University of California Riverside
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CALIFORNIA RIVERSIDE Characterization of Tumor Derived B56gamma Mutations and Their Effect on Tumor Suppressor Function of B56gamma PP2A A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biochemistry and Molecular Biology by Yumiko Nobumori June 2013 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frances M. Sladek Dr. Jolinda A. Traugh Copyright by Yumiko Nobumori 2013 The Dissertation of Yumiko Nobumori is approved: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS First and foremost, I would like to express my deep gratitude to Dr. Xuan Liu for her continued guidance, support, and encouragement to work in this project. I would like to thank the members of my committee Dr. Frances M. Sladek and Dr. Jolinda A. Traugh for valuable advice and encouragement. I would also like to thank past and present members of my laboratory for providing suggestions and assistance. I am grateful to Dr. Ernest Martinez, Dr. Frank U. Sauer, and members of their laboratories, and members of Dr. Frances M. Sladek’s laboratory who have provided research suggestions and experimental advice during laboratory meeting. Last but not least, I would like to thank my husband, Jonathan, for his love, kindness, and constant support throughout entire process. The materials in Chapter 2 were originally published in Oncogene. 2010; 29:3933-3941. G.P. Shouse, Y. Nobumori, and X. Liu. A B56γ mutation in lung cancer disrupts the p53- dependent tumor-suppressor function of protein phosphatase 2A. Copyright © 2010 Nature Publishing Group, a division of Macmillan Publishers Limited. The materials in Chapter 3 were originally published in The journal of biological chemistry. 2012; 287:11030-11036. Y. Nobumori, G.P. Shouse and X. Liu. HEAT repeat 1 motif is required for B56γ-containing protein phosphatase 2A (B56γ-PP2A) holoenzyme assembly and tumor-suppressive function. Copyright © 2012 the American Society for Biochemistry and Molecular Biology. iv ABSTRACT OF THE DISSERTATION Characterization of Tumor Derived B56gamma Mutations and Their Effect on Tumor Suppressor Function of B56gamma PP2A by Yumiko Nobumori Doctor of Philosophy, Graduate Program in Biochemistry and Molecular Biology University of California, Riverside, June 2013 Dr. Xuan Liu, Chairperson The heterotrimeric PP2A holoenzyme consists of a scaffolding A, a catalytic C, and a variable regulatory B subunit. Previous study has reported that B56γ subunit mediates the tumor suppressive function of PP2A. B56γ-PP2A inhibits cell transformation by dephosphorylating and activating p53. In addition, B56γ-PP2A possesses the p53-independent tumor suppressive function although its mechanism is unclear. In the present study, we demonstrate the mechanism of B56γ tumor suppressive function inactivation through characterizing B56γ mutations identified in human cancer. v First, we demonstrate that the A383G and F395C mutations disrupt B56γ from interacting and activating p53. The mutants are unable to dephosphorylate p53 and thus lack the p53-dependent tumor suppressive function. Moreover, we identify the region adjacent to these mutations as the p53 binding domain. This finding implies that the bridging interaction between B56γ and p53 is required for p53 dephosphorylation by PP2A. Second, we show that the C39R mutation within the HEAT repeat 1 disrupts B56γ binding with the AC core and thus abolishes the B56γ tumor suppressive function completely. We further demonstrate that the intact HEAT repeat 1 is required for B56γ to bind the AC core, providing structural insights into the B56γ-PP2A holoenzyme assembly. Further characterization of additional B56γ mutations reveals two classes of mutations with different mechanisms of tumor suppressive function inactivation. Mutations in the first class disrupt the interaction between B56γ and the AC core and thus fail to regulate all substrates and completely lose the tumor suppressive function. Mutations in the second class prevent specific substrates from binding B56γ and partially reduce the tumor suppressive function. Although it remains to be investigated how frequently these mutations occur, our results underline the importance of B56γ tumor suppressive function in human cancer. Finally, we identified the S220N mutation that specifically disrupts the p53-independent tumor suppressive function of B56γ, suggesting that it may disrupt the binding of unknown substrates. Identification of these proteins would contribute to the further understanding of the tumor suppressor role of B56γ in cells. vi TABLE OF CONTENTS Chapter 1: Introduction ................................................................................................................... 1 References ................................................................................................................................ 18 Figure legend ........................................................................................................................... 31 Figures ...................................................................................................................................... 32 Tables ....................................................................................................................................... 33 Chapter 2: A B56γ mutation in lung cancer disrupts the p53-dependent tumor suppressor function of protein phosphatase 2A ........................................................................................................ 35 Abstract .................................................................................................................................... 36 Introduction .............................................................................................................................. 37 Materials and Methods ............................................................................................................. 39 Results ...................................................................................................................................... 41 Discussion ................................................................................................................................ 48 References ................................................................................................................................ 51 Acknowledgements ................................................................................................................... 54 Figure legend ............................................................................................................................ 55 vii Figures ...................................................................................................................................... 59 Chapter 3: HEAT repeat 1 is required for B56γ-PP2A holoenzyme assembly and tumor suppressive function ................................................................................................................. 66 Abstract .................................................................................................................................... 67 Introduction .............................................................................................................................. 68 Materials and Methods ............................................................................................................. 71 Results ....................................................................................................................................... 74 Discussion ................................................................................................................................ 79 References ................................................................................................................................ 82 Acknowledgements ................................................................................................................... 84 Figure legend ............................................................................................................................ 85 Figures....................................................................................................................................... 88 Chapter 4: Characterization of B56γ tumor-associated mutations reveals mechanisms for inactivation of B56γ-PP2A ...................................................................................................... 94 Abstract .................................................................................................................................... 95 Introduction ............................................................................................................................... 96 viii Materials and Methods .............................................................................................................. 98 Results ..................................................................................................................................... 100 Discussion .............................................................................................................................. 108 References .............................................................................................................................