Two Leaky-Late HSV-1 Promoters Differ Significantly in Structural Architecture
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Investigating the Role of the ETS Transcription Factor ELK1 in Stem Cell Transcription
Investigating the role of the ETS transcription factor ELK1 in stem cell transcription A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 Ian E. Prise Division of Molecular & Cellular Function School of Biological Sciences I. Table of Contents II. List of Figures ...................................................................................................................................... 5 III. Abstract .............................................................................................................................................. 7 IV. Declaration ......................................................................................................................................... 8 V. Copyright Statement ........................................................................................................................... 8 VI. Experimental Contributions ............................................................................................................... 9 VII. Acknowledgments .......................................................................................................................... 10 1. Introduction ...................................................................................................................................... 12 1.I Pluripotency ................................................................................................................................. 12 1.II Chromatin -
An Initiator Element Mediates Autologous Down- Regulation of the Human Type a ␥-Aminobutyric Acid Receptor 1 Subunit Gene
An initiator element mediates autologous down- regulation of the human type A ␥-aminobutyric acid receptor 1 subunit gene Shelley J. Russek, Sabita Bandyopadhyay, and David H. Farb* Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118 Edited by Erminio Costa, University of Illinois, Chicago, IL, and approved May 15, 2000 (received for review November 19, 1999) The regulated expression of type A ␥-aminobutyric acid receptor The 1 subunit gene is located in the 1-␣4-␣2-␥1 gene cluster (GABAAR) subunit genes is postulated to play a role in neuronal on chromosome 4 (12) and is most highly expressed in the adult maturation, synaptogenesis, and predisposition to neurological rat hippocampus. Seizure activity decreases hippocampal 1 disease. Increases in GABA levels and changes in GABAAR subunit mRNA levels by about 50% while increasing 3 levels (11). gene expression, including decreased 1 mRNA levels, have been Because the subtype of  subunit influences the sensitivity of the observed in animal models of epilepsy. Persistent exposure to GABAAR to GABA and to allosteric modulators such as GABA down-regulates GABAAR number in primary cultures of etomidate, loreclezole, barbiturates, and mefenamic acid (13– neocortical neurons, but the regulatory mechanisms remain un- 17), a change in  subunit composition may alter receptor known. Here, we report the identification of a TATA-less minimal function and pharmacology in vivo. Modulation of receptor  promoter of 296 bp for the human GABAAR 1 subunit gene that function by phosphorylation is also influenced by subunit is neuron specific and autologously down-regulated by GABA. -
Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window. -
Nuclear Respiratory Factor 1
bioRxiv preprint doi: https://doi.org/10.1101/321257; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the 2 GABA-A Receptor Beta 1 Subunit Gene in Neurons 3 4 Zhuting Li*1,2, Meaghan Cogswell*1, Kathryn Hixson1, Amy R. Brooks-Kayal3, and Shelley J. Russek#1,4 5 6 1Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics, 7 Boston University School of Medicine, Boston, MA 02118 8 2Department of Biomedical Engineering, College of Engineering, Boston, MA 02215 9 3Department of Pediatrics, Division of Neurology, University of Colorado School of Medicine, Aurora, 10 CO, 80045 USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and 11 Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 12 4Department of Biology, Boston, MA 02215 13 #To whom correspondence should be addressed: Shelley J. Russek, Departments of Pharmacology and 14 Biology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA. Tel.: 15 (617) 638-4319, E-mail: [email protected] 16 * The work of these individuals was equally important to the reported findings. 17 18 Running Title: NRF-1 regulates GABRB1 transcription in neurons 19 20 Keywords: GABA-A receptor; GABRB1; NRF-1; Cortical Neurons 21 22 Funding: This work was supported by grants from the National Institutes of Health [NIH/NINDS R01 23 NS4236301 to SJR and ABK, T32 GM00854 to ZL, MC, and KH]. -
Transcription in Eukaryotes
Transcription in eukaryotes Chromatin structure and its effects on transcription RNA polymerases Promoters General Transcription Factors Activators and Repressors Enhancers and ( Silencers ) Order of events leading to transcription initiation in eukaryotes at a specific promoter CRC … and chemical DNA modifications The order of steps on the pathway to transcription initiation appears to be different for different promoters Acção concertada de: -Activadores/ repressores ( proteínas auxiliares acessórias) -Proteínas de remodelação da cromatina -Capacidade de ligação dos factores gerais da transcrição Chromatin Remodeling Complexes (CRC) or Nucleosome remodeling factors ATPase/Helicase activity and DNA binding protein motifs Histone acetylation is one of the Histone histone chemical modifications acetylation characteristic of actively transcribed chromatin Interaction with other histones and with DNA Lys + HAT- histone acetyltransferase HDAC- histone deacetylase DNA chemical modifications affecting transcription initiation in eukaryotes How DNA methylation may help turning off genes? The binding of gene regulatory proteins and the general transcription machinery near an active promoter may prevent DNA methylation by excluding de novo methylases . If most of these proteins dissociate from the DNA, however, as generally occurs when a cell no longer produces the required activator proteins , the DNA becomes methylated , which enables other proteins to bind, and these shut down the gene completely by further altering chromatin structure . DNA -
Constitutive Expression KE YE, CHARLES A
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 2295-2299, March 1993 Immunology Identification of the promoter region of human interleukin 1 type I receptor gene: Multiple initiation sites, high G+C content, and constitutive expression KE YE, CHARLES A. DINARELLO*, AND BURTON D. CLARK Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111 Communicated by Anthony S. Fauci, December 10, 1992 (receivedfor review November 10, 1992) ABSTRACT To better understand the role ofinterleukin 1 the regulation of expression of the IL-1RI gene at the (IL-1) and its receptor in disease, we have isolated a genomic molecular level, we cloned, identified, and characterized the clone of the human IL-1 type I receptor and have identified the 5' flanking region of this gene.t promoter region. There are multiple transcriptional initiation sites as demonstrated by primer extension. DNA sequence analysis shows that the promoter region contains neither a MATERIALS AND METHODS TATA nor a CAAT box; however, the 5' upstream regulatory Screening of Human Genomic Library. A human placental elements contain two AP-1-like binding sites. The internal genomic library was purchased from Clontech. This library regulatory sequences found immediately downstream to the 5' was prepared by partial Sau3A digestion and cloned into the transcriptional start site contain four Spl binding domains and BamHI site of EMBL-3 vector. Recombinant phage (106) have a high G+C content of 75%. This portion of the 5' were screened from the library through hybridization with a untranslated region of the mRNA can form stable secondary human IL-1RI cDNA probe (from position 1 to 959, a 5' Xba structure as predicted by computer modeling. -
Tnlo-Encoded Tet Repressor Can Regulate an Operator-Containing
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 1394-1397, March 1988 Biochemistry TnlO-encoded tet repressor can regulate an operator-containing plant promoter (cauliflower mosaic virus 35S promoter/electroporation/transient chloramphenicol acetyltransferase assays) CHRISTIANE GATZ* AND PETER H. QUAILt Departments of Botany and Genetics, University of Wisconsin, Madison, WI 53706 Communicated by Folke Skoog, October 26, 1987 (receivedfor review July S, 1987) ABSTRACT The TnlO-encoded tet repressor-operator The TnlO-encoded tet repressor regulates the expression system was used to regulate transcription from the cauliflower of the Tc resistance operon by binding to nearly identical mosaic virus (CaMV) 35S promoter. Expression was moni- operator sequences that overlap with three divergent pro- tored in a transient assay system by using electric field- moters (14, 15). The genes of the tet operon are only mediated gene transfer ("electroporation") into tobacco pro- transcribed in the presence of the inducer Tc, which pre- toplasts. The tet repressor, being expressed in the plant cells vents the repressor from binding to its operator sequences. under the control of eukaryotic transcription signals, blocks The tet repressor was chosen for regulating a plant promoter transcription of a CaMV 35S promoter chloramphenicol ace- for two reasons. (i) With a native molecular mass of 48 kDa, tyltransferase (cat) fusion gene when the two tet operators diffusion into the nucleus seemed likely (16). (ii) The high flank the "TATA" box. In the presence of the inducer equilibrium association constant of the repressor-inducer tetracycline, expression is restored to full activity. Location of complex ensures efficient induction at sublethal Tc concen- the operators 21 base pairs downstream of the transcription trations (17), thus making the system useful as an on/off start site does not significantly affect transcription in the switch for the specific regulation of transferred genes. -
Erra) Regulates Osteopontin Expression Through a Non-Canonical Erra Response Element in a Cell Context-Dependent Manner
61 Estrogen receptor-related receptor a (ERRa) regulates osteopontin expression through a non-canonical ERRa response element in a cell context-dependent manner Ralph A Zirngibl, Janet S M Chan and Jane E Aubin Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 1 Kings College Circle, Medical Sciences Building Room 6230, Toronto, Ontario M5S 1A8, Canada (Correspondence should be addressed to J E Aubin; Email: [email protected]) Abstract We previously demonstrated that the orphan nuclear receptor, estrogen receptor-related receptor a (ERRa) is highly expressed in osteoblasts and osteoclasts, regulates osteogenesis and expression of osteoblast-associated markers in the rat calvaria cell differentiation system, and is dysregulated in the rat ovariectomy model of postmenopausal osteoporosis. There are conflicting published data on the transcriptional regulation by ERRa of the gene for osteopontin (OPN), an extracellular matrix protein required in bone remodeling, and a potential direct target mediating ERRa effects in bone. We therefore readdressed OPN gene regulation by ERRa in both osteoblastic (rat osteosarcoma ROS17/2.8 cells) and non-osteoblastic (HeLa) cell lines using a mouse proximal 2 kb OPN promoter fragment. A minimal OPN promoter fragment spanning from K56 to C9 bp is activated in HeLa cells but repressed it in ROS17/2.8 cells. Adenine scanning mutagenesis revealed the presence of a non-canonical ERRa response element in this minimal promoter. Surprisingly, prototypical inactivating mutations in the activation function 2 (AF2) domain or a naturally occurring allelic variant of ERRa (ERRaH408) were all better activators than wild-type ERRa in HeLa cells, activities that were generally paralleled by repression in ROS17/2.8 cells. -
The General Transcription Factors of RNA Polymerase II
Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The general transcription factors of RNA polymerase II George Orphanides, Thierry Lagrange, and Danny Reinberg 1 Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acid Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635 USA Messenger RNA (mRNA) synthesis occurs in distinct unique functions and the observation that they can as- mechanistic phases, beginning with the binding of a semble at a promoter in a specific order in vitro sug- DNA-dependent RNA polymerase to the promoter re- gested that a preinitiation complex must be built in a gion of a gene and culminating in the formation of an stepwise fashion, with the binding of each factor promot- RNA transcript. The initiation of mRNA transcription is ing association of the next. The concept of ordered as- a key stage in the regulation of gene expression. In eu- sembly recently has been challenged, however, with the karyotes, genes encoding mRNAs and certain small nu- discovery that a subset of the GTFs exists in a large com- clear RNAs are transcribed by RNA polymerase II (pol II). plex with pol II and other novel transcription factors. However, early attempts to reproduce mRNA transcrip- The existence of this pol II holoenzyme suggests an al- tion in vitro established that purified pol II alone was not ternative to the paradigm of sequential GTF assembly capable of specific initiation (Roeder 1976; Weil et al. (for review, see Koleske and Young 1995). -
Characterization of the Promoter Region of the Glycerol-3-Phosphate-O-Acyltransferase Gene in Lilium Pensylvanicum
Turkish Journal of Biology Turk J Biol (2017) 41: 552-562 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1611-56 Characterization of the promoter region of the glycerol-3-phosphate-O-acyltransferase gene in Lilium pensylvanicum 1,2, , 1, 1, 3 Li-jing CHEN * **, Li ZHANG *, Wei-kang QI *, Muhammad IRFAN , 1 1 1 1 2 Jing-wei LIN , Hui MA , Zhi-Fu GUO , Ming ZHONG , Tian-lai LI 1 Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China 2 Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China 3 Department of Biotechnology, University of Sargodha, Sargodha, Pakistan Received: 20.11.2016 Accepted/Published Online: 02.02.2017 Final Version: 14.06.2017 Abstract: Cold environmental conditions influence the growth and development of plants, causing crop reduction or even plant death. Under stress conditions, cold-inducible promoters regulate cold-related gene expression as a molecular switch. Recent studies have shown that the chloroplast-expressed GPAT gene plays an important role in determining cold sensitivity. However, the mechanism of the transcriptional regulation of GPAT is ambiguous. The 5’-flanking region of GPAT with length of 1494 bp was successfully obtained by chromosome walking from Lilium pensylvanicum. The cis-elements of GPAT promoters were predicted and analyzed by a plant cis- acting regulatory DNA element database. There exist core promoter regions including TATA-box and CAAT-box and transcription regulation regions, which involve some regulatory elements such as I-box, W-box, MYB, MYC, and DREB. -
Regulation of Gene Expression
Regulation of Gene Expression Gene Expression Can be Regulated at Many of the Steps in the Pathway from DNA to RNA to Protein : (1) controlling when and how often a given gene is transcribed (2) controlling how an RNA transcript is spliced or otherwise processed (3) selecting which mRNAs are exported from the nucleus to the cytosol (4) selectively degrading certain mRNA molecules (5) selecting which mRNAs are translated by ribosomes (6) selectively activating or inactivating proteins after they have been made * most genes the main site of control is step 1: transcription of a DNA sequence into RNA. * Chromatin remodeling * controlling when and how often a given gene is transcribed ! DNA regulation ! Chromatin ! double helix accessibility ! gene and its surroundings ! Promoter/Operator (Bacteria) ! Promoter + enhancing region (Eukaryote ) ! Overview of Eukaryotic gene regulation Mechanisms similar to those found in bacteria-most genes controlled at the transcriptional level ! Gene regulation in eukaryotes is more complex than it is in prokaryotes because of: ! The larger amount of DNA ! Larger number of chromosomes ! Spatial separation of transcription and translation ! mRNA processing ! RNA stability ! Cellular differentiation in eukaryotes Transcription is the Most Regulated Step ! Transcription; from DNA to RNA, is catalyzed by the enzyme RNA polymerase. ! Initiation of transcription requires the formation of a complex between the promoter on the DNA and RNA polymerase. ! Initiation rate is largely controlled by the rate of formation of the complex DNA (promoter) - RNA polymerase. Rate = number of events per unit time. Transcriptional Control The Latin prefix cis translates to “on this side” “next to” ! cis-acting “next to” elements (cis-Regulatory Elements) (CREs) are regions of non-coding DNA which regulate the transcription of nearby genes ! trans-acting “across from” elements usually considered to be proteins, that bind to the cis-acting sequences to control gene expression. -
Analysis of the 5' Flanking Sequence of the Human Nore- Pinephrine Transporter Gene
Cell Research (1998),8,143-149 Analysis of the 5' flanking sequence of the human nore- pinephrine transporter gene HU ANG FANG, JIAN FEI1, SHUN KAl MA , LI HUA ZHU, ZHAO PING LIU, GUO QIANG CAI, ZEN C AN YE, LI HE GUO Shanghai Institute of Cell Biology,Chinese Academy of Sciences, Shanghai 200031, China ABSTRACT The human norepinephrine transporter(NET) gene was cloned and structurally analyzed. The far 5' fragment containing exon 1 (a non-coding exon) and exon 2 was sequenced. The transcription start site of the gene in hu- man brain stem tissue was determined by primer extension analysis. It was found that the gene could be transcribed from multiple starting points. The 5' flanking sequence contains a proximal G-C rich region, one possible GSG el- ement and several SP1 sites. However it does not contain TATA box and CAAT box motifs. Gel shift analysis with nuclear extracts from different tissues of mouse shows that the G-C rich region may be involved in tissue specific ex- pression of the gene. Key words: Norepinephrine transporter gene, primer extension, transcription regulation. INTRODUCTION Norepinephrine (NE) is an important neurotransmitter both in embryonic and adult nervous system. Its function in nervous system is dependent on two kinds of important membrane proteins: the receptors on the postsynaptic neurons or effector cells that are responsible for the NE signal transduction, and the transporters on the presynaptic neurons, which are responsible for the termination of NE signal- ing. The deficiencies of NE transduction are involved in many nervous disorders, 1. Corresponding author.