T.P.3) TOGETHER WITH List of Selected Translations (No. 63)' London : "THE ROYAL AERONAUTICAL SOCIETY" with which is incorporated "The Institution of Aeronautical Engineers" 4, Hamilton Place, W.I Telephone: Grosvenor 3515 (3 lines) ABSTRACTS FROM THE SCIENTIFIC AND TECHNICAL PRESS. Issued by the Directorate's of Scientific Research and Technical Development, Ministry of Air craft Production. (Prepared by R.T.P.3.) No. 117. OCTOBER, 1943. Notices and abstracts from the Scientific and Technical Press are prepared primarily for_ the information of Scientific and Technical Staffs. Particular attention is paid to the work carried out in foreign countries, on the assumption that the more accessible British work (for example that published by the Aeronautical Research Committee^ is already known to these Staffs. Requests from scientific and technical staffs for further information of transla tions should be addressed to R.T,P.3, Ministry of Aircraft Production, and not to the Royal Aeronautical Society. Only a limited number of the articles quoted from foreign journals are trans lated and usually only the original can be supplied on loan. If, however, translation is required, application should be made in writing to R.T.P.3, the requests being considered in accordance with existing facilities. ' NOTE.—As far as possible, the country of origin quoted in the items refers to the original source. The Effect of Nitrogen on the Properties of Certain Austenitic Valve Steels. -
Aluminium Alloys Chemical Composition Pdf
Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions. -
Metallurgical Abstracts (General and Non-Ferrous)
METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 4 DECEMBER 1937 Part 12 I —PROPERTIES OF METALS (Continued from pp. 481-493.) *0n the Source of the Copper in Virgin Aluminium. A. Brenner and F. Wechtel (Metallwirtschaft, 1937, 16, (40), 1009-1010).—The alumina contains 0-0007-0-007% copper, the electrodes 0-0001-0-001% copper, and the cryolite 0-0025% copper. The alumina is thus the chief source of the copper.—v. G. *Surface Tensions of Molten Aluminium, Magnesium, Sodium, and Potassium. V. G. Givov (Trudi Vsesoiuznogo Aluminievogo-Magnievo Instituta (“ VAMI") (Trans. Aluminium-Magnesium Inst.), 1937, (14), 99-112).—[In Russian.] The surface tensions of various metals determined by the bubble method in an atmosphere of argon were found to be as follows in ergs/cm.2. : aluminium at 706° C., 494, a t 935° C., 463; magnesium at 681° C., 563, at 894° C., 502; potassium at 79° C., 400-5, at 228° 0., 391-5; sodium a t 110° C., 205-7, a t 263° C., 198-2. In each case the decrease in tension between the two tem peratures given is linear.—D. N. S. Physical Constants of Aluminium. Junius D. Edwards (Metals Handbook (Amer. Soc. Metals), 1936, 922-929).—Discusses and gives data for atomio weight, crystal form, density, compressibility, thermal expansion, freezing point, specific heat, latent heat of fusion, boiling point, thermal conductivity, heat of combustion, fluidity, optical properties, electrical resistance, electro chemical equivalent, electrolytic solution potential, thermoelectromotive force, magnetic properties, and mechanical properties. A bibliography of 27 refer ences is appended.—S. G. -
The Chemical Age 1933 Vol.28 No.727
The Chemical Age A Weekly Journal Devoted to Industrial and Engineering Chemistry - VOL. XXvIII. June 3s '933 NO. 727 Notes and Comments Finance and Industry conducted at hlellon Institute; earlier studies were THEfuture holds, to those who are able to regard it carried out jointly with the Pierce Foundation, set up through reasonably optimistic spectacles, far more in 1917 by the late John B. Pierce, president of the hope than it did even a few months ago. Many of American Radiator Co. Vinyl resin castings, each the concerns whose annual meetings are new being weighing approximately 150 lb., have been made re- reported in the financial papers are proving to have peatedly and in the course of a year not one cracked, made increased profits even in a difficult year. They warped, or otherwise deteriorated. They are said to are firms which have adapted their methods to suit be the largest ever developed from the usual plastic the times. Sir Eric Geddes, in his speech at the Dun- materials. This home-building experiment began lop Rubber Company's meeting, remarked that he had when the Pierce Foundation, planning to con- found a definite improvement in this country in struct a model home through the development of new foreign export trade, and particularly in trade with niethods and the application of modern materials, the Dominions, whilst the " resistance to buying is desired a door and a sectional wall panel. Wood was certainly not so strong as it was a year ago." "The ruled out and metal was not used because of its Times" reports "a further rise in commodity prices weight. -
Arc Welding of Nonferrous Metals Arc Welding of Nonferrous Metals
Arc Welding of Nonferrous Metals Arc Welding of Nonferrous Metals Published by The Arc Welding of Nonferrous Metals KOBE STEEL, LTD. is a textbook for providing information to assist welding personnel study © 2015 by KOBE STEEL, LTD. the arc welding technologies commonly 5-912, Kita-Shinagawa, Shinagawa-Ku, applied in the equipment made from Tokyo, 141-8688 Japan aluminum, aluminum alloys, copper, copper alloys, nickel, and nickel alloys. All rights reserved. No part of this book may be reproduced, Reasonable care is taken in any form or by any means, without in the compilation and publication of permission in writing from this textbook to insure authenticity of the publisher the contents. No representation or warranty is made as to the accuracy or reliability of this information. Forewords Nonferrous metals are non-iron-based metals such as aluminum and aluminum alloys, copper and copper alloys, nickel and nickel alloys, titanium and titanium alloys, and magnesium and magnesium alloys. Today, nonferrous metals are used in various welding constructions for diverse industrial applications. However, their weldability is quite different from that of steel, due to specific physical and metallurgical characteristics. Therefore, the welding procedure for nonferrous metals should be thoroughly examined taking into account the inherent characteristics of the particular nonferrous metal to be welded, in order to get sound weldments. This textbook focuses on the arc welding of aluminum, aluminum alloys, copper, copper alloys, nickel, and nickel alloys that are used more extensively over other nonferrous metals for industrial applications. This textbook consists of three chapters: Chapter 1: Arc Welding of Aluminum and Aluminum Alloys Chapter 2: Arc Welding of Copper and Copper Alloys Chapter 3: Arc Welding of Nickel and Nickel Alloys iii Chapter 1 Arc Welding of Aluminum and Aluminum Alloys Contents Introduction 2 1. -
This Item Is Held in Loughborough University's Institutional Repository
This item is held in Loughborough University’s Institutional Repository (https://dspace.lboro.ac.uk/) and was harvested from the British Library’s EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions. For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/ MODELLING OF GRAIN BOUNDARY SEGREGATION, PRECIPITATION AND PRECIPITATE-FREE ZONES OF HIGH STRENGTH ALUMINIUM ALLOYS by Hong JIANG A Doctoral Thesis Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of the Loughborough University of Technology March 1994 r-'7- 77'--", -- 0 by H. Jiang, 1994 Acknowledgments The work described in this thesis could not have been carried out without the help of others, whose support I gratefully acknowledge. In particular, sincere thanks must go to my supervisor, Professor Roy Faulkner of Loughborough University for his help, advice and encouragement throughout the duration of this work. Also I am deeply indebted to Mr John Bates, the Senior Laboratory Officer at IPTME for his advice, general instruction and guidance in the techniques for the experimental work and, thanks to Mr Shenghau Song, the Research Student at HYME for his kindly assistancein the experimental work. For financial support I am indebted to Loughborough University of Technology for their award of a Overseas Research Student Award and to Alcan International, Ban bury Laboratory for their supplementationof a ResearchStudentship. - III Abstract Aluminium alloys of the 7000 series with their high strength to weight ratio characteristics have been considered as a excellent choice in airftwne structure manufacturing. -
Aluminium 7020 Alloy and Its Welding Fatigue Behaviour
6 Aluminium 7020 Alloy and Its Welding Fatigue Behaviour Carlos Bloem1, Maria Salvador2, Vicente Amigó2 and Mary Vergara1 1Universidad de Los Andes 2Universidad Politécnica de Valencia 1Venezuela 2España 1. Introduction Since Alfred Wilm discovered the aluminium alloys hardening precipitation phenomena at the begining of the last century (Polmear 1996), the use of aluminium alloys has increased, owing their advantages against corrosion and good strength weight ratio. The Aluminium Zinc Magnesium ternary alloys are getting more relevance every day. These alloys are commonly called Al-Zn-Mg. In this family the most used are the AA7005 and AA 7020, which are nearly the same alloys. Although the most remarkable difference between them is the slightly better mechanical behaviour of the 7020 one after welding. The ageing development of these alloys follows a simple precipitation phenomena summarized as: αss→α1+GP→α2+η’→αeq+η Some investigators propose a transitional step on the Guinier Preston (GPs) evolution that gives the response to the natural ageing as: αss→α1+GPround→α2+GPordered →α3+η’→α4+η→α4+T The calorimetric study of the natural ageing evolution shows that there is no difference on the heat exchange of η’ and η. So, the GPs evolution is the responsible of strengthening of the alloy. The mechanical properties of AA7020 are evaluated and the exponential evolution is advisable, due to natural ageing. The fatigue behaviour of AA7020 natural aged shows a typical Aluminium Wohler pattern. From this curve a mathematical model is proposed. Welded aluminium: Riveted and welded aluminium structures are getting more relevance every day. -
Determination of Kinetic Parameters from Calorimetric Study of Solid State Reactions in 7150 AlZnMg Alloy
Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 AlZnMg alloy K. S. GHOSH1 , N. GAO 2 1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Durgapur 713 209, India; 2. Materials Research Group, School of Engineering Science, University of Southampton, Southampton, SO17 1BJ, UK Received 4 August 2010; accepted 19 November 2010 Abstract: Differential scanning calorimetric (DSC) study was carried out at different heating rates to examine the solid state reactions in a 7150 AlZnMg alloy in waterquenched (WQ) state, naturally and artificially aged tempers. The exothermic and endothermic peaks of the thermograms indicating the solid state reaction sequence were identified. The shift of peak temperatures to higher temperatures with increasing heating rates suggests that the solid state reactions are thermally activated and kinetically controlled. The artificial aging behaviour of the alloy was assessed by measuring the variations of hardness with aging time. The fraction of transformation (Y), the rate of transformation (dY/dt), the transformation function f(Y), and the kinetic parameters such as activation energy (Q) and frequency factor (k0) of all the solid state reactions in the alloy were determined by analyzing the DSC data, i.e. heat flow involved with the corresponding DSC peaks. It was found that the kinetic parameters of the solid state reactions are in good agreement with the published data. Key words: 7150 AlZnMg alloy; DSC; aging behaviour; activation energy; transformation function method, i.e. susceptibility to errors and timeconsuming 1 Introduction technique, calorimetric method can conveniently be utilized to understand the kinetics of all types of Aluminium alloys of 7xxx series AlZnMg are precipitation and dissolution reactions in aluminium widely used in aircraft and aerovehicle structural alloys [12−13]. -
Metallurgical Abstracts (General and Non-Ferrous)
METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 2 DECEMBER 1935 Part 12 I.—PROPERTIES OF METALS (ContinneD from pp. 497-502.) »The Diffusion of Gases Through Metals, ü .—Diffusion of Hydrogen Through Aluminium. C. J. Smithells anD C. E. Ransley (Proc. Roy. Soc., 1935, [A], 152, 706-713).—HyDrogen is founD to Diffuse at a measurable rate through aluminium at temperatures above 400° C. The rate of Diffusion DepenDs on the state of the surface; it is greatest for a surface freshly scrapeD in hyDrogen, but it Decreases rapiDly, anD after some hours reaches'a steaDy value which is about of the initial rate. This Decrease is attributeD to contamination of the surface by oxygen. The effect of temperature (T) anD pressure (P) on the rate of Diffusion (D) are representeD by D = KPle~l>lT. The value of 6 for a freshly scrapeD surface is 15,600, anD for an anoDically oxidized surface about 21,500; K varies from 3-3 to 0-42 for Different states of the surface.—J. S. G. T. *The Solubility of Hydrogen in Molten Aluminium. L. L. Bircumshaw (Trans. Faraday Soc., 1935, 31, 1439-1443).—The solubility of hyDrogen in aluminium is a t 700° C. 0-23, at 800° C. 0-89, a t 9003 C. 1-87, anD at 1000° C. 3-86 c.c. (N.T.P.) per 100 grm. of metal, anD the “ saturateD ” heat of solution 43,400 gnn.-caL/grm.-mol. of DissolveD gas. The solubility values agree closely with those of Röntgen anD Braun (Met. Abs.