Claviceps Purpurea Replaces the Grain

Total Page:16

File Type:pdf, Size:1020Kb

Claviceps Purpurea Replaces the Grain Ergot of Rye zErgot is a disease of Rye. The Ergot is the Ergot of Rye dark purplish sclerotium of the fungus that Claviceps purpurea replaces the grain. Ergot of Rye Ergot of Rye zErgot was very common pathogen of rye. zAppearance on rye has been documented zAlso infect other grains. in ancient Greece. zProportion of mycotoxins differ within z Ergot contains about forty alkaloids species. Thus, symptoms may vary. (mycotoxins), may be fatal when consumed. z“The Ergot” also over wintering stage in zSome source of pharmacological medicine. life cycle. zIn spring sclerotium produces stroma zOriginal source from which Lysergic (pl.= stromata) containing asci & Acid Diethylamide (LSD) isolated. ascospores. Ergot of Rye Ergot of Rye z Stromata are zAscospores dispersed by wind, onto rye mushroom-like (right) flowers. structures growing zInfection initially produces asexual out of ergot. spores of Spacelia stage, in honey dew exudate. zFly dispersed. z L-section (left) z through stroma, with Can repeatedly asci & ascospores. infect rye flowers. 1 Ergot of Rye Ergot of Rye zErgot forms as winter approaches. zTwo types of ergot poisoning recognized: zSummary of life cycle: Convulsive ergotism, a nervous dysfunction, fits, muscle spasms, hallucinations and delusions. Gangrenous ergotism, constriction of blood vessels, especially to extremities, resulting in loss of extremities. zOversimplification of symptoms! Ergot of Rye Ergot of Rye zLoss of toes in foot due to gangrene. zCow with gangrenous ergotism. Ergot of Rye Gangrenous Ergotism zGangrene of finger tips. zEarliest observation of ergotism probably began with cultivation of Rye. zGangrenous ergotism was first documented during Middle Ages (around 5th Century). First major outbreak in 875 A.D. Named “Holy Fire” at this time. Major epidemics of ergotism occurred http://dermatology.about.com/library/blgangrene1photo.htm every few years. 2 Gangrenous Ergotism Gangrenous Ergotism zGangrenous ergotism in Middle Ages zFrance was center of many severe (continued): epidemics. Blackened toes, fingers, arms and legs Rye was staple of poor. most common symptoms Climate was cool and wet, favorable for Eventually dying of gangrene in ergot growth. infected limbs. When wet and humid, flowers stay open longer and more prone to contamination. Convulsive ergotism also could also occur resulting in victims becoming insane. Gangrenous Ergotism Gangrenous Ergotism zRelief and hope: zRelief and hope: Outbreak of ergotism in 1039, in Those afflicted often were cured of France. ergotism. Gaston de la Valloire built hospital to Affliction returned after leaving care for afflicted. hospital. Hospital dedicated to St. Anthony. Patients thought it was God that cured Led monks to start order of St. them. Anthony, leading to 370 hospitals. Eventually “Holy Fire” became “St. Anthony’s Fire”. Gangrenous Ergotism Gangrenous Ergotism zThuillier, French Physician, 1670 believed zThuillier, French Physician, 1670 believed Ergot was source of “disease”. Ergot was source of “disease” (continued). Formulated generalities of Ergotism. Correlated high ergot infection with Only the poor seem to be inflicted. high occurrence of “Fire”. Entire families may be inflicted, but Was unable to convince anyone of his not neighbors. Thus, not contagious. theory. Victims of St. Anthony’s Fire all Louis Tulasne (1853) would verify that consumed rye bread. Ergot was a fungus and cause of Believed that bread made from rye ergotism. infected with ergot was responsible. 3 Historical Impact Historical Impact zHas impacted geographical boundaries: zHoly Roman Empire in red Between 800-900 A.D. Northmen (Vikings) invaded Holy Roman Empire. Thousand of Franks died as result of gangrenous ergotism. Numerous raids caused Charles III to abdicate throne and Franks’ land was split into two kingdoms. Kingdom of West Frank became France. Kingdom of East Frank became Germany. Historical Impact Historical Impact zPresent day France and Germany: zHas impacted geographical boundaries (continued): By 911 AD, Northmen’s hold on northwest of France complete, became Normandy. Normandy ceded to Northmen. Eventually absorbed by France. Historical Impact Ergotism in the Past zPeriod of the Bubonic Plague 1348-1350. zPeriod of the Bubonic Plague 1348-1350. zOne third of Europe’s population died. zOne third of Europe’s population died. zAn alternative cause Matossian (1989): zAn alternative cause Matossian (1989): Some symptoms often not associated Life history of Bubonic Plague. with Bubonic Plague, i.e., symptoms associated with Trichothecenes. Matossian believed consumption of T-2 Also, included rainfall and temperature infected grains or related mycotoxins data that would favor Trichothecene damaged immune system. formation in grain and not favor the Made humans and rats more occurrence of Bubonic Plague. susceptible to plague. 4 Historical Impact Historical Impact zMatossian found certain category of zDepression of European population people more infected: following plague: Age, 5-14 and 15-24 Population depression lasted for over Poor, substandard food more likely to 100 years. eat rye After plague, winters were cooler. Lived near grain storage (attracted Evidence of ergotism. rats) Combination of trichothecene and Rainfall, humidity and flooding. ergot poisoning contributed to spontaneous abortions and low fertility. Convulsive Ergotism Convulsive Ergotism zSymptoms for convulsive ergotism more familiar and recently associated with zWitchcraft and ergotism: witchcraft: What did people think occurred when Mary Matossian also includes a chapter symptoms of convulsive ergotism on ergotism and witchcraft. observed? Correlation between the occurrences of Matossian correlated diet, locality, witchcraft reported and consumption of climatic condition with incidents of infected grain. witchcraft trials. Not difficult to imagine if victims claim to be hearing voices and speaking to unseen spirits. Historical Impact Ergotism in the Past zWitchcraft and ergotism (continued): zWitchcraft and ergotism (continued): How did witch hunt begin?. Who were the witches? In Salem, Massachusetts, January 20, 1692. Doctors. Herbalists. Three pre-teen girls exhibited Why them? convulsive ergotism(?). Thought to be bewitched by doctor. Who were the witches? Consumption of witch cake would tell. 5 Ergot of Rye 20th Century Ergot of Rye 20th Century zAn example of a modern day outbreak zAn example of a modern day outbreak (1951, in Pont-St. Esprit, France): (1951, in Pont-St. Esprit, France) First noticed by Dr. Jean Vieu, on (continued): August 12, 1951. Found common food item. Combination of strange symptoms. Took four weeks to trace source. By August 14th. Hospital filled with Presently, quality control prevents such patients with same symptoms. incidents from occurring. However, it was not known immediately what cause was. Pharmaceutical Usage zPharmaceutical usages of Ergot During 17th Century, mid-wives used extracts of ergot during child birth: Inducing contraction of uterus. Controlling postpartum hemorrhage. Albert Hofman, 1935, synthesized ergonovine, in lab, Sandoz Laboratories . Ergotamine: Migraine headaches And of course, LSD, Thursday’s topic. 6.
Recommended publications
  • Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
    agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies.
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Cabergoline Monograph
    Cabergoline DRUG NAME: Cabergoline SYNONYM(S): COMMON TRADE NAME(S): DOSTINEX® CLASSIFICATION: hormonal agent Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Cabergoline is a dopaminergic ergot derivative with longer lasting prolactin lowering activity than bromocriptine. Cabergoline may decrease hormone production and the size of prolactin-dependent pituitary adenomas1 by inhibiting the release and synthesis of prolactin from the anterior pituitary gland.2,3 The prolactin lowering effect is dose-related.2 PHARMACOKINETICS: Oral Absorption rapidly absorbed, unaffected by food Distribution widely distributed,4 time to peak 2-3 h, steady state achieved after 4 weeks cross blood brain barrier? yes volume of distribution no information found plasma protein binding 40-42% Metabolism extensive hepatic metabolism, primarily via hydrolysis with minimal CYP450 mediated metabolism; undergoes first-pass metabolism active metabolite(s) no information found inactive metabolite(s)4-6 eight metabolites including 6-allyl-8b-carboxy-ergoline Excretion primarily hepatic7 urine7 18-22%, <4% unchanged after 20 days feces7 60-72% after 20 days terminal half life 63-69 h, hyperprolactinemic patients: 79-115 h clearance no information found Sex no significant differences found7 Elderly no significant differences found7 Adapted from standard reference2 unless specified otherwise. USES: Primary uses: Other uses: *Pituitary tumours *Health Canada approved indication SPECIAL PRECAUTIONS: Contraindications2:
    [Show full text]
  • Links Between Genetic Groups, Indole Alkaloid Profiles and Ecology Within the Grass-Parasitic Claviceps Purpurea Species Complex
    Toxins 2015, 7, 1431-1456; doi:10.3390/toxins7051431 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex Mariell Negård 1,2, Silvio Uhlig 1,3, Håvard Kauserud 2, Tom Andersen 2, Klaus Høiland 2 and Trude Vrålstad 1,2,* 1 Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; E-Mails: [email protected] (M.N.); [email protected] (S.U.) 2 Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway; E-Mails: [email protected] (H.K.); [email protected] (T.A.); [email protected] (K.H.) 3 Department of the Chemical and Biological Working Environment, National Institute of Occupational Health, P.O. Box 8149 Dep, 0033 Oslo, Norway * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +47-2321-6247. Academic Editor: Christopher L. Schardl Received: 3 January 2015 / Accepted: 22 April 2015 / Published: 28 April 2015 Abstract: The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS.
    [Show full text]
  • Endophytic Fungi: Treasure for Anti-Cancerous Compounds
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 8, 2016 Review Article ENDOPHYTIC FUNGI: TREASURE FOR ANTI-CANCEROUS COMPOUNDS ANAND DILIP FIRODIYAa*, RAJESH KUMAR TENGURIAb aCSRD, Peoples University, Bhopal 462037, Madhya Pradesh, India, bDepartment of Botany, Govt. PG College, Rajgarh 496551, Madhya Pradesh, India Email: [email protected] Received: 22 Apr 2016 Revised and Accepted: 20 June 2016 ABSTRACT Endophytic fungi that live asymptomatically inside the plant tissues have novel bioactive metabolites exhibiting a variety of biological activities, especially against cancer. This review highlights the research progress on the production of anticancer compounds by endophytic fungi from 1990- 2015. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. The ubiquitous nature of endophytic fungi synthesise diverse chemicals with promising anticancer activity from either their original host or related species. Modification in fermentation parameters and genetic insight of endophytes may produce novel anti-cancerous compounds. Keywords: Cancer, Medicinal plants, Secondary metabolites © 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) INTRODUCTION endophytic fungi detectable by high-performance liquid chromate- graphy, nuclear magnetic resonance, mass spectrophotometer and The interest in the biogenic medicines has revived throughout the X-ray crystallography and its cytotoxicity of the bioactive world, as the increase in awareness of the health hazards and compounds against cancer cell lines. The compounds with potential toxicity associated with the random use of synthetic drugs and application were also considered in the selection of antitumor antibiotics [1].
    [Show full text]
  • Hallucinogens: a Cause of Convulsive Ergot Psychoses
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1976 Hallucinogens: a Cause of Convulsive Ergot Psychoses Sylvia Dahl Winters Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Psychiatry Commons Recommended Citation Winters, Sylvia Dahl, "Hallucinogens: a Cause of Convulsive Ergot Psychoses" (1976). Loma Linda University Electronic Theses, Dissertations & Projects. 976. https://scholarsrepository.llu.edu/etd/976 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. ABSTRACT HALLUCINOGENS: A CAUSE OF CONVULSIVE ERGOT PSYCHOSES By Sylvia Dahl Winters Ergotism with vasoconstriction and gangrene has been reported through the centuries. Less well publicized are the cases of psychoses associated with convulsive ergotism. Lysergic acid amide a powerful hallucinogen having one.-tenth the hallucinogenic activity of LSD-25 is produced by natural sources. This article attempts to show that convulsive ergot psychoses are mixed psychoses caused by lysergic acid amide or similar hallucinogens combined with nervous system
    [Show full text]
  • The Response of Dark Septate Endophytes (DSE) to Heavy Metals in Pure Culture
    The Response of Dark Septate Endophytes (DSE) to Heavy Metals in Pure Culture Yihui Ban1, Ming Tang2*, Hui Chen2, Zhouying Xu1, Haihan Zhang3, Yurong Yang2 1 College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China, 2 College of Forestry, Northwest A & F University, Yangling, Shaanxi, China, 3 School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shannxi, China Abstract Dark septate endophytes (DSE) occur widely in association with plants exposed to heavy metal stress. However, little is known about the response of DSE exposed to heavy metals. In this study, five DSE were isolated from the roots of Astragalus adsurgens Pall. seedlings growing on lead-zinc mine tailings in China. Based on morphological characteristics and DNA sequence analyses, the isolates were identified as Gaeumannomyces cylindrosporus, Paraphoma chrysanthemicola, Phialophora mustea, Exophiala salmonis, and Cladosporium cladosporioides. G. cylindrosporus was selected to explore responses to Pb stress. Scanning electron microscopic observations of G. cylindrosporus grown on solid medium revealed curling of hyphae and formation of hyphal coils in response to Pb. In contrast, in liquid medium, hyphae became thick and swollen with an increase in Pb (II) concentration. We interpret that these changes are related to the variation in cell wall components. We also demonstrated that fungal melanin content increased with the addition of Pb(II). Melanin, as an important component in the cell wall, is known to be an essential antioxidant responsible for decreasing heavy metal toxicity. We also measured the total soluble protein content and glutathione (GSH) concentrations in G. cylindrosporus and found that they initially increased and then decreased with the increase of Pb(II) concentrations.
    [Show full text]
  • Spatial Patterns of Claviceps Purpurea in Kentucky Bluegrass And
    SPATIAL PATTERNS OF CLAVICEPS PURPUREA IN KENTUCKY BLUEGRASS AND PERENNIAL RYEGRASS GROWN FOR SEED AND EFFECT OF SOIL-APPLIED FUNGICIDES ON GERMINATION OF ERGOT SCLEROTIA J.K.S. Dung, D.L. Walenta, S.C. Alderman, and P.B. Hamm Introduction protective fungicide applications are required during Ergot, caused by the fungus Claviceps purpurea, is anthesis. Some growers experience severe ergot an important floral disease of grasses that issues even after four fungicide applications. A significantly impacts Kentucky bluegrass (KBG) and limited number of fungicides are currently available perennial ryegrass (PRG) seed production in the and new products or application strategies need to be Pacific Northwest (PNW). The fungus infects evaluated. In addition to timing fungicides during unfertilized ovaries and replaces seed with elongated anthesis, when flowers are susceptible to infection, it black fungal bodies called sclerotia, which may be possible to apply fungicides to sclerotia in overwinter in the soil and germinate to produce the field during the fall and/or as they begin to airborne ascospores in the spring. In addition to germinate in the spring before they release spores. yield losses from ergot, the repeated cleanings Soil-applied fungicides may reduce sclerotia required to remove ergot sclerotia to achieve seed germination and spore production, limiting the certification standards result in additional seed loss production of primary inoculum and subsequent as well as extra costs in time and labor. ergot infection (Hardison 1975). Although ergot is a persistent problem in PNW grass The objectives of this study were to: 1) quantify and seed production, the incidence and intensity of ergot describe the spatial patterns of ergot epidemics in epidemics can vary regionally, locally, and from commercial KBG and PRG fields in Oregon and year to year.
    [Show full text]
  • Ergot Alkaloid Biosynthesis in Aspergillus Fumigatus : Association with Sporulation and Clustered Genes Common Among Ergot Fungi
    Graduate Theses, Dissertations, and Problem Reports 2009 Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Coyle, Christine M., "Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi" (2009). Graduate Theses, Dissertations, and Problem Reports. 4453. https://researchrepository.wvu.edu/etd/4453 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Daniel G. Panaccione, Ph.D., Chair Kenneth P. Blemings, Ph.D. Joseph B.
    [Show full text]
  • Ergot Poisoning G
    Postgrad Med J: first published as 10.1136/pgmj.42.491.562 on 1 September 1966. Downloaded from POSTGRAD. MED. J. (1966), 42, 562. Case Reports ERGOT POISONING G. GLAZER, M.B., B.S. K. A. MYERS, M.B.(Melb.), F.R.A.C.S. House Surgeon, Surgical Unit. Senior Registrar, Surgical Unit (Smith and Nephew Fellow). E. R. DAVIES, M.B., M.R.C.P.E., F.F.R. Senior Registrar, Radiological Dept., St. Mary's Hospital, London, W.2. ERGOTAMINE tartrate is frequently prescribed for the Progress: Following admission the patient became treatment of migraine. Complications from the drug drowsy, nauseated and suffered from attacks of vertigo. are rare but potentially serious. Five days after cessation of ergotamine therapy the foot A case is presented of severe lower limb arterial pulses became palpable and he then developed intense spasm due to ergotamine tartrate taken sublingually and burning sensations in both feet (St. Anthony's Fire). orally for migraine. This case provided an opportunity It was considered that final confirmation of the to study the vascular and systemic effects of the drug and diagnosis necessitated reproduction of the symptoms the literature the manifes- with a small provocative dose of ergotamine. One day to review concerning risk, after the return of the foot pulses, ergotamine tartrate tations and treatment of ergot poisoning. was recommenced, and a total of 10 mg. was given orally Case Report over a period of three days; the foot pulses disappeared Mr. E.K., a 33 year old van-driver, presented in eighteen hours after the initial 2 mg.
    [Show full text]
  • Claviceps.Identifica
    A Laboratory Guide to the Identification of Claviceps purpurea and Claviceps africana in Grass and Sorghum Seed Samples sponsored by: The Mexican Seed Trade Association The American Seed Trade Association The Oregon Seed Trade Association Texas Seed Trade Association April 19, 1999 authors: Stephen Alderman, Ph.D., Plant Pathologist, USDA-ARS, National Forage Seed Produc- tion Research Center, 3450 SW Campus Way, Corvallis, OR 97331 Debra Frederickson, Ph.D., Plant Pathologist, Texas A&M University, College Station, TX 77843 Gene Milbrath, Ph.D., Plant Pathologist, Oregon Department of Agriculture, 635 Capitol St. NE, Salem, OR 97301 Noe Montes, M. Sc., INIFAP Plant Physiologist, A. P. 172. Cd. Rio Bravo, Tam. Mexico. CP 88900. (Currently visiting research assistant at Texas A&M Expt. Stn., Corpus Christi) Jesus Narro-Sanchez, M.Sc., INIFAP Plant Pathologist, A.P. No. 112, Carr. Celaya-San Miguel de Allende km 6.5, Celaya, Guanajuato. CP 38000 Gary Odvody, Ph.D., Plant Pathologist, Texas A&M University, Route 2, Box 589, Agricul- tural Experiment Station, Corpus Christi, TX 78406 A complete copy of this manual is available at the Oregon Department of Agriculture website: http://www.oda.state.or.us Contents Introduction and overview to the genus Claviceps ................................................ 1 Life cycle ............................................................................................................... 2 Host range and distribution ..................................................................................
    [Show full text]
  • Sclerotium Rolfsii; Causative Organism of Southern Blight, Stem Rot, White Mold and Sclerotia Rot Disease
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Annals of Biological Research, 2015, 6 (11):78-89 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-1233 CODEN (USA): ABRNBW Sclerotium rolfsii; Causative organism of southern blight, stem rot, white mold and sclerotia rot disease 1Liamngee Kator, 1Zakki Yula Hosea and 2Onah Daniel Oche 1Department of Biological Sciences, Benue State University Makurdi, Nigeria 2Department of Medical Laboratory Science, School of Health Technology, Agasha, Benue State _____________________________________________________________________________________________ ABSTRACT Sclerotium rolfsii is a soil borne pathogen that causes stem rot disease on plants. It primarily attacks host stems including roots, fruits, petioles and leaves under favourable conditions. It commonly occurs in the tropics, subtropics and other warm temperate regions of the world. Common hosts are legumes, crucifers and cucurbits. On a global perspective, estimated losses of 10 – 20 million dollars associated with S. rolfsii have been recorded with yield depletion ranging from 1 – 60% in fields. Sclerotia serve as primary inoculum for the pathogen and are spread to uninfected areas by wind, water, animals and soil. Control measures include excluding the pathogen from the area, plant removal, soil removal, soil treatment, heat, solarization, chemical soil treatment, cultural practices, resistance and transgenic plant resistance, plant treatment, crop rotation, amongst others. Despite considerable research on this pathogen, its control continues to be a problem. Keywords: Sclerotium rolfsii, stem rot, white mold, stem blight. _____________________________________________________________________________________________ INTRODUCTION Sclerotium rolfsii is a destructive soil borne plant pathogen which causes Southern blight disease on a wide variety of plants. In 1928, the United States Department of Agriculture reported that S.
    [Show full text]