Constraints and Enablers for Increasing Carbon Storage in the Terrestrial Biosphere

Total Page:16

File Type:pdf, Size:1020Kb

Constraints and Enablers for Increasing Carbon Storage in the Terrestrial Biosphere REVIEWS Constraints and enablers for increasing carbon storage in the terrestrial biosphere Connor J. Nolan 1 ✉ , Christopher B. Field 1,2 and Katharine J. Mach 3,4 Abstract | Harnessing nature-based climate solutions (NbCS) to help simultaneously achieve climate and conservation goals is an attractive win-win. The contribution of NbCS to climate action relies on both biogeochemical potential and the ability to overcome environmental, economic and governance constraints for implementation. As such, estimates of additional NbCS-related terrestrial biosphere storage potential range from less than 100 GtCO2 to more than 800 GtCO2. In this Review, we assess the negative emissions contributions of NbCS — including reforestation, improved forest management and soil carbon sequestration — alongside their environmental, social and governance constraints. Given near-term implementation challenges and long-term biogeochemical constraints, a reasonable value for the expected impact of NbCS is up to 100–200 GtCO2 in negative emissions for the remainder of the twenty-first century. To sustainably reach this level, focus should be on projects with clear co-benefits, and must not come at the expense of a reduction in emissions from deforestation and forest degradation, rapid decarbonization and innovation from alternative negative emissions technologies. Rapid cuts to global carbon dioxide (CO2) emissions Whereas negative emissions technologies such as are needed to meet the Paris Agreement goal of limiting direct air capture and BECCS remain in early stages of anthropogenic warming to well below 2 °C. Stabilizing technological development and are not currently avail- climate change will eventually require net-zero emis- able at scales relevant for global climate mitigation4, sions. Slow progress towards decarbonization has CO2 removal via the terrestrial biosphere already oper- increased the emphasis on negative emissions in meeting ates on these scales. Increasing carbon storage in the long-term temperature aims1,2. terrestrial biosphere has been proposed as a climate Negative emissions describe intentional efforts to change response since at least 1990 (REF.9), but has been 3 remove CO2 emissions from the atmosphere . Examples the subject of increased interest in policy and manage- include direct air capture and bioenergy with carbon ment spheres as nature-based solutions or natural cli- capture and storage (BECCS), both of which are in the mate solutions10 (hereafter referred to as nature-based early stages of technological development and cannot climate solutions (NbCS) to circumvent defining what currently operate at scales relevant for global mitigation4. ‘natural’ is). 1Stanford Woods Institute for Other negative emissions technologies include human NbCS include land management actions, such as the Environment, Stanford University, Stanford, CA, USA. interventions that seek to increase carbon sequestration conservation, restoration and improved management in the ocean (including coastal vegetation restoration, in forests, wetlands, grasslands and agricultural fields, 2Department of Earth System 10 Science, Stanford University, enhanced ocean productivity and enhanced weather- that contribute to climate change mitigation . They Stanford, CA, USA. ing)5 and on land (including reforestation, biochar and comprise both avoided emissions and negative emis- 6 3Rosenstiel School of Marine some improved forest management actions) . Natural, sions. Some important NbCS, in particular, avoided and Atmospheric Science, unmanaged land and ocean CO2 uptake that make up deforestation and avoided forest degradation, both of University of Miami, Miami, background sinks are not negative emissions because which are valuable conservation and climate mitiga- FL, USA. they do not contribute additional CO2 removal. The CO2 tion interventions, do not contribute to negative emis- 4 Leonard and Jayne Abess uptake of these unmanaged sinks is very important in sions, even though they facilitate the perpetuation of Center for Ecosystem Science and Policy, University of both global and jurisdictional carbon budgets, and their unmanaged sinks. Miami, Coral Gables, FL, USA. future is uncertain, especially for land. But assumptions Four main interventions, avoided deforestation, ✉e-mail: [email protected] about their continued uptake are embedded in calcula- reforestation, (improved) forest plantations and soil https://doi.org/10.1038/ tions of remaining CO2 emissions budgets and negative carbon sequestration, can be used to represent the s43017-021-00166-8 emissions needs7,8. diversity of NbCS interventions and their associated 436 | JUNE 2021 | VOLUME 2 www.nature.com/natrevearthenviron 0123456789();: REVIEWS Key points persistent problem. It is especially acute for soil carbon sequestration15,16 (Table 1). • Land management interventions can contribute to climate change mitigation Estimates for NbCS potential cover a wide range6,17–19, through avoided emissions from deforestation and forest degradation, and through spanning ~100 to ~1,200 GtCO . Given the poten- negative emissions from increasing carbon dioxide removal via reforestation, soil 2 tial value of NbCS, policy and management inter- carbon sequestration and more. est in them has also increased. For instance, several • The largest existing estimates of negative emissions potential from nature-based non-governmental organizations focused on climate and climate solutions implicitly rely on a potentially risky strategy of increasing carbon storage beyond historical bounds. conservation have initiated or expanded ‘Trillion Tree’ and other NbCS programmes. Moreover, the ‘Trillion • More conservative estimates that focus on refilling past carbon losses from the terrestrial biosphere are likely to be more feasible and have more co-benefits. Trees Act’ was introduced in the United States House of Representatives (H.R. 5859) in February 2020. Of • Successful implementation of nature-based climate solutions requires rapid increases in financing, increased on-the-ground capacity, and robust policy and governance course, tree planting is just one example of the kinds mechanisms. of NbCS interventions that have seen large increases • In the absence of broader climate action, climate change impacts on the biosphere in attention and ambition. NbCS have featured prom- will limit the potential for nature-based climate solutions to contribute negative inently in many nationally determined contributions to emissions. the Paris Agreement and are expected to have a large platform at the 2021 United Nations Climate Change Conference, also known as COP26, in Glasgow20. challenges (Table 1). For example, avoided deforestation Yet, despite increasing emphasis on NbCS, land use and reforestation have higher potential environmen- and land cover change remain a source of 4–7 GtCO2 per tal co-benefits, such as biodiversity protection, than year, mainly from tropical deforestation8,21. Current efforts forest plantations11. Intermediate strategies include to prevent or offset these losses through NbCS, while some improved forest management actions, which increasing, remain limited. A broad suite of NbCS and can simultaneously increase carbon storage in forests related interventions have resulted in cumulative emis- (REF.22) and still provide economic benefits from occasional sions reductions of 1.1 GtCO2 from 2006 to 2018 . lumber harvest12, and proforestation, which can max- More specifically, forest-based net removals (including imize carbon storage in intact forests and encourage afforestation, reforestation, agroforestry, improved for- the growth of large, old trees13. Soil carbon sequestra- est management and avoided deforestation) resulted tion can be done on the same land as agricultural pro- in a cumulative total of 0.365 GtCO2 over 2010–2016 duction and, thus, has relatively low opportunity costs. (REF.23). The 67 afforestation or reforestation projects that The situation is similar for forest plantations, which can were part of the Kyoto Protocol’s Clean Development provide their own economic benefits via the sale of tim- Mechanism represent emission reductions of 0.002 GtCO2 ber products. By contrast, durable climate mitigation per year (REF.24). With cumulative negative emissions of from avoided deforestation and reforestation requires 550–1,017 GtCO2 likely needed through 2100 to limit the land be allocated permanently (at least timescales anthropogenic warming to 1.5 °C (REF.1), it is important to ~100+ years) to the NbCS intervention14. These time- ask how much can come from NbCS, which can provide scales and opportunity costs lead to differing amounts a relatively small but important contribution to overall of coordination required for successful implementation. carbon removal25–29. If NbCS do not meet the total need, Ability to measure the additional carbon storage is a a portfolio approach will be required30. Table 1 | Characteristics of different mechanisms and measures through which carbon is stored in the terrestrial biosphere Characteristic Unmanaged Unmanaged Avoided Reforestation Forest Soil carbon fertilization regrowth deforestation plantations Carbon storage Terrestrial carbon Yes Yes Yes Yes Yes Yes category storage? Nature-based No No Yes Yes Yes Yes climate solution? Negative emissions? No No No Yes Yes Yes Intervention required? No No Yes Yes Yes Yes Total potential contribution to negative Low Low None Medium Medium Medium/high emissions needs Stability Medium High Medium Medium Low Medium Level
Recommended publications
  • Than Planting Trees: a Proforest Approach to Addressing Climate Change
    MORE THAN PLANTING TREES: A PROFOREST APPROACH TO ADDRESSING CLIMATE CHANGE Stand4Forests Report Series Recently, initiatives to plant trees as a way to offset climate change have gained steam in the public sphere. Although planting trees can be helpful in urban settings, large scale plantings must be done with the intent to restore complex native ecosystems in perpetuity. Focusing heavily on planting trees can take the world further away from more impactful climate change mitigation strategies, like preserving natural forests and eliminating fossil fuels. A proforestation approach, which emphasizes allowing forests to grow to ecological maturity, is a more holistic and lower cost solution for the complex problem of climate change. Here’s the truth of the matter: • Planting trees is a small part of natural climate solutions, but preserving natural forests and promoting intact areas is an economically affordable climate solution with substantial carbon payoff. • Forests open to logging offer no true long-term carbon storage solution. • Planting trees instead of allowing natural regeneration leads to suboptimal carbon storage, wildlife habitat, water availability, fire risk, and other measures of forest health. THE BOTTOM LINE: We need new policies designed to scale back forest disturbance from logging and leave more forests standing. MYTH: Planting trees is the solution to climate change. TRUTH: Protecting natural forests will yield bigger and faster climate benefits than LOSS OF NATURAL FORESTS IN THE US SOUTH simply planting more trees. 225 Natural Forest Pine Plantations Forest acreage has grown less than 2% in the last 64 years, and acres of “forest” in the US South are increasingly likely to 200 be pine plantations, not natural forests.1,2 The forest products industry celebrates this growth as a “victory”, because they Between 1950-2010, value profits and standing tree farms above all else.
    [Show full text]
  • Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest
    ffgc-03-594274 November 4, 2020 Time: 11:36 # 1 ORIGINAL RESEARCH published: 05 November 2020 doi: 10.3389/ffgc.2020.594274 Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest David J. Mildrexler1*, Logan T. Berner2, Beverly E. Law3, Richard A. Birdsey4 and William R. Moomaw4,5 1 Eastern Oregon Legacy Lands, Joseph, OR, United States, 2 EcoSpatial Services L.L.C., Flagstaff, AZ, United States, 3 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States, 4 Woodwell Climate Research Center, Falmouth, MA, United States, 5 The Fletcher School and Global Development and Environment Institute, Tufts University, Medford, MA, United States Large-diameter trees store disproportionally massive amounts of carbon and are a major driver of carbon cycle dynamics in forests worldwide. In the temperate forests of the Edited by: western United States, proposed changes to Forest Plans would significantly weaken Isabel Cañellas, protections for a large portion of trees greater than 53 cm (21 inches) in diameter Centro de Investigación Forestal (INIA), Spain (herein referred to as “large-diameter trees”) across 11.5 million acres (∼4.7 million ha) Reviewed by: of National Forest lands. This study is among the first to report how carbon storage in Jurij Diaci, large trees and forest ecosystems would be affected by a proposed policy. We examined University of Ljubljana, Slovenia Thomas J. Dean, the proportion of large-diameter trees on National Forest lands east of the Cascade Louisiana State University, Mountains crest in Oregon and Washington, their contribution to overall aboveground United States carbon (AGC) storage, and the potential reduction in carbon stocks resulting from *Correspondence: widespread harvest.
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • Highstead Foundation GC3
    The role of unmanaged forests in climate mitigation and adaptation: the benefits of proforestation Ed Faison Senior Ecologist Highstead Foundation GC3. April 7, 2020 Terms • Climate Mitigation in forests– enhancing carbon storage/sequestration in forest ecosystems to alleviate potential adverse effects of climate change Carbon Sequestration – the rate at which carbon is taken up by plants from the atmosphere Carbon storage – the accumulated carbon stored in the forest as a result of sequestration • Climate Adaptation in forests – maintaining high levels of compositional, functional, and/or structural complexity to enhance the ability of an ecosystem to respond or adapt to new or changing conditions associated with a changing climate Resilience – ability of a system to recover quickly from a disturbance and return to a previous state Resistance - the capacity of a system to absorb disturbance or stress and remain relatively unchanged From D’Amato et al. 2011 and GC3 working definitions Unmanaged forests store more carbon than do managed forests Mitigation ‘No management’ forests stored 39-118% more carbon than managed forests “All harvesting reduces carbon storage of a forest below the maximum potential for the site.” (D’Amato and Catanzaro 2019) Nunery, J. S., & Keeton, W. S. (2010). Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management, 259(8), 1363-1375. Connecticut’s forests have the potential to almost double aboveground carbon storage Mitigation 70 Mean 60 Aboveground carbon Mg/acre 50 40 “Stand age was the strongest predictor of 30 [carbon] biomass” (Keeton et al.
    [Show full text]
  • 1 Ten Golden Rules for Reforestation to Optimise Carbon Sequestration
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2020 1 Title: 2 Ten golden rules for reforestation to optimise carbon sequestration, biodiversity 3 recovery and livelihood benefits 4 5 Running title: 6 Ten golden rules for reforestation 7 8 Keywords: 9 Afforestation, Climate change mitigation, Ecological Restoration, Forest landscape 10 restoration, Large-scale tree planting, Natural regeneration, Nature-based solutions, 11 Stakeholders participation 12 13 Authors: 14 Alice Di Sacco*§1, Kate Hardwick*§1, David Blakesley2,3, Pedro H. S. Brancalion4, Elinor 15 Breman1, Loic Cecilio Rebola1,5, Susan Chomba6, Kingsley Dixon7,8, Stephen Elliott9, 16 Godfrey Ruyonga10, Kirsty Shaw11, Paul Smith11, Rhian J. Smith1 and Alexandre Antonelli§1,12 17 18 Affiliations: 19 1 Royal Botanic Gardens, Kew, Richmond, London, TW9 3AE, United Kingdom 20 2 Wildlife Landscapes, Maidstone, United Kingdom 21 3 Autism and Nature, Maidstone, United Kingdom 22 4 Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture, University of São 23 Paulo, Piracicaba, SP, 13418-900, Brazil 24 5 School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar 25 Drive, Aberdeen, AB24 3UU, United Kingdom 26 6 World Agroforestry Centre, Nairobi, Kenya 27 7 Australian Research Council Centre for Mine Site Restoration, School of Molecular and 28 Life Sciences, Curtin University, GPO Box U1987, Bentley WA 6102, Perth, Australia 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org)
    [Show full text]
  • Understanding the Importance of Primary Tropical Forest Protection As a Mitigation Strategy
    Mitigation and Adaptation Strategies for Global Change https://doi.org/10.1007/s11027-019-09891-4 ORIGINAL ARTICLE Understanding the importance of primary tropical forest protection as a mitigation strategy Brendan Mackey, et al. [full author details at the end of the article] Received: 9 August 2019 /Accepted: 4 September 2019/ # The Author(s) 2020 Abstract Given the short time-frame to limit global warming, and the current emissions gap, it is critical to prioritise mitigation actions. To date, scant attention has been paid to the mitigation benefits of primary forest protection. We estimated tropical forest ecosystem carbon stocks and flows. The ecosystem carbon stock of primary tropical forests is estimated at 141–159 Pg C (billion tonnes of carbon) which is some 49–53% of all tropical forest carbon, the living biomass component of which alone is 91–103% of the remaining carbon budget to limit global warming to below 1.5 degrees above pre-industrial levels. Furthermore, tropical forests have ongoing sequestration rates 0.47–1.3 Pg C yr−1, equivalent to 8–13% of annual global anthropogenic CO2 (carbon dioxide) emissions. We examined three main forest-based strate- gies used in the land sector—halting deforestation, increasing forest restoration and improving the sustainable management of production forests. The mitigation benefits of primary forest protection are contingent upon how degradation is defined and accounted for, while those from restoration also depend on how restoration is understood and applied. Through proforestation, reduced carbon stocks in secondary forests can regrow to their natural carbon carrying capacity or primary forest state.
    [Show full text]
  • EUROPEAN COMMISSION Brussels, 16.7.2021 SWD(2021)
    EUROPEAN COMMISSION Brussels, 16.7.2021 SWD(2021) 652 final COMMISSION STAFF WORKING DOCUMENT STAKEHOLDER CONSULTATION AND EVIDENCE BASE Accompanying the document COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS New EU Forest Strategy for 2030 {COM(2021) 572 final} - {SWD(2021) 651 final} EN EN Contents 1. INTRODUCTION ................................................................................................................ 2 2. ROADMAP CONSULTATIONS .................................................................................................. 2 3. STAKEHOLDER MEETINGS ..................................................................................................... 2 4. STOCKTAKING OF FORMER CONSULTATIONS ................................................................................ 3 5. RESULTS FOR THE CLOSED AND OPEN QUESTIONS OF THE PUBLIC CONSULTATION INCLUDING OPEN REPLIES .......... 3 5.1. INTRODUCTION ................................................................................................................ 3 5.2. OVERVIEW OF REPLIES ........................................................................................................ 3 5.3. OVERVIEW OF RESULTS ....................................................................................................... 4 5.4. ANALYSIS OF REPLIES TO PART I OF THE QUESTIONNAIRE: VIEWS ON POTENTIAL OBJECTIVES AND ACTIONS OF THE NEW FOREST STRATEGY .............................................................................................................
    [Show full text]
  • Carbon Testimony Figures
    11.0 Friedlingstein et al 2020 Increase carbon accumulation by forests ´ Altering forest management to let more trees grow would allow global forests to accumulate twice as much carbon Erb et al 2018 ´ “…the largest one percent of trees in mature and older forests comprised 50 percent of forest biomass worldwide.” Lutz et al 2018 ´ The potential for growing forests to accumulate carbon by natural regrowth is better than active management and has been under estimated by 32% Cook-Patton et al 2020 MCNEIL POWERPLANT BURLINGTON VT FOREST BIOENERGY ADDS AS MUCH CARBON DIOXIDE TO THE ATMOSPHERE AS COAL FORESTS DO NOT REMOVE IT FOR A CENTURY Why “carbon neutral” from sustainable harvests is insufficient to meet the climate emergency Tons per acre 22 22 Planting trees is good Letting them grow is better Proforestation Management allows forests to reach their ecological potential for carbon storage in trees and soils Larger trees accumulate the most atmospheric carbon over time, and store the carbon in the wood of their trunk, limbs roots and soils Establish two types of forests: Carbon Reserves and Industrial production forests Ecosystem Services A third structure for forest management Family scale and land trust owners that are paid by the state to manage their forests to support ecological services Some might be paid at a different rate to lengthen rotation times to store more carbon and allow for older successional stages This would be an additional set of criteria for receiving a property tax reduction under Use Value Appraisal that requires
    [Show full text]
  • Intact Primary Forest Mccarthy Letter FINAL
    May 4, 2021 Sent Via Electronic Mail The Honorable Gina McCarthy, White House National Climate Advisor 1600 Pennsylvania Ave., NW Washington, DC 20500 Dear Administrator McCarthy, The need for immediate solutions to the climate and biodiversity emergencies has never been more pressing.1 We welcome the Biden Administration’s commitment to acting quickly to address these interrelated crises, including developing the U.S. Nationally Determined Contribution (NDC), committing to the 30 x 30 protected area targets, centering environmental justice, and pushing for broader international action on natural climate solutions, particularly lands and waters protections. While biodiversity loss and climate change can combine in a mutually reinforcing downward spiral, addressing these crises together in a holistic, equitable manner offers unique opportunities to amplify solutions to both. The protection of carbon-dense, biodiverse U.S. forests and large trees needs to be a key pillar in pursuing these priorities. As a steward of some of the world’s most climate-critical forests, the U.S. needs strong, science-based, equitable domestic conservation policies to not only meet its own climate and environmental justice goals but to credibly lead in international climate and biodiversity negotiations. These policies are critical to securing immediate climate benefits that 1 William J. Ripple et al., “The Climate Emergency: 2020 In Review,” Scientific American, January 6, 2021, https://www.scientificamerican.com/article/the-climate-emergency-2020-in-review/. will provide the most cost-effective, substantial carbon savings over the coming decades. To maximize these benefits, the U.S. should pursue a two-pronged strategy on forests. First, as a matter of the highest priority, the U.S.
    [Show full text]
  • Open PDF File, 933.59 KB, for Forest Management Proposal
    M A S S A C H U S E T T S F O R E S T A L L I A N C E 249 Lakeside Avenue, Marlborough Massachusetts 01752-4503 www.MassForestAlliance.org | (617) 455 - 9918 | [email protected] June 3, 2020 William Hill Department of Conservation and Recreation 40 Cold Storage Dr Amherst, MA 01004 Dear Mr. Hill: Board of Directors Thank you for the opportunity to review and comment on DCR’s proposed 2020 Dicken Crane State Forest Management projects. We appreciate the extension of the comment President period due to the COVID-19 pandemic situation. Windsor, MA Charles Thompson The Massachusetts Forest Alliance represents forest landowners, foresters, timber Immediate Past President harvesters, and forest products companies. We support DCR’s forest management Pelham, MA efforts in state forests. Here are some comments about the proposed 2020 projects. James Dammann Treasurer First, we’re glad to see varying sizes of projects. Our concern in the past has been Hillsboro, NH that DCR forest management projects in state forests were so large that the number of timber harvesters able to take on the work was significantly limited. By offering James Kelly some smaller projects, more harvesters will bid on the projects, which could Secretary Great Barrington, MA potentially lead to lower costs and/or greater revenue for DCR. Fred Heyes Several of these proposed projects – Balance Rock State Park, Huntington State At-Large Forest, and Granville State Forest – deal with unwanted beech regeneration. We find Orange, MA this problem is widely misunderstood by the public, who are concerned about Shane Bajnoci removal of native trees that are a valuable food source for wildlife, especially when it North Amherst, MA involves the use of herbicides.
    [Show full text]
  • EU Biodiversity Strategy for 2030: Bringing Nature Back Into Our Lives
    European Parliament 2019-2024 TEXTS ADOPTED P9_TA(2021)0277 EU Biodiversity Strategy for 2030: Bringing nature back into our lives European Parliament resolution of 9 June 2021 on the EU Biodiversity Strategy for 2030: Bringing nature back into our lives (2020/2273(INI)) The European Parliament, – having regard to the Commission communication of 20 May 2020 entitled ‘EU Biodiversity Strategy for 2030: Bringing nature back into our lives’ (COM(2020)0380), – having regard to the Commission communication of 11 December 2019 on the European Green Deal (COM(2019)0640), and the Parliament resolution of 15 January 2020 on the same topic1, – having regard to the Commission communication of 20 May 2020 on a Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system (COM(2020)0381), – having regard to the Commission communication of 26 February 2016 on an EU Action Plan against Wildlife Trafficking (COM(2016)0087), – having regard to the Commission report of 2 October 2015 on the Mid-Term Review of the EU Biodiversity Strategy to 2020 (COM(2015)0478), – having regard to the Commission communication of 23 July 2019 on Stepping up EU Action to Protect and Restore the World’s Forests (COM(2019)0352) and the Parliament resolution of 16 September 2020 on the EU’s role in protecting and restoring the world’s forests2; – having regard to Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’3 and the proposal for a decision of the European Parliament and of the Council of 14 October 2020 on a new General Union Environment Action Programme to 2030 (COM(2020)0652), 1 Texts adopted, P9_TA(2020)0005.
    [Show full text]
  • 30.9.2020 A9-0154/2 Amendment 2 Anna Deparnay-Grunenberg
    30.9.2020 A9-0154/2 Amendment 2 Anna Deparnay-Grunenberg, Margrete Auken on behalf of the Verts/ALE Group Manuel Bompard, João Ferreira on behalf of the GUE/NGL Group Nicolae Ştefănuță, Monika Beňová, César Luena, Michal Wiezik, Radan Kanev, Luděk Niedermayer, Vladimír Bilčík, Pascal Durand, Martin Hojsík, Irena Joveva, Eleonora Evi, Delara Burkhardt, Constanze Krehl, Maria Arena, Günther Sidl Report A9-0154/2020 Petri Sarvamaa The European Forest Strategy - The Way Forward (2019/2157(INI)) Motion for a resolution (Rule 181(3) of the Rules of Procedure) replacing non-legislative motion for a resolution A9-0154/2020 European Parliament resolution on the European Forest Strategy – the way forward The European Parliament, – having regard to the Commission communication of 11 December 2019 on ‘The European Green Deal’ (COM(2019)0640), to the Commission communication of 20 May on the EU Biodiversity Strategy for 2030 (COM(2020)0380), and to its resolutions of 15 January 2020 on the European Green Deal1 and of 16 January 2020 on the 15th meeting of the Conference of Parties (COP15) to the Convention on Biological Diversity2, – having regard to the New York Declaration on Forests, ratified on 23 June 2014 by the European Union, – having regard to its resolution of 28 April 2015 on ‘A new EU Forest Strategy: for forests and the forest-based sector’3, – having regard to the Commission communication to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions of 23 July 2019 entitled ‘Stepping up EU Action to Protect and Restore the World’s Forests’ (COM(2019)0352), – having regard to the opinion of the European Economic and Social Committee of 30 October 2019 on the report from the Commission to the European Parliament, the 1 Texts adopted, P9_TA(2020)0005.
    [Show full text]