Genetically Dissecting the Role of CRHR2 and UCN2 in the Control of Emotional Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Genetically Dissecting the Role of CRHR2 and UCN2 in the Control of Emotional Behavior TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Entwicklungsgenetik Genetically dissecting the role of CRHR2 and UCN2 in the control of emotional behavior Adam Kolarz Vollständiger Ausdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. S. Scherer Prüfer der Dissertation: 1. Univ.-Prof. Dr. W. Wurst 2. Priv.-Doz. Dr. C. Wotjak (Ludwig-Maximilians-Universität München) Die Dissertation wurde am 20.02.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.06.2015 angenommen. Table of content Table of content Table of content ............................................................................................. 3 Table of figures .............................................................................................. 8 List of abbreviations ...................................................................................... 11 Abstract ........................................................................................................ 18 Zusammenfassung ........................................................................................ 20 The Three Oddest Words ..................................................................................................................................... 22 1 Introduction ............................................................................................ 23 1.1 Depression and anxiety ........................................................................................................................ 23 1.1.1 Neurobiology of depression and anxiety disorders. ....................................................................... 23 1.1.2 Serotonergic dysfunction in anxiety and mood disorders .............................................................. 24 1.2 Stress as an environmental factor contributes to development of psychiatric disorders. ................... 25 1.2.1 Stress response ............................................................................................................................... 25 1.2.2 Regulation of the HPA axis .............................................................................................................. 27 1.2.2.1 Afferent projections to the PVN – initiation and integration of the stress signal .................. 27 1.2.2.2 Extinction of the stress response ........................................................................................... 29 1.3 Beyond the monoaminergic theory of depression ............................................................................... 30 1.3.1 The CRH/UCN system in the brain................................................................................................... 30 1.3.1.1 CRH and its role in anxiety and mood disorders .................................................................... 32 1.3.2 CRH receptors.................................................................................................................................. 33 1.3.2.1 Corticotropin-releasing hormone receptor type 1 (CRHR1) ................................................... 33 1.3.2.2 Corticotropin-releasing hormone receptor type 2 (CRHR2) ................................................... 35 1.3.2.2.1 CRHR2 and its role in stress response regulation.............................................................. 36 1.3.2.2.2 Stress recovery - CRHR2 in the bed nucleus of the stria terminalis. ................................. 38 1.3.2.2.3 In search of the anxiogenic role of CRHR2 - the lateral septum ....................................... 39 1.3.2.2.4 Linking stress and regulation of serotonergic system – CRHR2 in the dorsal raphe nucleus ........................................................................................................................................... 40 1.3.3 CRH-related peptides with affinity toward CRHR2 – Urocortins ..................................................... 42 1.3.3.1 Urocortin 1 (UCN1) ................................................................................................................. 42 1.3.3.2 Urocortin 2 (UCN2) ................................................................................................................. 43 1.3.3.3 Urocortin 3 (UCN3) ................................................................................................................. 44 1.4 Transgenic mouse models ................................................................................................................... 45 1.4.1 Conventional vs. conditional mouse models ................................................................................... 46 2 Aims of the thesis .................................................................................... 48 3 Materials and Methods ........................................................................... 49 3 Table of content 3.1 Materials.............................................................................................................................................. 49 3.1.1 Buffers and solutions ....................................................................................................................... 49 3.1.1.1 Buffers for agarose gel electrophoresis .................................................................................. 49 3.1.1.2 Solutions for in situ hybridization (ISH) .................................................................................. 49 3.1.1.3 Immunohistochemistry solutions ........................................................................................... 52 3.1.1.4 LacZ staining solutions ............................................................................................................ 53 3.1.1.5 Solutions for western blotting ................................................................................................ 54 3.1.1.6 HPLC Solutions ........................................................................................................................ 55 3.1.2 Oligonucleotides for genotyping ..................................................................................................... 56 3.1.3 Oligonucleotides for qPCR ............................................................................................................... 57 3.1.4 mRNA probes for ISH ....................................................................................................................... 57 3.1.5 Antibodies ....................................................................................................................................... 57 3.1.6 Animals ............................................................................................................................................ 58 3.2 Methods ............................................................................................................................................... 60 3.2.1 Preparation and analysis of nucleic acids ........................................................................................ 60 3.2.1.1 Polymerase chain reaction (PCR) ............................................................................................ 60 3.2.1.2 RNA isolation .......................................................................................................................... 61 3.2.1.3 Reverse transcription (RT) PCR ............................................................................................... 62 3.2.1.4 Quantitative real-time PCR (qPCR) ......................................................................................... 62 3.2.2 Plasma corticosterone analysis ....................................................................................................... 63 3.2.3 Tissue preparation ........................................................................................................................... 64 3.2.4 In situ hybridization (ISH) ................................................................................................................ 64 3.2.4.1 Radioactive labeling of probes ............................................................................................... 64 3.2.4.2 Purification of the riboprobes ................................................................................................ 66 3.2.4.3 Pre-treatment of cryo-slides................................................................................................... 66 3.2.4.4 Hybridization .......................................................................................................................... 67 3.2.4.5 Washing .................................................................................................................................. 67 3.2.4.6 Autoradiography ..................................................................................................................... 68 3.2.4.7 Quantification of relative expression ..................................................................................... 68 3.2.5 Immunohistochemistry ................................................................................................................... 68 3.2.6 Nissl staining ...................................................................................................................................
Recommended publications
  • Corticotropin-Releasing Hormone Physiology
    European Journal of Endocrinology (2006) 155 S71–S76 ISSN 0804-4643 Corticotropin-releasing hormone physiology Joseph A Majzoub Division of Endocrinology, Children’s Hospital Boston, Thomas Morgan Rotch Professor of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA (Correspondence should be addressed to J A Majzoub; Email: [email protected]) Abstract Corticotropin-releasing hormone (CRH), also known as corticotropin-releasing factor, is a highly conserved peptide hormone comprising 41 amino acid residues. Its name derives from its role in the anterior pituitary, where it mediates the release of corticotropin (ACTH) leading to the release of adrenocortical steroids. CRH is the major hypothalamic activator of the hypothalamic–pituitary– adrenal (HPA)axis. Major functions of the HPAinclude: (i) influencing fetal development of major organ systems including lung, liver, and gut, (ii) metabolic functions, including the maintenance of normal blood glucose levels during the fasting state via glycogenolysis and gluconeogenesis, (iii) modulation of immune function, and (iv) maintenance of cardiovascular tone. In addition, CRH, acting both directly and via the HPA, has a role in regulating several neuroendocrine functions including behavior, food intake, reproduction, growth, immune function, and autonomic function. CRH has been localized to the paraventricular nucleus (PVN) of the hypothalamus, which projects to the median eminence and other hypothalamic and midbrain targets. The CRH gene is composed of two exons. The CRH promoter contains a cAMP-response element, and the intron contains a restrictive element-1/neuron restrictive silencing element (RE-1/NRSE) sequence. Recently, a family of CRH-related peptides, termed the urocortins, has been identified.
    [Show full text]
  • Roles for Androgens in Mediating the Sex Differences of Neuroendocrine and Behavioral Stress Responses Damian G
    Zuloaga et al. Biology of Sex Differences (2020) 11:44 https://doi.org/10.1186/s13293-020-00319-2 REVIEW Open Access Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses Damian G. Zuloaga1, Ashley L. Heck2, Rose M. De Guzman1 and Robert J. Handa2* Abstract Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood.
    [Show full text]
  • Expression of Urocortin and Corticotropin-Releasing Hormone Receptors in the Horse Thyroid Gland
    Cell Tissue Res DOI 10.1007/s00441-012-1450-4 REGULAR ARTICLE Expression of urocortin and corticotropin-releasing hormone receptors in the horse thyroid gland Caterina Squillacioti & Adriana De Luca & Sabrina Alì & Salvatore Paino & Giovanna Liguori & Nicola Mirabella Received: 11 January 2012 /Accepted: 3 May 2012 # Springer-Verlag 2012 Abstract Urocortin (UCN) is a 40-amino-acid peptide and UCN, CRHR1 and CRHR2 and that UCN plays a role in a member of the corticotropin-releasing hormone (CRH) the regulation of thyroid physiological functions through a family, which includes CRH, urotensin I, sauvagine, paracrine mechanism. UCN2 and UCN3. The biological actions of CRH family peptides are mediated via two types of G-protein-coupled Keywords Follicular cells . C-cells . RT-PCR . receptors, namely CRH type 1 receptor (CRHR1) and CRH Immunohistochemistry . Horse type 2 receptor (CRHR2). The biological effects of these peptides are mediated and modulated not only by CRH receptors but also via a highly conserved CRH-binding Introduction protein (CRHBP). Our aim was to investigate the expression of UCN, CRHR1, CRHR2 and CRHBP by immunohisto- Urocortin (UCN) is a peptide of 40 amino acids and is a chemistry, Western blot and reverse transcription with the member of the corticotropin-releasing hormone (CRH) fam- polymerase chain reaction (RT-PCR) in the horse thyroid ily, which includes CRH, urotensin I, sauvagine, UCN2 and gland. The results showed that UCN, CRHR1 and CRHR2 UCN3. Vaughan et al. (1995) were the first to identify UCN, were expressed in the thyroid gland, whereas CRHBP was which exhibits 45% homology to CRH (Latchman 2002; not expressed.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Cionin, a Vertebrate Cholecystokinin/Gastrin
    www.nature.com/scientificreports OPEN Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A Tomohiro Osugi, Natsuko Miyasaka, Akira Shiraishi, Shin Matsubara & Honoo Satake* Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identifed in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifcally in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to signifcantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confrmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were signifcantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory efect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the frst report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism. Ascidians are the closest living relatives of vertebrates in the Chordata superphylum, and thus they provide important insights into the evolution of peptidergic systems in chordates.
    [Show full text]
  • Corticotropin-Releasing Factor, Neuroplasticity (Sensitization), and Alcoholism
    COMMENTARY Corticotropin-releasing factor, neuroplasticity (sensitization), and alcoholism George F. Koob* Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037 ensitization is a ubiquitous bio- logical phenomenon that has a role in the neuroadaptation of many different functions, from Slearning and memory to stress respon- sivity. Historically, a specific form of sensitization termed psychomotor sensi- tization (mistermed in my view as ‘‘be- havioral sensitization’’) is induced by repeated administration of drugs of abuse and has been linked to the neuro- adaptive changes associated with increased drug-seeking behavior associ- Fig. 1. CNS actions relevant to alcohol-induced psychomotor sensitization. CRF is a neuropeptide in the ated with addiction. Largely observed brain that controls autonomic, hormonal, and behavioral responses to stressors. New data show that CRF with psychostimulant drugs, also has a role in the neuroplasticity associated with addiction. The present study extends the role of CRF psychomotor sensitization has been con- to the psychomotor sensitization associated with repeated administration of alcohol. The hypothalamic- sidered a model for the increased pituitary-adrenal responses produced by CRF appear to be more involved in the acquisition of sensitiza- incentive salience contributing to the tion, whereas extrahypothalamic CRF systems, likely to be in structures such as the amygdala, appear to increased motivation to seek drugs in be important for the expression of sensitization. These results, combined with previous studies on the role of CRF in the development of alcohol dependence, suggest a key role for CRF in the neuroplasticity individuals with a previous history of associated with addiction.
    [Show full text]
  • UCN2 (NM 033199) Human Tagged ORF Clone – RC201333 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC201333 UCN2 (NM_033199) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: UCN2 (NM_033199) Human Tagged ORF Clone Tag: Myc-DDK Symbol: UCN2 Synonyms: SRP; UCN-II; UCNI; UR; URP Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC201333 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGACCAGGTGTGCTCTGCTGTTGCTGATGGTCCTGATGTTGGGCAGAGTCCTGGTTGTCCCAGTGACCC CTATCCCAACCTTCCAGCTCCGCCCTCAGAATTCTCCCCAGACCACTCCCCGACCTGCGGCCTCAGAGAG CCCCTCAGCTGCTCCCACATGGCCGTGGGCTGCCCAGAGCCACTGCAGCCCCACCCGCCACCCTGGCTCG CGCATTGTCCTATCGCTGGATGTCCCCATCGGCCTCTTGCAGATCTTACTGGAGCAAGCCCGGGCCAGGG CTGCCAGGGAGCAGGCCACCACCAACGCCCGCATCCTGGCCCGTGTCGGCCACTGC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC201333 protein sequence Red=Cloning site Green=Tags(s) MTRCALLLLMVLMLGRVLVVPVTPIPTFQLRPQNSPQTTPRPAASESPSAAPTWPWAAQSHCSPTRHPGS RIVLSLDVPIGLLQILLEQARARAAREQATTNARILARVGHC TRTRPLEQKLISEEDLAANDILDYKDDDDKV Chromatograms: https://cdn.origene.com/chromatograms/mk6125_c07.zip Restriction Sites: SgfI-MluI This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene
    [Show full text]
  • Glucagon-Like Peptide-1 Reduces Pancreatic Β-Cell Mass Through
    www.nature.com/scientificreports OPEN Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in Received: 3 October 2016 Accepted: 30 May 2017 high-fat diet-induced obese rats Published: xx xx xxxx Hisae Ando, Koro Gotoh, Kansuke Fujiwara, Manabu Anai, Seiichi Chiba, Takayuki Masaki, Tetsuya Kakuma & Hirotaka Shibata We examined whether glucagon-like peptide-1 (GLP-1) affectsβ -cell mass and proliferation through neural pathways, from hepatic afferent nerves to pancreatic efferent nerves via the central nervous system, in high-fat diet (HFD)-induced obese rats. The effects of chronic administration of GLP-1 (7–36) and liraglutide, a GLP-1 receptor agonist, on pancreatic morphological alterations, c-fos expression and brain-derived neurotrophic factor (BDNF) content in the hypothalamus, and glucose metabolism were investigated in HFD-induced obese rats that underwent hepatic afferent vagotomy (VgX) and/ or pancreatic efferent sympathectomy (SpX). Chronic GLP-1 (7–36) administration to HFD-induced obese rats elevated c-fos expression and BDNF content in the hypothalamus, followed by a reduction in pancreatic β-cell hyperplasia and insulin content, thus resulting in improved glucose tolerance. These responses were abolished by VgX and SpX. Moreover, administration of liraglutide similarly activated the hypothalamic neural pathways, thus resulting in a more profound amelioration of glucose tolerance than native GLP-1 (7–36). These data suggest that GLP-1 normalizes the obesity-induced compensatory increase in β-cell mass and glucose intolerance through a neuronal relay system consisting of hepatic afferent nerves, the hypothalamus, and pancreatic efferent nerves. β-cell mass, which is determined by the product of the number and size of pancreatic β-cells, is tightly con- trolled to maintain glucose levels within a normal range.
    [Show full text]
  • Urocortin 2 Modulates Glucose Utilization and Insulin Sensitivity in Skeletal Muscle
    Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle Alon Chen*†, Bhawanjit Brar*, Cheol Soo Choi‡, David Rousso*, Joan Vaughan*, Yael Kuperman†, Shee Ne Kim‡, Cindy Donaldson*, Sean M. Smith*, Pauline Jamieson*, Chien Li*, Tim R. Nagy§, Gerald I. Shulman‡, Kuo-Fen Lee*, and Wylie Vale*¶ *Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037; †Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel; ‡Department of Internal Medicine and Cellular and Molecular Physiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536; and §Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294 Contributed by Wylie Vale, August 28, 2006 Skeletal muscle is the principal tissue responsible for insulin- Results and Discussion stimulated glucose disposal and is a major site of peripheral insulin Generation of Ucn 2-Deficient Mice. To explore the physiological resistance. Urocortin 2 (Ucn 2), a member of the corticotropin- role of Ucn 2, we generated mice that are deficient in this releasing factor (CRF) family, and its cognate type 2 CRF receptor peptide. A genomic DNA clone containing Ucn 2 was isolated, (CRFR2) are highly expressed in skeletal muscle. To determine the and a targeting construct in which the full Ucn 2 coding sequence physiological role of Ucn 2, we generated mice that are deficient in was replaced with a neomycin-resistant gene cassette was gen- this peptide. Using glucose-tolerance tests (GTTs), insulin-tolerance erated (Fig. 1a). J1 ES cells were electroporated with the tests (ITTs), and hyperinsulinemic euglycemic glucose clamp stud- targeting construct and were selected as described in ref.
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Cardiac CRFR1 Expression Is Elevated in Human Heart Failure and Modulated by Genetic Variation and Alternative Splicing. Permalink https://escholarship.org/uc/item/8r73t67n Journal Endocrinology, 157(12) ISSN 0013-7227 Authors Pilbrow, Anna P Lewis, Kathy A Perrin, Marilyn H et al. Publication Date 2016-12-01 DOI 10.1210/en.2016-1448 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Manuscript (MUST INCLUDE TITLE PAGE AND ABSTRACT) Click here to download Manuscript (MUST INCLUDE TITLE PAGE AND ABSTRACT) Endocrinology CRFR1 ms.docx 1 Myocardial expression of Corticotropin-Releasing Factor Receptor 1 (CRFR1) is elevated in human 2 heart failure and is modulated by genetic variation and a novel CRFR1 splice variant. 3 4 Anna P Pilbrow1,2,* PhD, Kathy A Lewis1 BS, Marilyn H Perrin1 PhD, Wendy E Sweet3 MS, Christine S 5 Moravec3 PhD, WH Wilson Tang3 MD, Mark O Huising1 PhD, Richard W Troughton2 MD PhD and 6 Vicky A Cameron2 PhD. 7 8 1. Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines 9 Road, La Jolla, CA 92037, USA. 10 2. Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, 2 11 Riccarton Avenue, PO Box 4345, Christchurch 8011, New Zealand. 12 3. Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, 9500 13 Euclid Avenue, Cleveland, OH 44195, USA. 14 15 Abbreviated title: CRFR1 in human heart failure 16 Keywords: heart failure, CRFR1, CRHR1, alternative splicing, splice variant, polymorphism, human.
    [Show full text]
  • Mechanism of Astragalus Membranaceus in the Treatment Of
    www.nature.com/scientificreports OPEN Mechanism of Astragalus membranaceus in the treatment of laryngeal cancer based on gene co‑expression network and molecular docking Kai Feng Dong1,5, Meng Qi Huo4,5, Heng Ya Sun2, Tian Ke Li3 & Dan Li1* Astragalus membranaceus (HUANG QI, HQ) is a kind of traditional Chinese medicine. Researchers have widely concerned its antitumor efect. At present, there is still a lack of research on the treatment of laryngeal cancer with HQ. In this study, we integrated data from the weighted gene co-expression network of laryngeal cancer samples and the components and targets of HQ. A new method for dividing PPI network modules is proposed. Important targets of HQ treatment for laryngeal cancer were obtained through the screening of critical modules. These nodes performed diferential expression analysis and survival analysis through external data sets. GSEA enrichment analysis reveals pathways for important targets participation. Finally, molecular docking screened active ingredients in HQ that could interact with important targets. Combined with the laryngeal cancer gene co expression network and HQ PPI network, we obtained the critical module related to laryngeal cancer. Among them, MMP1, MMP3, and MMP10 were chosen as important targets. External data sets demonstrate that their expression in tumor samples is signifcantly higher than in normal samples. The survival time of patients with high expression group was signifcantly shortened, which is a negative factor for prognosis. GSEA enrichment analysis found that they are mainly involved in tumor-related pathways such as ECM receptor interaction and Small cell lung cancer. The docking results show that the components that can well bind to important targets of HQ are quercetin, rutin, and Chlorogenic acid, which may be the primary mechanism of the anti-cancer efect of HQ.
    [Show full text]