Aggregated Variant Analysis in Exomes from Familial and Early Onset Meniere Disease Patients

Total Page:16

File Type:pdf, Size:1020Kb

Aggregated Variant Analysis in Exomes from Familial and Early Onset Meniere Disease Patients ANÁLISIS AGREGADO DE VARIANTES EN EL EXOMA DE PACIENTES CON ENFERMEDAD DE MENIERE FAMILIAR E INICIO PRECOZ Tesis doctoral con mención internacional Aggregated variant analysis in exomes from familial and early onset Meniere disease patients International PhD Thesis PROGRAMA DE DOCTORADO EN BIOMEDICINA (B11.56.1) Author: Pablo Román-Naranjo Varela Director: José Antonio López Escámez Editor: Universidad de Granada. Tesis Doctorales Autor: Pablo Román-Naranjo Varela ISBN: 978-84-1306-571-7 URI: http://hdl.handle.net/10481/63304 2 4 Agradecimientos Esta tesis doctoral no podría haberse realizado sin la ayuda o colaboración de muchas personas. Como no puede ser de otra manera, a los primeros que tengo que agradecer son a mi familia, en especial a mis padres. Las tres mudanzas en tres años parece que han merecido la pena. Gracias por mostrarme siempre vuestro apoyo. Espero que podamos celebrar esto todos juntos. Por otro lado, el culpable (para bien) de que me encuentre escribiendo este texto es mi director de tesis. Muchas gracias, Antonio. Gracias por confiar en mí y darme la oportunidad de empezar en esto de la ciencia. Vine a ciegas a Granada, haciendo un máster que poco o nada tiene que ver con lo que estoy haciendo ahora, pero que me permitió entrar al grupo a través del TFM. Decisiones y casualidades que te cambian la vida. Grado en Bioquímica en Sevilla, Máster en Ingeniería tisular, doctorado en biomedicina haciendo de bioinformático reconvertido en Granada. Normal que no lo tuviera muy claro cuando empecé. Pese a todo, el camino ha llegado a buen puerto. Camino que, por otra parte, te has encargado de que fuera lo más recto posible. Es muy de agradecer tu entusiasmo por el área en el que trabajas, entusiasmo que se me ha contagiado en las horas bajas, que, aunque pocas, las ha habido. Cambiando de tercio, aunque no mucho, es turno de agradecer a todos los compañeros con los que he tenido la suerte de compartir laboratorio. Por afinidad con el tema de la tesis, estoy especialmente agradecido a Teresa Requena y a Álvaro Gallego. Muchas gracias a ambos. Gracias Tere porque, aunque cuando llegué no estabas por el lab19 (estabas de estancia), cuando volviste me ayudaste como la que más. Ahora, que vuelves a no estar en el laboratorio, se te echa mucho de menos. Gracias Álvaro porque, a día de hoy, aun me sigues ayudando cuando tengo cualquier tipo de duda. Espero compartir contigo más esa frase de “y esa es mi historia”. Compañera de batallas, muito obrigado. Si bien al principio no te entendía casi nada, a medida que ha pasado el tiempo me has convertido en medio portugués. He pasado muy buenos momentos durante esta etapa contigo, y siempre que has podido, me has ayudado (casi siempre, aún recuerdo el hielo de la qPCR). Muchas gracias, Marisa. We have shared many moments together while working in the lab and I hope to continue doing so. Sana, thank you very much for those funny moments and I hope I have copied this correctly). Estrella, aunque tienes tus momentos como) پیﻻ ,laughs todos, eres la alegría del laboratorio. Es un gusto trabajar contigo. Alba y Olga, habéis llegado hace poco, pero ya habéis participado de una manera u otra en esto. Espero poder compartir con vosotras buenos momentos en el futuro. Newyorkina, no me he olvidado de ti. Eras el alma del laboratorio y me dio mucha pena que te fueras. Me has ayudado mucho, quizá más de lo que crees. Muchas gracias, Lidia. Although they are not part of the group where I have done this 5 Thesis, they helped me a lot during my stay in Luxembourg. Thank you very much Marie-Laure Magnani, you were a great support for me before and after my arrival. Thank you very much Patrick May, Dheeraj Bobbili and Stephan Gebel, because thanks to you, I learned there a large part of the methodological basis of this Thesis. No me quiero olvidar de nadie, y no me puedo olvidar de todos los médicos que han participado en este estudio. Por suerte, sois muchos los que buscáis un rato después de vuestro trabajo para colaborar con nosotros, y eso es muy de agradecer, ya que si no esto no sería posible. Muchas gracias Juanma, Patricia y María del Carmen. Sois parte esencial del trabajo que se realiza en Granada. También me gustaría destacar a los doctores Andrés Soto (Complexo Hospitalario Universitario de Santiago de Compostela) e Ismael Arán (Complexo Hospitalario de Pontevedra), por vuestra labor a la hora de facilitarnos muestras y datos clínicos para la realización del trabajo de investigación que posibilita esta Tesis. Este cambio de párrafo es intencionado. Es intencionado porque merecen mención aparte. Muchas gracias a todos los pacientes con la enfermedad de Meniere que han participado en este trabajo. Muchas gracias a la Asociación Síndrome de Meniere España (ASMES) y a todos sus socios, ya que han sido ellos los que, con sus donaciones, han hecho que yo haya podido vivir durante estos tres años cosas que ni me imaginaba cuando salí de Sevilla. Ellos han financiado mi estancia en el grupo y han sido parte fundamental de todo esto. Muchas gracias por invitarme a la asamblea que celebrasteis en Sevilla. Fue inspiradora y aun me emociono cuando me acuerdo. Me gustaría mencionar a María José Fraile, por su atención e interés en la evolución de mi trabajo. También mencionar a Roberto, Juan Pedro, Merche, Gema, Fran y Marcos, pasamos un buen día en Sevilla. Espero que entre todos podamos encontrar algún día la solución a este problema llamado enfermedad de Meniere. Yo, gracias a vosotros, dejo aquí mi granito de arena. Gracias de verdad. 6 7 Index Grants and funding ..................................................................................................................... 11 Resumen ..................................................................................................................................... 13 Abstract ....................................................................................................................................... 15 Abbreviations.............................................................................................................................. 17 1. Introduction ........................................................................................................................ 21 1.1. The inner ear ............................................................................................................... 21 1.1.1. Anatomy and function of the cochlea................................................................ 22 1.1.2. Anatomy and function of the vestibular system ............................................... 24 1.2. Meniere’s disease ....................................................................................................... 24 1.2.1. Clinical symptoms ............................................................................................... 25 1.2.2. Diagnosis and classification of patients ............................................................. 26 1.2.3. Epidemiology ...................................................................................................... 27 1.2.4. Treatments .......................................................................................................... 28 1.2.5. Pathophysiology ................................................................................................. 28 1.3. Basis and state of the art of human genetics ............................................................ 29 1.3.1. From genes to proteins ...................................................................................... 30 1.3.2. Genetic variants .................................................................................................. 31 1.4. Genetics of hearing loss and Meniere’s disease ........................................................ 34 2. Hypothesis .......................................................................................................................... 37 3. Objectives ........................................................................................................................... 38 4. Methods .............................................................................................................................. 39 4.1. Diagnosis of cases ....................................................................................................... 39 4.2. DNA extraction and WES ............................................................................................ 39 4.3. Bioinformatics ............................................................................................................. 40 4.3.1. Data generation and pre-processing .................................................................. 40 4.3.2. Generation of callsets ......................................................................................... 41 4.3.3. Variants quality assessment ............................................................................... 42 8 4.3.4. Variant annotation ............................................................................................. 42 4.3.5. Variant filtering ................................................................................................... 43 4.3.6. Callsets analysis strategy .................................................................................... 44 4.3.7. Variant prioritization .......................................................................................... 44 4.3.8. Variant validation ..............................................................................................
Recommended publications
  • Psychostimulant-Regulated Plasticity in Interneurons of the Nucleus Accumbens
    Psychostimulant-Regulated Plasticity in Interneurons of the Nucleus Accumbens by David A. Gallegos Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Anne E. West, Supervisor ___________________________ Jorg Grandl ___________________________ Debra Silver ___________________________ Gregory Crawford ___________________________ Hiro Matsunami Psychostimulant-Regulated Epigenetic Plasticity in Interneurons of the Nucleus Accumbens submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2019 ABSTRACT Psychostimulant-Regulated Epigenetic Plasticity in Interneurons of the Nucleus Accumbens by David A. Gallegos Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Anne E. West, Supervisor ___________________________ Jorg Grandl ___________________________ Debra Silver ___________________________ Gregory Crawford ___________________________ Hiro Matsunami An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2019 Copyright by David Andres Gallegos 2019 Abstract Exposure to psychostimulant drugs of abuse exerts lasting influences on brain function via the regulation of immediate and persistent gene transcription. These changes in gene transcription drive the development of addictive-like
    [Show full text]
  • Porichthys Notatus), a Teleost with Divergent Sexual Phenotypes
    Portland State University PDXScholar Biology Faculty Publications and Presentations Biology 11-11-2015 Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes Joshua J. Faber-Hammond Portland State University Manoj P. Samanta Systemix Institute Elizabeth A. Whitchurch Humboldt State University Dustin Manning Oregon Health & Science University Joseph A. Sisneros University of Washington Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac Part of the Biology Commons LetSee next us page know for additional how authors access to this document benefits ou.y Citation Details Faber-Hammond, J., Samanta, M. P., Whitchurch, E. A., Manning, D., Sisneros, J. A., & Coffin, A. B. (2015). Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes. PloS One, 10(11), e0142814. This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Joshua J. Faber-Hammond, Manoj P. Samanta, Elizabeth A. Whitchurch, Dustin Manning, Joseph A. Sisneros, and Allison B. Coffin This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/bio_fac/108 RESEARCH ARTICLE Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman
    [Show full text]
  • CSE642 Final Version
    Eindhoven University of Technology MASTER Dimensionality reduction of gene expression data Arts, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology MASTER THESIS Dimensionality Reduction of Gene Expression Data Author: S. (Sako) Arts Daily Supervisor: dr. V. (Vlado) Menkovski Graduation Committee: dr. V. (Vlado) Menkovski dr. D.C. (Decebal) Mocanu dr. N. (Nikolay) Yakovets May 16, 2018 v1.0 Abstract The focus of this thesis is dimensionality reduction of gene expression data. I propose and test a framework that deploys linear prediction algorithms resulting in a reduced set of selected genes relevant to a specified case. Abstract In cancer research there is a large need to automate parts of the process of diagnosis, this is mainly to reduce cost, make it faster and more accurate.
    [Show full text]
  • GWAS for Meat and Carcass Traits
    G3: Genes|Genomes|Genetics Early Online, published on July 11, 2019 as doi:10.1534/g3.119.400452 GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2- designs in pigs Clemens Falker-Gieske,*,1,2 Iulia Blaj,†,2 Siegfried Preuß,‡ Jörn Bennewitz,‡ Georg Thaller,† Jens Tetens*,§ *Department of Animal Sciences, Georg-August-University, 37077 Göttingen, Germany. †Institute of Animal Breeding and Husbandry, Kiel University, 24118 Kiel, Germany. ‡Institute of Animal Husbandry and Breeding, University of Hohenheim, 70599 Stuttgart, Germany. §Center for Integrated Breeding Research, Georg-August-University, 37077 Göttingen, Germany. 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: Sequence level GWAS in pooled F2 pigs Keywords Genome wide association study Whole genome sequencing Imputation Meat, carcass, and production traits Variant calling 1Corresponding author: Clemens Falker-Gieske, Georg-August-University Goettingen, Department of Animal Sciences, Division Functional Breeding, Burckhardtweg 2, 37077 Goettingen, (+49) 551-39-23669 2contributed equally. 2 ABSTRACT In order to gain insight into the genetic architecture of economically important traits in pigs and to derive suitable genetic markers to improve these traits in breeding programs, many studies have been conducted to map quantitative trait loci. Shortcomings of these studies were low mapping resolution, large confidence intervals for quantitative trait loci-positions and large linkage disequilibrium blocks. Here, we overcome these shortcomings by pooling four large F2 designs to produce smaller linkage disequilibrium blocks and by resequencing the founder generation at high coverage and the F1 generation at low coverage for subsequent imputation of the F2 generation to whole genome sequencing marker density.
    [Show full text]
  • SUPPLEMENTARY METHODS DNA Sequencing and Variant
    Supplementary material J Med Genet SUPPLEMENTARY METHODS DNA sequencing and variant identification Genomic DNA was isolated from peripheral blood lymphocytes following standard procedures. Subsequently, exome enrichment was performed using the Agilent SureSelect Human All Exome V5 kit according to the manufacturer’s protocols. Exome sequencing was performed on an Illumina HiSeq system by BGI Europe (Copenhagen, Denmark). Read mapping along the hg19 reference genome (GRCh37/hg19) and variant calling were performed using BWA V.0.78(1) and GATK HaplotypeCaller V.3.3(2). A coverage of >20 reads was reached for 85.1% to 97.8% of the enriched regions. For variant annotation an in-house developed annotation and variant evaluation pipeline was used. For sequencing data of family W97-056, CNV detection was performed using CoNIFER V.0.2.2.(3) Genome sequencing was performed by BGI (Hong Kong, China) on a BGISeq500 using a 2x 100 bp paired end module, with a minimal median coverage of 30-fold per genome. Structural variants were called using Manta V.1.1.0(4) and CNVs using Control-FREEC.(5) Variants were validated and visualized using the IGV Software (V.2.4).(6) In the index case of family W08-1421, targeted DNA sequencing was performed using MIP sequencing.(7) MIPs were designed covering exons and exon-intron boundaries of a panel of 89 HL genes (Supplementary Table 6). Sequencing and data analysis were performed as previously described.(8) For each targeted region, an average coverage of 420 reads was obtained. A coverage of >20 reads was reached for 85.4% of the MIPs.
    [Show full text]
  • Meta-Analysis of Gene Signatures and Key Pathways Indicates
    www.nature.com/scientificreports OPEN Meta‑analysis of gene signatures and key pathways indicates suppression of JNK pathway as a regulator of chemo‑resistance in AML Parastoo Modarres1, Farzaneh Mohamadi Farsani1,3, Amir Abas Nekouie2 & Sadeq Vallian1* The pathways and robust deregulated gene signatures involved in AML chemo‑resistance are not fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem to have similar regulatory gene(s) or pathway(s) related to their chemo‑resistance phenotype. In this study using gene set enrichment approach, deregulated genes and pathways associated with relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from GEO and ArrayExpress repositories were used to identify signifcantly diferentially expressed genes between chemo‑resistance and chemo‑sensitive groups. Functional and pathway enrichment analysis of diferentially expressed genes was performed to assess molecular mechanisms related to AML chemotherapeutic resistance. A total of 34 genes selected to be diferentially expressed in the chemo‑ resistance compared to the chemo‑sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll‑like receptor signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression of JNK pathway, which could induce pro‑apoptotic gene expression as well as down regulation of survival factors, introducing this pathway as a key regulator of drug‑resistance development in AML. Acute myeloid leukemia (AML) is one of the most aggressive, life-threatening hematological malignancies char- acterized by uncontrolled proliferation of abnormal diferentiated and nonfunctional myeloid precursor cells1.
    [Show full text]
  • Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes
    G C A T T A C G G C A T genes Article Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes Galuh D. N. Astuti 1,2, L. Ingeborgh van den Born 3, M. Imran Khan 1,4, Christian P. Hamel 5,6,7,†, Béatrice Bocquet 5,6,7, Gaël Manes 5,6, Mathieu Quinodoz 8, Manir Ali 9 ID , Carmel Toomes 9, Martin McKibbin 10 ID , Mohammed E. El-Asrag 9,11, Lonneke Haer-Wigman 1, Chris F. Inglehearn 9 ID , Graeme C. M. Black 12, Carel B. Hoyng 13, Frans P. M. Cremers 1,4 and Susanne Roosing 1,4,* ID 1 Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; [email protected] (G.D.N.A.); [email protected] (M.I.K.); [email protected] (L.H.-W.); [email protected] (F.P.M.C.) 2 Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands 3 The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; [email protected] 4 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands 5 Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; [email protected] (B.B.); [email protected] (G.M.) 6 University of Montpellier, 34090 Montpellier, France 7 CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France 8 Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland; [email protected] 9 Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St.
    [Show full text]
  • Explorative Bioinformatic Analysis of Cardiomyocytes in 2D &3D in Vitro Culture System
    EXPLORATIVE BIOINFORMATIC ANALYSIS OF CARDIOMYOCYTES IN 2D &3D IN VITRO CULTURE SYSTEM VERSION 2 Master Degree Project in Bioscience One years Level, 60 ECTS Sruthy Janardanan [email protected] Supervisor: Jane Synnergren [email protected] Examiner: Sanja Jurcevic [email protected] Abstract The in vitro cell culture models of human pluripotent stem cells (hPSC)-derived cardiomyocytes (CMs) have gained a predominant value in the field of drug discovery and is considered an attractive tool for cardiovascular disease modellings. However, despite several reports of different protocols for the hPSC-differentiation into CMs, the development of an efficient, controlled and reproducible 3D differentiation remains challenging. The main aim of this research study was to understand the changes in the gene expression as an impact of spatial orientation of hPSC-derived CMs in 2D(two-dimensional) and 3D(three-dimensional) culture conditions and to identify the topologically important Hub and Hub-Bottleneck proteins using centrality measures to gain new knowledge for standardizing the pre-clinical models for the regeneration of CMs. The above-mentioned aim was achieved through an extensive bioinformatic analysis on the list of differentially expressed genes (DEGs) identified from RNA-sequencing (RNA-Seq). Functional annotation analysis of the DEGs from both 2D and 3D was performed using Cytoscape plug-in ClueGO. Followed by the topological analysis of the protein-protein interaction network (PPIN) using two centrality parameters; Degree and Betweeness in Cytoscape plug-in CenTiScaPe. The results obtained revealed that compared to 2D, DEGs in 3D are primarily associated with cell signalling suggesting the interaction between cells as an impact of the 3D microenvironment and topological analysis revealed 32 and 39 proteins as Hub and Hub-Bottleneck proteins, respectively in 3D indicating the possibility of utilizing those identified genes and their corresponding proteins as cardiac disease biomarkers in future by further research.
    [Show full text]
  • An RNA Switch of a Large Exon of Ninein Is Regulated by the Neural Stem Cell Specific-RNA Binding Protein, Qki5
    International Journal of Molecular Sciences Article An RNA Switch of a Large Exon of Ninein Is Regulated by the Neural Stem Cell Specific-RNA Binding Protein, Qki5 Yoshika Hayakawa-Yano and Masato Yano * Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-25-227-2054 Received: 10 January 2019; Accepted: 21 February 2019; Published: 26 February 2019 Abstract: A set of tissue-specific splicing factors are thought to govern alternative splicing events during neural progenitor cell (NPC)-to-neuron transition by regulating neuron-specific exons. Here, we propose one such factor, RNA-binding protein Quaking 5 (Qki5), which is specifically expressed in the early embryonic neural stem cells. We performed mRNA-SEQ (Sequence) analysis using mRNAs obtained by developing cerebral cortices in Qk (Quaking) conditional knockout (cKO) mice. As expected, we found a large number of alternative splicing changes between control and conditional knockouts relative to changes in transcript levels. DAVID (The Database for Annotation, Visualization and Integrated Discovery) and Metascape analyses suggested that the affected spliced genes are involved in axon development and microtubule-based processes. Among these, the mRNA coding for the Ninein protein is listed as one of Qki protein-dependent alternative splicing targets. Interestingly, this exon encodes a very long polypeptide (2121 nt), and has been previously defined as a dynamic RNA switch during the NPC-to-neuron transition. Additionally, we validated that the regulation of this large exon is consistent with the Qki5-dependent alternative exon inclusion mode suggested by our previous Qki5 HITS-CLIP (high throughput sequencing-cross linking immunoprecipitation) analysis.
    [Show full text]
  • Novel Candidate Genes for 46,XY Gonadal Dysgenesis Identified by a Customized 1 M Array-CGH Platformq
    European Journal of Medical Genetics 56 (2013) 661e668 Contents lists available at ScienceDirect European Journal of Medical Genetics journal homepage: http://www.elsevier.com/locate/ejmg Clinical research Novel candidate genes for 46,XY gonadal dysgenesis identified by a customized 1 M array-CGH platformq Ameli Norling a, b, Angelica Lindén Hirschberg b, Erik Iwarsson a, Bengt Persson c, d, Anna Wedell a, e, Michela Barbaro a, e, * a Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden b Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden c Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden d Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden e Center for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, 171 76 Stockholm, Sweden article info abstract Article history: Half of all patients with a disorder of sex development (DSD) do not receive a specific molecular diag- Received 18 June 2013 nosis. Comparative genomic hybridization (CGH) can detect copy number changes causing gene hap- Accepted 3 September 2013 loinsufficiency or over-expression that can lead to impaired gonadal development and gonadal DSD. The Available online 18 September 2013 purpose of this study was to identify novel candidate genes for 46,XY gonadal dysgenesis (GD) using a customized 1 M array-CGH platform with whole-genome coverage and probe enrichment targeting 78 Keywords: genes involved in sex development. Fourteen patients with 46,XY gonadal DSD were enrolled in the Array-CGH study.
    [Show full text]
  • Ernas and Superenhancer Lncrnas Are Functional in Human Prostate Cancer
    Hindawi Disease Markers Volume 2020, Article ID 8847986, 17 pages https://doi.org/10.1155/2020/8847986 Research Article eRNAs and Superenhancer lncRNAs Are Functional in Human Prostate Cancer Xiaona Zhang,1,2,3 Panpan Pang,2,3,4 Min Jiang,1,2,3 Qunfa Cao,2,3 Huili Li,2,3 Yi Xu,5 Yao Li ,4 Xue Chen ,1 and Junsong Han 2,3 1Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China 2National Engineering Center for Biochip at Shanghai, Shanghai, China 3Shanghai Biochip Corporation, Shanghai, China 4Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai, China 5Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai, China Correspondence should be addressed to Yao Li; [email protected], Xue Chen; [email protected], and Junsong Han; [email protected] Received 23 June 2020; Revised 27 July 2020; Accepted 14 August 2020; Published 24 September 2020 Academic Editor: Mingjun Shi Copyright © 2020 Xiaona Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Prostate cancer (PCa) is one of the most commonly diagnosed cancers in males worldwide. lncRNAs (long noncoding RNAs) play a significant role in the occurrence and development of PCa. eRNAs (enhancer RNAs) and SE-lncRNAs (superenhancer lncRNAs) are important elements of lncRNAs, but the role of eRNAs and SE-lncRNAs in PCa remains largely unclear. In this work, we identified 681 eRNAs and 292 SE-lncRNAs that were expressed differentially in PCa using a microarray.
    [Show full text]
  • Somatic Mutations in Early Onset Luminal Breast Cancer
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 32), pp: 22460-22479 Research Paper Somatic mutations in early onset luminal breast cancer Giselly Encinas1,*, Veronica Y. Sabelnykova2,*, Eduardo Carneiro de Lyra3, Maria Lucia Hirata Katayama1, Simone Maistro1, Pedro Wilson Mompean de Vasconcellos Valle1, Gláucia Fernanda de Lima Pereira1, Lívia Munhoz Rodrigues1, Pedro Adolpho de Menezes Pacheco Serio1, Ana Carolina Ribeiro Chaves de Gouvêa1, Felipe Correa Geyer1, Ricardo Alves Basso3, Fátima Solange Pasini1, Maria del Pilar Esteves Diz1, Maria Mitzi Brentani1, João Carlos Guedes Sampaio Góes3, Roger Chammas1, Paul C. Boutros2,4,5 and Maria Aparecida Azevedo Koike Folgueira1 1Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil 2Ontario Institute for Cancer Research, Toronto, Canada 3Instituto Brasileiro de Controle do Câncer, São Paulo, Brazil 4Department of Medical Biophysics, University of Toronto, Toronto, Canada 5Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada *These authors have contributed equally to this work Correspondence to: Maria Aparecida Azevedo Koike Folgueira, email: [email protected] Keywords: breast cancer; young patients; somatic mutation; germline mutation; luminal subtype Received: September 26, 2017 Accepted: March 06, 2018 Published: April 27, 2018 Copyright: Encinas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied.
    [Show full text]