Nrg4 and Gpr120 Signalling in Brown Fat Anthony Chukunweike OKOLO

Total Page:16

File Type:pdf, Size:1020Kb

Nrg4 and Gpr120 Signalling in Brown Fat Anthony Chukunweike OKOLO Nrg4 and Gpr120 Signalling in Brown Fat Anthony Chukunweike OKOLO Institute of Reproductive and Developmental Biology Department of Surgery and Cancer Faculty of Medicine Imperial College London A thesis submitted in fulfilment of the requirements for award of the degree of Doctor of Philosophy 1 Statement of Originality All experiments included in this thesis were performed by me unless otherwise stated in the text. 2 Copyright statement The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Directive Licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, and they do not use it for commercial purposes, and they do not alter, transform or build upon it. For any re-use or re-distribution, researchers must make clear to others the licence terms of this work. 3 Acknowledgments I would like to thank my supervisors Dr Aylin Hanyaloglu and Dr Mark Christian for giving me the great opportunity to work in their labs. Aylin put in a great deal of effort especially in area of Gpr120 signalling, including having to guide me through the critical imaging procedures. Aylin and Mark contributed a great deal towards the final edition of this thesis. I would also like to thank Dr Mark Christian for bringing me to Imperial College London to start off my PhD in his laboratory, and for being a great mentor and a continuous source of knowledge for me. I am grateful for your enduring patience in trying to bring out the best in me and ensuring that I develop the ‘critical thinking’ that is needed as a scientist. My special thanks go to Prof Malcolm Parker, who has always put in his special professorial touch to my work, and to Prof Ilpo Huhtaniemi for setting up my admission, and indeed my sojourn in Imperial College. I would especially like to thank Dr Kunal Shah and Dr Evanthia Nikolopoulou who were my senior PhD students. They took the pains to teach me the rudiment of Laboratory practices. I will also like to appreciate Dr David Barneda-Ciurana for guiding me through the rough beginning of my laboratory work. My special thanks also go to Dr Olayiwola Oduwole for our long friendly and scientific conversations, Dr Usi Oboh and Mr and Mrs Andy Evans for happily receiving me in the UK. I would also like to thank my lab mates Dr Jenny Steel, Dr Kim Jonas, Camilla West, Camilla Larson, Natarin Caegprasath, and Silvia Sposini for the years working and sharing together as a real team. Finally, I would like to express my appreciation to my Love, friend and confidant, Modupe and my jewels, Oyiye, Chineme, Okuolise and Chimamaka for their enduring love and affection. 4 This acknowledgement will not be complete without mentioning ETF, Nigerian for initiating the funding for my PhD, and the department of Surgery and Cancer, Imperial College London, for ensuring that my PhD was completed. 5 Abstract Brown adipose tissue (BAT) dissipates energy, whereas white adipose tissue (WAT) is an energy storage site. The worldwide increase in obesity and its associated metabolic complications represents a growing challenge for health care systems. With the recent demonstration of significant deposits of adult human BAT, and that WAT is dynamic and can gain BAT characteristics, there is therefore a possibility for manipulative control of energy homeostasis via the induction of specific genes to enhance BAT levels. Nrg4 and Gpr120 are two genes we identified to be highly expressed in BAT and regulated in a temperature- dependent manner. Nrg4 is a member of the Neuregulin family that activates the ErbB-4 (HER4) tyrosine kinase receptor. Nrg4 was secreted from brown adipocytes and promoted neurite outgrowth, a function that may improve BAT thermogenesis by enhancing sympathetic innervation. Gpr120 is a member of the superfamily of G protein-coupled receptors that is activated by long chain fatty acids. Although Gpr120 is known to mediate anti-inflammatory and insulin- sensitizing effects in humans and mice, its role in BAT is unknown. In order to identify the signalling pathways and downstream functions activated by this receptor in brown adipocytes, distinct known and novel Gpr120 ligands, GW9508, TUG891 and TUG1096, were employed. These ligands increased expression of genes associated with glucose and fatty acid metabolism and reduced inflammatory gene markers. All of these effects were reversed in Gpr120 knockout cells. However, the levels of gene expression varied considerably with each ligand. Although Gpr120 is a known Gαq/11-coupled receptor in other cell systems, these distinct ligands exhibited various degrees of bias towards Gαq/11 and distinct signalling pathways. These findings could provide insight into the requirements for Gpr120 function in BAT, the 6 exploitation of which could generate ligands for therapeutic benefit and represents a promising opportunity to develop safer and more efficacious drugs. 7 Table of content Statement of Originality ............................................................................................................. 2 Copyright statement ................................................................................................................... 3 Acknowledgments...................................................................................................................... 4 Abstract ...................................................................................................................................... 6 List of Figures…………………………………………………………………………………………………………………………………..14 List of Tables……………………………………………………………………………………………………………………………………17 List of Abbreviations ............................................................................................................. 148 Chapter 1 .................................................................................................................................. 23 Introduction .............................................................................................................................. 23 Introduction .......................................................................................................................... 24 1.1 Adipose tissue and adipocytes........................................................................................ 24 1.1.2 White adipose tissue (WAT) ................................................................................... 24 1.1.3 Brown adipose tissue (BAT) ................................................................................... 25 1.2 Development of adipose tissues ..................................................................................... 27 1.3 Beige/brite ...................................................................................................................... 28 1.4 Dynamic nature of adipose tissue................................................................................... 30 1.5 Human BAT ................................................................................................................... 31 1.6 Measurement of BAT ..................................................................................................... 33 1.7 BAT Thermogenesis ...................................................................................................... 33 1.7.1 Role of UCP1 in BAT thermogenesis ..................................................................... 34 1.7.2 Role of adrenergic signalling in thermogenesis ...................................................... 35 1.8 Transcriptional control of brown fat development and function .................................... 38 1.9 BAT and obesity............................................................................................................. 39 1.10 Free fatty acids (FFAs) ................................................................................................. 42 1.11 Fatty acid metabolism .................................................................................................. 42 1.11.1 Lipogenesis ............................................................................................................ 42 1.11.2 Lipolysis ................................................................................................................ 43 1.11.3 Regulation of fatty acid metabolism ...................................................................... 45 1.12 Free fatty acid receptors ........................................................................................... 46 1.13 G-proteins ..................................................................................................................... 49 8 1.14 Diversification and specification/regulation of GPCR signalling ................................ 51 1.15 Role of β-arrestins in GPCR signalling ........................................................................ 52 1.16 G-protein-coupled receptor 120 (Gpr120) ................................................................... 54 1.17 Signalling pathways activated by Gpr120 .................................................................... 56 1.18 Development of selective ligands for Gpr120.............................................................. 56 1.19 Hypothesis and Aims of the study................................................................................ 60 Chapter 2 .................................................................................................................................
Recommended publications
  • Uncoupling Proteins: Functional Characteristics and Role in the Pathogenesis of Obesity and Type II Diabetes
    Diabetologia 2001) 44: 946±965 Ó Springer-Verlag 2001 Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes L. T.Dalgaard, O.Pedersen Steno Diabetes Center, Gentofte, Denmark Abstract obesity. The three uncoupling protein homologue genes UCP1, UCP2, and UCP3 have been investigat- Uncoupling proteins are mitochondrial carrier pro- ed for polymorphisms and mutations and their impact teins which are able to dissipate the proton gradient on Type II diabetes mellitus, obesity, and body weight of the inner mitochondrial membrane. This uncou- gain or BMI. The main conclusion is that variation in pling process reduces the amount of ATP generated the UCP1, UCP2 or UCP3 genes is not associated through an oxidation of fuels. The hypothesis that un- with major alterations of body weight gain. The con- coupling proteins UCPs) are candidate genes for hu- tribution of UCP genes towards polygenic obesity man obesity or Type II non-insulin-dependent) dia- and Type II diabetes is evaluated and discussed. [Dia- betes mellitus is based on the finding that a chemical betologia 2001) 44: 946±965] uncoupling of the mitochondrial membrane reduces body adiposity, and that lower metabolic rates predict Keywords Uncoupling proteins, Type II diabetes weight gain. It is straightforward to hypothesize that mellitus, obesity, genetics, body weight regulation, common polymorphisms of UCP1, UCP2 and UCP3 energy expenditure, metabolic rate, brown adipose genes lower metabolic rate by a more efficient energy tissue, white adipose tissue, reactive oxygen species, coupling in the mitochondria. Furthermore, geneti- polymorphism, mutation, transgenics, gene knock- cally engineered mice over expressing different UCP out.
    [Show full text]
  • Methylation Status of Vault RNA 2-1 Promoter Is a Predictor of Glycemic Response To
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Diab Res Care SUPPLEMEMTARY DATA Methylation Status of Vault RNA 2-1 Promoter Is a Predictor of Glycemic Response to Glucagon-like Peptide-1 Analogue Therapy in Type 2 Diabetes Mellitus Chia-Hung Lin, Yun-Shien Lee, Yu-Yao Huang, Chi-Neu Tsai List of supplemental Tables Supplemental Table S1 Demographic variables of 10 participants (training group) applied for DNA methylation chip at baselines Supplement Table S2 Demographic variables of participants (validation group) enrolled in this study Supplemental Table S3 Primers used for bisulfite sequencing primers (BSP), pyrosequencing reaction and centromeric CTCF polymorphism Supplemental Table S4 Differentially methylated regions (DMRs) in human genome and association with glycemic response of GLP-1 treatment in training group List of supplemental Figures Supplement Figure S1: A gender difference was identified in Infinium® MethylationEPIC BeadChip analysis in the training group of this study through volcano and heatmap plot. Supplemental Fig. S2: The volcano plots of the differentially methylation comparing responsive and non-responsive groups before and after GLP-1 analogue treatment. Supplemental Fig. S3: Serum level of TGF-1 as a predictor of a glycemic response to GLP-1 analogue treatment and the correlation of VTRNA2-1 RNA expression versus its promoter methylation status. Supplement Figure S4: The association between change in A1C and (A) VTRNA 2-1 methylation level, (B) TGF-beta1 levels, and (C) mRNA levels of VTRNA 2-1 Lin C-H, et al.
    [Show full text]
  • Perspectives in Diabetes Uncoupling Proteins 2 and 3 Potential Regulators of Mitochondrial Energy Metabolism Olivier Boss, Thilo Hagen, and Bradford B
    Perspectives in Diabetes Uncoupling Proteins 2 and 3 Potential Regulators of Mitochondrial Energy Metabolism Olivier Boss, Thilo Hagen, and Bradford B. Lowell Mitochondria use energy derived from fuel combustion fuels and oxygen are converted into carbon dioxide, water, to create a proton electrochemical gradient across the and ATP (Fig. 1). The key challenge for the organism is to reg- mitochondrial inner membrane. This intermediate form ulate these many steps so that rates of ATP production are of energy is then used by ATP synthase to synthesize equal to rates of ATP utilization. This is not a small task given AT P. Uncoupling protein-1 (UCP1) is a brown fat–spe- that rates of ATP utilization can quickly increase severalfold cific mitochondrial inner membrane protein with proton (up to 100-fold in muscle during contraction). transport activity. UCP1 catalyzes a highly regulated proton leak, converting energy stored within the mito- Fuel metabolism and oxidative phosphorylation consist chondrial proton electrochemical potential gradient to of many tightly coupled enzymatic reactions (Fig. 1), which heat. This uncouples fuel oxidation from conversion of are regulated, in part, by ADP availability. Control by ADP is ADP to AT P. In rodents, UCP1 activity and brown fat accounted for by the chemiosmotic hypothesis of Mitchell (1). contribute importantly to whole-body energy expendi- Oxidation of fuels via the electron transport chain generates ture. Recently, two additional mitochondrial carriers a proton electrochemical potential gradient ( µH+) across with high similarity to UCP1 were molecularly cloned. the mitochondrial inner membrane. Protons reenter the In contrast to UCP1, UCP2 is expressed widely, and mitochondrial matrix via ATP synthase (F0F1-A TPase) in a UCP3 is expressed preferentially in skeletal muscle.
    [Show full text]
  • Association of Sequence Alterations in the Putative Promoter of RAB7L1 with a Reduced Parkinson Disease Risk
    ORIGINAL CONTRIBUTION Association of Sequence Alterations in the Putative Promoter of RAB7L1 With a Reduced Parkinson Disease Risk Ziv Gan-Or, BMedSci; Anat Bar-Shira, PhD; Dvir Dahary, MSc; Anat Mirelman, PhD; Merav Kedmi, PhD; Tanya Gurevich, MD; Nir Giladi, MD; Avi Orr-Urtreger, MD, PhD Objective: To examine whether PARK16, which was re- Results: All tested SNPs were significantly associated with cently identified as a protective locus for Parkinson dis- PD (odds ratios=0.64-0.76; P=.0002-.014). Two of them, ease (PD) in Asian, white, and South American popula- rs1572931 and rs823144, were localized to the putative pro- tions, is also associated with PD in the genetically moter region of RAB7L1 and their sequence variations al- homogeneous Ashkenazi Jewish population. teredthepredictedtranscriptionfactorbindingsitesofCdxA, p300, GATA-1, Sp1, and c-Ets-1. Only 0.4% of patients were Design: Case-control study. homozygous for the protective rs1572931 genotype (T/T), comparedwith3.0%amongcontrols(P=5ϫ10−5).ThisSNP was included in a haplotype that reduced the risk for PD by Setting: A medical center affiliated with a university. 10- to 12-fold (P=.002-.01) in all patients with PD and in a subgroupofpatientswhodonotcarrytheAshkenazifounder Subjects: Five single-nucleotide polymorphisms (SNPs) mutations in the GBA or LRRK2 genes. located between RAB7L1 and SLC41A1 were analyzed in 720 patients with PD and 642 controls, all of Ashkenazi Conclusions: Our data demonstrate that specific SNP Jewish origin. variations and haplotypes in the PARK16 locus are asso- ciated with reduced risk for PD in Ashkenazim. Al- Main Outcome Measures: Haplotypes were defined though it is possible that alterations in the putative pro- and risk estimates were determined for each SNP and hap- moter of RAB7L1 are associated with this effect, the role lotype.
    [Show full text]
  • Irisin As a Multifunctional Protein: Implications for Health and Certain Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository medicina Review Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases Paulina Korta 1 , Ewa Poche´c 1,* and Agnieszka Mazur-Biały 2 1 Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland 2 Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University, Medical College, Grzegorzecka 20, 31-531 Krakow, Poland * Correspondence: [email protected]; Tel.: +48-12-664-64-67 Received: 29 June 2019; Accepted: 12 August 2019; Published: 15 August 2019 Abstract: Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis.
    [Show full text]
  • Exclusive Occurrence of Thermogenin Antigen in Brown Adipose Tissue
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 150, number 1 FEBS LETTERS December 1982 Exclusive occurrence of thermogenin antigen in brown adipose tissue Barbara Cannon, Anders Hedin* and Jan Nedergaard Departments of Metabolic Research and *Immunology, The Wenner-Gren Institute, University of Stockholm, Norrtullsgatan 16, 113 45 Stockholm, Sweden Received 25 October 1982 Thermogenin is the purine-nucleotide binding polypeptide in brown adipose tissue mitochondria (Mr 32000) which confers upon these mitochondria the ability to produce heat. An enzyme-linked immunosorbent assay (ELISA) has been developed to demonstrate and quantitate the occurrence of thermogenin antigen in small amounts of tissue, and thus to characterize different depots of fat tissue as white or brown. The extreme sensitivity of the method allows determination of thermogenin in samples equivalent to < 1 mg tissue. The results indicate that thermogenin seems to be exclusively localised in brown fat mitochondria (as compared to white fat, liver or heart muscle mitochondria), and thermogenin antigen could only be found in brown adipocytes (as compared to white adipocytes). Thus, brown and white adipose tissue are probably ontogenetically different Brown adipose tissue ELISA Mitochondria Nonshivering thermogenesis Thermogenin White adipose tissue 1. INTRODUCTION form of white adipose tissue, or whether it should be considered as a bona fide organ in itself, with its The demonstration that the thermogenic func- own ontogeny [lo]. tion of brown adipose tissue is directly related to The present interest in the connection between the presence in the mitochondria of a specific poly- the activity of brown adipose tissue and the ten- peptide - thermogenin - with a subunit A4, 32000 dency to evolve obesity in animals and man (review has made it possible to study thermogenesis at the [l 11) has made it necessary to be able to charac- molecular level [1,2], (reviews [3-51).
    [Show full text]
  • The Uncoupling Protein Homologues: UCP1, UCP2, UCP3, Stucp
    Biochem. J. (2000) 345, 161–179 (Printed in Great Britain) 161 REVIEW ARTICLE The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP Daniel RICQUIER1 and Fre! de! ric BOUILLAUD Centre de Recherche sur l’Endocrinologie Mole! culaire et le De! veloppement (CEREMOD), Centre National de la recherche Scientifique (CNRS – Unit 9078), 9 rue Jules Hetzel, 92190 Meudon, France Animal and plant uncoupling protein (UCP) homologues form a energy expenditure in humans. The UCPs may also be involved subfamily of mitochondrial carriers that are evolutionarily re- in adaptation of cellular metabolism to an excessive supply of lated and possibly derived from a proton}anion transporter substrates in order to regulate the ATP level, the NAD+}NADH ancestor. The brown adipose tissue (BAT) UCP1 has a marked ratio and various metabolic pathways, and to contain superoxide and strongly regulated uncoupling activity, essential to the production. A major goal will be the analysis of mice that either maintenance of body temperature in small mammals. UCP lack the UCP2 or UCP3 gene or overexpress these genes. Other homologues identified in plants are induced in a cold environment aims will be to investigate the possible roles of UCP2 and UCP3 and may be involved in resistance to chilling. The biochemical in response to oxidative stress, lipid peroxidation, inflammatory activities and biological functions of the recently identified processes, fever and regulation of temperature in certain specific mammalian UCP2 and UCP3 are not well known. However, parts of the body. recent data support a role for these UCPs in State 4 respiration, respiration uncoupling and proton leaks in mitochondria.
    [Show full text]
  • Energy Flow and Metabolic Efficiency Attributed to Brown Adipose Tissue
    DWWULEXWHGWR ! ! " # $% &' ()*' ) % " $ + &,$( - + "$ . ,$" $ ! &/!() + ) ) $ 0 "/ ,$"1 + ) + /!) " 2 )2 ,$ "$ + /! " ,$ +) " 3 "4 ) /! /! - ) + + ) "$ /! "$ ) /! "1 + ) " ! ! 566 "" 6 7 8 55 5 5 !9 !: 2,*:;:!<9:=9 2,*:;:!<9:=> !"# )! <:! DOCTORAL THESIS Energy flow and metabolic efficiency attributed to brown adipose tissue Gabriella von Essen Energy flow and metabolic efficiency attributed to brown adipose tissue Gabriella von Essen The present thesis is based on the following enclosed papers: Paper I Adaptive Facultative Diet-induced Thermogenesis in Wild-type but not in UCP1-ablated Mice Gabriella von Essen, Erik Lindsund, Barbara Cannon and Jan Nedergaard Submitted for publication Paper II Highly recruited brown adipose tissue does not in itself protect against obesity Gabriella von Essen, Elaina Maldonado, Erik Lindsund, Barbara Cannon and Jan Nedergaard Under revision for Cell Metabolism Paper III At thermoneutrality, medium-chain fatty acids totally protect against diet-induced obesity in a UCP1-independent manner Gabriella von Essen, Petter Englund, Barbara Cannon and Jan Nedergaard Submitted for publication Paper IV No insulating
    [Show full text]
  • Mitochondrial Uncoupling Proteins in the Central Nervous System Jeong Sook Kim-Han Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2005 Mitochondrial uncoupling proteins in the central nervous system Jeong Sook Kim-Han Washington University School of Medicine in St. Louis Laura L. Dugan Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Kim-Han, Jeong Sook and Dugan, Laura L., ,"Mitochondrial uncoupling proteins in the central nervous system." Antioxidants & Redox Signaling.7,9-10. 1173-1181. (2005). https://digitalcommons.wustl.edu/open_access_pubs/3159 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. 14024C09.pgs 8/11/05 10:32 AM Page 1173 ANTIOXIDANTS & REDOX SIGNALING Volume 7, Numbers 9 & 10, 2005 © Mary Ann Liebert, Inc. Forum Review Mitochondrial Uncoupling Proteins in the Central Nervous System JEONG SOOK KIM-HAN1 and LAURA L. DUGAN1,2,3 ABSTRACT Mitochondrial uncoupling proteins (UCPs), a subfamily of the mitochondrial transporter family, are related by sequence homology to UCP1. This protein, which is located in the inner mitochondrial membrane, dissi- pates the proton gradient between the intermembrane space and the mitochondrial matrix to uncouple elec- tron transport from ATP synthesis. UCP1 (thermogenin) was first discovered in brown adipose tissue and is responsible for non-shivering thermogenesis. Expression of mRNA for three other UCP isoforms, UCP2, UCP4, and BMCP1/UCP5, has been found at high levels in brain.
    [Show full text]
  • Beta 3 Adrenergic Receptors: Molecular, Histological, Functional and Pharmacological Approaches
    Romanian Journal of Morphology and Embryology 2009, 50(2):169–179 REVIEW Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches OANA ANDREIA COMAN1), H. PĂUNESCU1), ISABEL GHIŢĂ1), L. COMAN2), ANCA BĂDĂRĂRU2), I. FULGA1) 1)Department of Pharmacology and Pharmacotherapy 2)Department of Physiology Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest Abstract Different classes of receptors mediate norepinephrine and epinephrine effects, one of the most recently discovered being the beta 3 adrenergic ones. The paper has proposed itself to present the history of the discovery of beta 3 adrenergic receptors, different techniques for their identification, their structure, localization, genetic data and also the mechanism of regulation of their functions. It also contains an exhaustive approach regarding the histological localization and functions of beta 3 adrenergic receptors in different apparatus and systems, making evident their effect on glucidic, lipidic and energetic metabolism. The substances that influence beta 3 adrenergic receptors activities, especially the agonists, have been studied regarding their practical applications in the treatment of diabetes mellitus and of the disturbances of lipid metabolism. Keywords: beta 3 adrenergic receptors, discovery, histology, molecular biology, physiology, pharmacology. Discovery of beta 3 adrenergic receptors Methods of identification and characterization of adrenergic A class of membrane proteins called adrenergic receptors mediates the multiple metabolic and receptors’ structure and localization neuroendocrine effects of epinephrine and Adrenergic receptors are membranous proteins. norepinephrine. These receptors are coupled with G The discovery of the genes that encode membranous proteins, which in turn interact with intracellular proteins was made by identifying some nucleotide effectors (secondary messengers) such as adenylyl sequences in the structure of these genes, which cyclase or phospholipase C.
    [Show full text]
  • View a Copy of This Licence, Visit
    Zhang et al. Journal of Ovarian Research (2021) 14:107 https://doi.org/10.1186/s13048-021-00851-8 RESEARCH Open Access Long-term intermittent cold exposure affects peri-ovarian adipose tissue and ovarian microenvironment in rats Li Zhang†, Gaihong An†, Shuai Wu, Jing Wang, Danfeng Yang, Yongqiang Zhang* and Xi Li* Introduction contents gradually increase as follicles develop. These Cold is a significant environmental stress factor. Studies steroids, non-steroid hormones, and growth factors act have shown that exposure to cold environments can as regulatory factors and constitute the microenviron- cause local or whole-body temperatures to decrease, ment that determines follicle growth and development. posing a severe threat to overall health [1–3]. Cold The ovarian microenvironment plays a vital role in ovar- exposure has adverse effects on the female reproductive ian function and follicle development. However, the ef- system [4–6], affecting ovarian [7] and uterine [4] func- fects of cold exposure on ovarian function and the tions and hormone secretion [8]. Possible reasons in- ovarian microenvironment have not been well- clude: imbalance of ET-1 and its receptor expression elucidated. leads to local tissue microvascular circulatory distur- Studies have shown that the development and matur- bances [9]; affects follicular development by activating ation of follicles prior to ovulation are primarily regu- sympathetic nerve activity in the ovary [10, 11]; Cold lated by the central neuroendocrine system and growth stress can also cause reproductive hormone disorders, factors and hormones found in the local ovarian micro- causing uterine arteries to contract, resulting in reduced environment [13, 14]. Peri-ovarian adipose tissue blood flow [12].
    [Show full text]
  • The Role of Irisin in Cancer Disease
    cells Review The Role of Irisin in Cancer Disease Agnieszka Pinkowska 1 , Marzenna Podhorska-Okołów 2, Piotr Dzi˛egiel 3,4 and Katarzyna Nowi ´nska 3,* 1 Department of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 2 Department of Ultrastructure Research, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 3 Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 4 Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland * Correspondence: [email protected]; Tel.: +48-71-784-1354; Fax: +48-71-784-0082 Abstract: Irisin (Ir) is an adipomyokine that is involved in the regulation of metabolic processes. It also influences processes related to inflammation, including cancer. Initially, Ir was considered a hormone secreted by skeletal muscles in response to physical exercise. Further studies showed that Ir is also present in other healthy tissues, organs, and plasma. It influences the change in phenotype of white adipose tissue (WAT) into brown adipose tissue (BAT). It increases mitochondrial biogenesis and affects the expression of thermogenin (UCP1). This adipomyokine has also been found in many tumor tissues and in the serum of cancer patients. Studies are underway to determine the association between Ir and carcinogenesis. It has been confirmed that Ir inhibits in vitro proliferation, migration, and invasion. It is involved in the inhibition of epithelial–mesenchymal transition (EMT). Additionally, Ir affects the expression of the transcription factor Snail, which is involved in EMT, and inhibits transcription of the gene encoding E-cadherin, which is characteristic of epithelial-derived cells.
    [Show full text]