VALIDATION of the PRE-B CELL RECEPTOR AS a THERAPEUTIC TARGET in B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA Michael F

Total Page:16

File Type:pdf, Size:1020Kb

VALIDATION of the PRE-B CELL RECEPTOR AS a THERAPEUTIC TARGET in B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA Michael F University of New Mexico UNM Digital Repository Biomedical Sciences ETDs Electronic Theses and Dissertations Spring 4-7-2017 VALIDATION OF THE PRE-B CELL RECEPTOR AS A THERAPEUTIC TARGET IN B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA Michael F. Erasmus University of New Mexico Medical School Follow this and additional works at: https://digitalrepository.unm.edu/biom_etds Part of the Bioinformatics Commons, Biophysics Commons, Biotechnology Commons, Immunology of Infectious Disease Commons, Medical Biotechnology Commons, Medical Cell Biology Commons, Medical Immunology Commons, Molecular Biology Commons, and the Structural Biology Commons Recommended Citation Erasmus, Michael F.. "VALIDATION OF THE PRE-B CELL RECEPTOR AS A THERAPEUTIC TARGET IN B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA." (2017). https://digitalrepository.unm.edu/biom_etds/162 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biomedical Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. i M. FRANK ERASMUS Candidate BIOMEDICAL SCIENCES - PATHOLOGY Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: BRIDGET S. WILSON, Ph.D. , Chairperson DIANE S. LIDKE, Ph.D. GNANA S. GNANAKARAN, Ph.D. STUART S. WINTER, M.D. ii VALIDATION OF THE PRE-B CELL RECEPTOR AS A THERAPEUTIC TARGET IN B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA by M. FRANK ERASMUS B.S. Biological Sciences, California Polytechnic, USA, 2008 M.S. Molecular & Cell Biology, San Diego State Univ., USA, 2012 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biomedical Sciences The University of New Mexico Albuquerque, New Mexico May 2017 iii DEDICATION To my amazing wife and love of my life, Evan Feldman, for her relentless support and patience through the ups-and-downs of this process. I could not have been able to get through this without her commitment and belief in my ability to achieve this degree. To my loving mother-in-law and father-in-law, Lori Brody and Fabrizio Giovannini, for their unconditional love and support. And I dedicate this dissertation to my grandfather-in-law Edmond Brody for the reminding me of the importance of hard work and positive thinking as the means to a happy life. iv ACKNOWLEDGEMENTS To my incredible mentor, Dr. Bridget Wilson. Her dedication and drive throughout this process was truly inspirational. Thank you for continually pushing me through every step of the way. I truly appreciate all of your constructive criticism that fostered my skills as a scientist. There were many memorable moments over the years and I could not have asked for a better mentor. It is an honor to have been your graduate student. I knew from the get-go this was a very intriguing idea. Thank you for taking me on for the ride. To my dissertation committee. Dr. Diane Lidke, for her guidance on a large portion of this project. I have always been intrigued by your incredible work, so it was a true inspiration to learn from you over the years. All of your advice has been essential to the progress of these projects. Thank you for being a great mentor and critical leader. Dr. Gnanakaran, it was a tremendous privilege to work with you up at Los Alamos and to be exposed to all of the exciting research that you are doing. I am very appreciative for always keeping me in the loop to fascinating discussions and cutting-edge science. The ability to engage with you and your postdocs was very enlightening. I took a lot away from this experience, especially over the past year. I look forward to continuing to incorporate theory into my work due to this exhilarating experience. Dr. Winter, I cannot thank you enough for all of our talks and your support through the years. The ‘B Cells Gone Bad’ group was essential in keeping the clinical component a central feature of this project. I am very grateful to have had the opportunity to work with you over the past four years. From this experience I will always be reminded to keep a translational component in mind. v VALIDATION OF THE PRE-B CELL RECEPTOR AS A THERAPEUTIC TARGET IN B CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA by M. FRANK ERASMUS B.S., Biological Sciences, California Polytechnic St. University, USA, 2008 M.S., Molecular & Cell Biology, San Diego St. University, USA, 2012 Ph.D., Biomedical Sciences, University of New Mexico, USA, 2017 ABSTRACT This dissertation is built upon the fundamental idea that the pre-B cell receptor (pre-BCR) is important to leukemia cell survival and a logical therapeutic target in B cell precursor acute lymphoblastic leukemia (BCP-ALL). The pre-BCR is expressed early at a specific stage during B cell development where it plays a central role in survival of healthy B lymphocytes. This receptor is composed of the membrane heavy chain (mIgµ) associated with surrogate light chain components, 5 and VpreB. Through the use of advanced imaging modalities, in particular two-color single particle tracking (SPT), we showed that pre-BCRs formed transient, homotypic interactions. These receptors displayed correlated motion at short separation distances that is consistent with the formation of dimers. These encounters were sufficient to generate an autonomous signal that helped to maintain leukemia blast survival. Incubation of the BCP-ALL cells with galectin-1, which can bind both 5 and glycans, led to aggregate formation that drastically slowed down the diffusion of pre-BCRs. This correlated to a downregulation of pre-BCR signaling through proximal Syk activation. Blocking galectin-1’s lectin-binding capability with saturating concentrations of -lactose partially restored diffusion to “tonic” levels. The introduction of this sugar also impacted the downstream signaling profile. Due to these differential vi diffusion and signaling profiles observed in experimental procedures we turned computational biology to gain additional structural insight. Molecular dynamics (MD) simulations supported the idea that the pre-BCR can allosterically control galectin-1’s binding capacity at its distal carbohydrate-binding site (CBS). We generated a monovalent Fab against the dimer interface of the pre-BCR using phage display technologies and showed that it not only could disrupt dimerization but also disrupted downstream signaling. Due to recent clinical advances in chimeric antigen receptor (CAR) T cell therapy, we reformatted our Fab into a scFv, the binding region of the CAR, using genetic cloning techniques. Through the use of computer-aided design we successfully generated a scFv with high affinity to the VpreB target. This antibody binding fragment was cloned into a lentiviral vector containing the CD28 co-stimulatory domain and immunoreceptor tyrosine-based activation motif (ITAM)-containing TCR-CD3. After efficient transduction of primary CD8+ T cells, we have shown efficient in vitro efficacy against BCP-ALL cells. vii Table of Contents CHAPTER 1: INTRODUCTION ................................................................. 1 Model system: B cell precursor acute lymphoblastic leukemia .............................................. 1 The pre-BCR checkpoint in B cell development ....................................................................... 2 Technical Approach I: Single Particle Tracking......................................................................... 5 Insights into pre-BCR Homotypic Interactions through Quantitative Imaging ........................ 8 Galectin, a pre-BCR crosslinking agent .................................................................................. 10 Technical Approach II: Molecular Dynamics .......................................................................... 12 MD Simulations Reveal Allosteric Control of Galectin-1 by the pre-BCR .............................. 16 Small molecule and antibody-based therapeutics for leukemia ........................................... 17 The design and promise of CAR T cell therapy ...................................................... 17 Chapter 2: PRE-BCR DIMER – SPT......................................................... 22 ABSTRACT ............................................................................................................................... 22 INTRODUCTION ...................................................................................................................... 24 MATERIALS AND METHODS ................................................................................................... 26 RESULTS ................................................................................................................................. 32 DISCUSSION ............................................................................................................................ 56 CHAPTER 3: GALECTIN-1 - MD ............................................................ 63 ABSTRACT ............................................................................................................................... 63 INTRODUCTION ...................................................................................................................... 65 METHODS ............................................................................................................................... 67 RESULTS ................................................................................................................................
Recommended publications
  • Contrasting Influenza and Respiratory Syncytial Virus
    REVIEW published: 02 March 2018 doi: 10.3389/fimmu.2018.00323 Induction and Subversion of Human Protective Immunity: Contrasting influenza and Respiratory Syncytial Virus Stephanie Ascough, Suzanna Paterson and Christopher Chiu* Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to devel- oping reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV Edited by: and there are currently no licensed RSV vaccines. Although animal models have been Steven Varga, critical for developing a fundamental understanding of antiviral immunity, extrapolating University of Iowa, United States to human disease has been problematic. It is only with recent translational advances Reviewed by: (such as controlled human infection models and high-dimensional technologies) that the Tara Marlene Strutt, mechanisms responsible for differences in protection against RSV compared to influenza University of Central Florida, have begun to be elucidated in the human context. Influenza infection elicits high-affinity United States Jie Sun, IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long- Mayo Clinic Minnesota, lived influenza-specific T cells have also been shown to ameliorate disease.
    [Show full text]
  • NIH Public Access Author Manuscript Immunogenetics
    NIH Public Access Author Manuscript Immunogenetics. Author manuscript; available in PMC 2013 August 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Immunogenetics. 2012 August ; 64(8): 647–652. doi:10.1007/s00251-012-0626-0. A VpreB3 homologue from a marsupial, the gray short-tailed opossum, Monodelphis domestica Xinxin Wang, Zuly E. Parra, and Robert D. Miller Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA Robert D. Miller: [email protected] Abstract A VpreB surrogate light (SL) chain was identified for the first time in a marsupial, the opossum Monodelphis domestica. Comparing the opossum VpreB to homologues from eutherian (placental mammals) and avian species supported the marsupial gene being VpreB3. VpreB3 is a protein that is not known to traffic to the cell surface as part of the pre-B cell receptor. Rather, VpreB3 associates with nascent immunoglobulin (Ig) chains in the endoplasmic reticulum. Homologues of other known SL chains VpreB1, VpreB2, and λ5, which are found in eutherian mammals, were not found in the opossum genome, nor have they been identified in the genomes of non-mammals. VpreB3 likely evolved from earlier gene duplication, independent of that which generated VpreB1 and VpreB2 in eutherians. The apparent absence of VpreB1, VpreB2, and λ5 in marsupials suggests that an extra-cellular pre-B cell receptor containing SL chains, as it has been defined in humans and mice, may be unique to eutherian mammals. In contrast, the conservation of VpreB3 in marsupials and its presence in non-mammals is consistent with previous hypotheses that it is playing a more primordial role in B cell development.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • A Second Gene, Vpreb in the X5 Locus of the Mouse, Which Appears to Be Selectively Expressed in Pre-B Lymphocytes
    The EMBO Journal vol.6 no.8 pp.2267-2272, 1987 A second gene, VpreB in the X5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes Akira Kudo and Fritz Melchers respectively. Exon I shows no strong homology to any known Basel Institute for Immunology, Postfach, CH-4058 Grenzacherstrasse 487, gene. The putative protein encoded by the X5 gene, although not Basel, Switzerland yet identified, is a potential candidate for heterodimer formation Communicated by F.Melchers with IgH chains and thereby, may influence the function which H chains play in pre-B cell development. We describe here, The murine gene X5 is selectively expressed in pre-B lym- 4.6 kb upstream of X5 another gene named VpreB1 composed of phocytes. Of the three exons encoding X5, exons II and III two exons which is selectively expressed in pre-B cell lines as show strong homologies to immunoglobulin X light (L) chain 0.85 kb mRNA. The putative protein encoded by this gene is gene segments, i.e. to Jx intron and exon, and Cx exon se- a potential candidate for association with the X5 protein and quences respectively. We have now found, 4.6 kb upstream may, therefore, also influence the role of H chains in pre-B cell of X5, another gene composed of two exons which is selec- development. tively expressed in pre-B cell lines as a 0.85 kb mRNA poten- tially coding for a protein of 142 amino acids including a 19 Results amino acid-long signal peptide.
    [Show full text]
  • UC Irvine UC Irvine Electronic Theses and Dissertations
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Computation Models of Virus Dynamics Permalink https://escholarship.org/uc/item/3zb6480f Author Roy, Sarah M. Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Computational Models of Virus Dynamics DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology and Evolutionary Biology by Sarah Marie Roy Dissertation Committee: Professor Dominik Wodarz, Chair Associate Professor Robin Bush Associate Professor Kevin Thornton 2015 © 2015 Sarah Marie Roy DEDICATION To my parents and to Hans, in loving memory ii TABLE OF CONTENTS Page LIST OF FIGURES iv ACKNOWLEDGMENTS v CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION vii INTRODUCTION 1 CHAPTER 1: Infection of HIV-specific CD4 T helper cells and the clonal 13 composition of the response CHAPTER 2: Tissue architecture, feedback regulation, and resilience to 46 viral infection CHAPTER 3: An Agent-Based Model of HIV Coinfection 71 iii LIST OF FIGURES Page Figure 1.1 Outcomes of model (1) assuming a single helper cell cell clone 21 Figure 1.2 Outcomes of model (2) assuming two independently regulated 24 helper cell clones Figure 1.3 Outcomes of model (2) depending on a and b 26 Figure 1.4 Outcomes of model (2) depending on r1 and r2 27 Figure 1.5 Outcomes of model (4) depending on CTL parameters 33 Figure 2.1 Dependence of Sfrac and Dfrac on replication rate, b 53 Figure 2.2 Tissue architecture and resilience to infection according to 55 model (2) Figure 2.3 Uncontrolled growth in the context of negative feedback 59 according to model (2) Figure 2.4 Two different virus persistence equilibria in the stem cell 61 infection model Figure 2.5 Stem cell infection rate vs.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Dissecting Human Antibody Responses Against Influenza a Viruses and Antigenic Changes That Facilitate Immune Escape
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape Seth J. Zost University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Zost, Seth J., "Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape" (2018). Publicly Accessible Penn Dissertations. 3211. https://repository.upenn.edu/edissertations/3211 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3211 For more information, please contact [email protected]. Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape Abstract Influenza A viruses pose a serious threat to public health, and seasonal circulation of influenza viruses causes substantial morbidity and mortality. Influenza viruses continuously acquire substitutions in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). These substitutions prevent the binding of pre-existing antibodies, allowing the virus to escape population immunity in a process known as antigenic drift. Due to antigenic drift, individuals can be repeatedly infected by antigenically distinct influenza strains over the course of their life. Antigenic drift undermines the effectiveness of our seasonal influenza accinesv and our vaccine strains must be updated on an annual basis due to antigenic changes. In order to understand antigenic drift it is essential to know the sites of antibody binding as well as the substitutions that facilitate viral escape from immunity.
    [Show full text]
  • Fitness Costs Limit Influenza a Virus Hemagglutinin Glycosylation
    Fitness costs limit influenza A virus hemagglutinin PNAS PLUS glycosylation as an immune evasion strategy Suman R. Dasa,b,1, Scott E. Hensleya,2, Alexandre Davida, Loren Schmidta, James S. Gibbsa, Pere Puigbòc, William L. Incea, Jack R. Benninka, and Jonathan W. Yewdella,3 aLaboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892; bEmory Vaccine Center, Emory University, Atlanta, GA 30322; and cNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 AUTHOR SUMMARY Influenza A virus remains an acid substitutions distributed important human pathogen among the four antigenic sites largely because of its ability to recognized by various mono- evade antibodies that neutralize clonal antibodies, indicating viral infectivity. The virus conserved antigenicity among escapes neutralization by alter- the mutants for this mAb (2). ing the target of these anti- Third and highly ironically, bodies, the HA glycoprotein, in escape mutants selected with a process known as antigenic H28-A2 show reduced binding drift. HA attaches the virus to to a remarkably large frac- specific molecules (terminal tion of other monoclonal anti- sialic acid residues) on target bodies (71%) that recognize cells to initiate the infectious one (or a combination) of the cycle. Antibodies that interact four antigenic sites in the glob- with the globular structure ular domain. of the HA protein physically Sequencing of two H28-A2 block virus attachment or the egg-generated escape mutants subsequent HA-mediated (OV1 and OV2) immediately fusion of viral and cellular revealed that their low fre- membranes, thereby neutraliz- quency and high degree of ing viral infectivity.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Selection of Antigenically Advanced Variants of Seasonal Influenza Viruses
    ARTICLES PUBLISHED: 23 MAY 2016 | ARTICLE NUMBER: 16058 | DOI: 10.1038/NMICROBIOL.2016.58 Selection of antigenically advanced variants of seasonal influenza viruses Chengjun Li1†,MasatoHatta1†, David F. Burke2,3†, Jihui Ping1†,YingZhang1†,MakotoOzawa1,4, Andrew S. Taft1, Subash C. Das1, Anthony P. Hanson1, Jiasheng Song1, Masaki Imai1,5, Peter R. Wilker1, Tokiko Watanabe6, Shinji Watanabe6,MutsumiIto7, Kiyoko Iwatsuki-Horimoto7, Colin A. Russell3,8,9, Sarah L. James2,3, Eugene Skepner2,3, Eileen A. Maher1, Gabriele Neumann1, Alexander I. Klimov10‡, Anne Kelso11,JohnMcCauley12,DayanWang13, Yuelong Shu13,TakatoOdagiri14, Masato Tashiro14, Xiyan Xu10,DavidE.Wentworth10, Jacqueline M. Katz10,NancyJ.Cox10, Derek J. Smith2,3,15* and Yoshihiro Kawaoka1,4,6,7* Influenza viruses mutate frequently, necessitating constant updates of vaccine viruses. To establish experimental approaches that may complement the current vaccine strain selection process, we selected antigenic variants from human H1N1 and H3N2 influenza virus libraries possessing random mutations in the globular head of the haemagglutinin protein (which includes the antigenic sites) by incubating them with human and/or ferret convalescent sera to human H1N1 and H3N2 viruses. We also selected antigenic escape variants from human viruses treated with convalescent sera and from mice that had been previously immunized against human influenza viruses. Our pilot studies with past influenza viruses identified escape mutants that were antigenically similar to variants that emerged in nature, establishing the feasibility of our approach. Our studies with contemporary human influenza viruses identified escape mutants before they caused an epidemic in 2014–2015. This approach may aid in the prediction of potential antigenic escape variants and the selection of future vaccine candidates before they become widespread in nature.
    [Show full text]
  • Revisiting the Elusive Hepatitis C Vaccine
    Editorial Revisiting the Elusive Hepatitis C Vaccine Stephen M. Todryk 1,2,* , Margaret F. Bassendine 2,* and Simon H. Bridge 1,2,* 1 Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 2 Translational & Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK * Correspondence: [email protected] (S.M.T.); [email protected] (M.F.B.); [email protected] (S.H.B.) The impactful discovery and subsequent characterisation of hepatitis C virus (HCV), an RNA virus of the flavivirus family, led to the awarding of the 2020 Nobel Prize in Physiology or Medicine to Harvey J. Alter, Michael Houghton and Charles M. Rice [1]. However, despite the significant advances recognised by this Nobel prize, an effective HCV vaccine remains elusive. The recent success of vaccines against SARS-CoV-2, developed with unprecedented speed, has shone a bright light on the vaccination process for protection against viral threats and may provide renewed impetus for the development of vaccines for other viruses. HCV infection remains a major global health problem as approximately three quarters of those infected develop chronic infection, leading to morbidity and mortality due to progressive liver fibrosis, cirrhosis and cancer. The World Health Organization (WHO) estimates that 71.1 million people are living with chronic HCV, resulting in over 400,000 deaths every year. In 2016, the WHO adopted a global strategy with the aim of eliminating viral hepatitis as a public health problem, comprising targets to reduce new viral hepatitis infections by 90% and reduce deaths due to viral hepatitis by 65% by 2030.
    [Show full text]