Boron Groups Installed Directly Into Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Boron Groups Installed Directly Into Molecules News & views was reduced in AD mice lacking astrocytic IL-3. macrophages, which reside at the brain’s personalized therapy for individuals with AD The authors next identified the targets of borders, might have been targeted by some who carry a risk-associated TREM2 variant? IL-3 in the brain. They found that microglia of the genetic tools used to manipulate IL-3Rα Further defining the roles of IL-3 in health and express the IL-3 receptor IL-3Rα, and that lev- expression. Such cells could also be affected by disease will be essential to fulfil the promise of els of this receptor are substantially increased IL-3 to alter the entry of molecules or cells into McAlpine and colleagues’ findings. with age and in the AD model compared with the brain. Although McAlpine et al. examined young, wild-type mice. Deleting IL-3Rα specif- some aspects of the integrity of the blood– Jerika J. Barron and Anna V. Molofsky ically from microglia in the AD mice resulted brain barrier and found it to be intact, other are in the Department of Psychiatry and in effects on Aβ plaque burden and memory unmeasured variables such as active transport Behavioral Sciences and the Weill Institute similar to those observed in AD mice lacking of blood-borne molecules to the brain could for Neurosciences, University of California, IL-3 in astrocytes. be affected11. San Francisco, San Francisco, California Strikingly, McAlpine and colleagues found In addition, it is possible that other brain 94158, USA. that injecting IL-3 into the brains of AD mice cell types could express the IL-3 receptor in e-mail: [email protected] could reduce Aβ build-up and stimulate the some contexts and respond to IL-3. Further clustering of microglia around Aβ plaques dissecting the impact of IL-3 signalling on 1. McAlpine, C. S. et al. Nature 595, 701–706 (2021). (Fig. 1). Continuous delivery of IL-3 into other cellular players will be a crucial next step. 2. Long, J. M. & Holtzman, D. M. Cell 179, 312–339 (2019). the brains of IL-3-deficient AD mice over Nonetheless, these findings are an excit- 3. Vainchtein, I. D. & Molofsky, A. V. Trends Neurosci. 43, four weeks resulted in a remarkable reduction ing advance in understanding the role of 144–154 (2020). 4. Wang, Y. et al. J. Exp. Med. 213, 667–675 (2016). in the size and amount of plaques and the lev- astrocytes and microglia in AD, a disease 5. Dougan, M., Dranoff, G. & Dougan, S. K. Immunity 50, els of soluble Aβ, as well as improvements in that is notoriously difficult to treat and that 796–811 (2019). short-term memory relative to results seen currently lacks any curative or restorative 6. Soares, H. D. et al. Arch. Neurol. 69, 1310–1317 (2012). 7. Ray, S. et al. Nature Med. 13, 1359–1362 (2007). in AD mice injected with an inactive control therapies. Although caution should be exer- 8. Oakley, H. et al. J. Neurosci. 26, 10129–10140 (2006). substance. This is a key finding with potential cised in translating these findings to the 9. Colonna, M. & Wang, Y. Nature Rev. Neurosci. 17, 201–207 therapeutic implications. clinic, particularly given the role of IL-3 and (2016). 10. Keren-Shaul, H. et al. Cell 169, 1276–1290 (2017). 12 Interest in the role of microglia in AD has IL-3Rα in certain autoimmune disorders , 11. Yang, A. C. et al. Nature 583, 425–430 (2020). increased dramatically since the discovery that this study raises the intriguing idea that IL-3 12. Renner, K. et al. JCI Insight 1, e87157 (2016). a variant of the gene encoding the receptor or related molecules could have therapeutic The authors declare no competing interests. protein TREM2, which is expressed by micro- potential in AD. Could this be one step towards This article was published online on 14 July 2021. glia, is associated with risk for AD9. McAlpine et al. show that Il3ra is enriched in a previously Organic chemistry described subset of ‘disease-associated micro- glia’ that are activated through the TREM2 receptor10. Moreover, the authors found that Boron groups installed deletion of Trem2 prevented the increase in microglial expression of IL-3Rα in their AD model, raising the question of whether TREM2 directly into molecules mutations associated with AD risk in humans might prevent this protective IL-3-dependent Christine M. Le response. Indeed, the authors also found evidence Compounds called borylated azines have untapped potential that this pathway is at work in the human for organic synthesis, but have faced problems associated brain. In brain tissue from individuals who with their preparation, stability and reactivity. A new class of had died with AD, the authors observed astro- these compounds provides a solution. See p.677 cyte expression of IL-3 and higher microglial expression of IL-3Rα than in the brains of age- matched individuals without AD. Moreover, the amount of microglial IL-3Rα expression The search for new pharmaceutical drugs by Azines are nitrogen-containing ana- correlated with the length of time for which medicinal chemists relies on the synthesis logues of benzene rings and are present in these individuals had been diagnosed with AD, of diverse compound libraries for biolog- many of the top-selling pharmaceuticals as well as with the accumulation of Aβ plaques. ical testing. Of the reactions used for this approved by the US Food and Drug Administra- How does IL-3 promote the protective func- purpose, those involving boron-containing tion (see go.nature.com/2dirpwf). These med- tions of microglia? The authors found that in organic molecules (known as organoboron icines target several disease areas, including AD mice lacking IL-3, microglia did not cluster compounds) are among the most popular arthritis, diabetes and several types of cancer. around plaques, and plaque deposition was because of the commercial availability and If a boron-containing group is attached to an greater than in AD mice. In experiments with wide reactivity of these reagents1. On page 677, azine, the resulting borylated azine can be human microglia in culture, treating these Kim et al.2 report a method for the synthesis used as a reagent for the synthesis of many dif- cells with IL-3 promoted migration towards of organo boron compounds called borylated ferent azine-containing molecules — a crucial AD-associated protein aggregates. azines. The authors demonstrate that these process for diversifying compound libraries. It is important to keep in mind that IL-3 compounds can participate in reactions Kim et al. explored the use of transformations might offer protection through more than one common to other organoboron compounds, called C–H functionalization reactions to mechanism. For example, IL-3 was particularly but offer distinct advantages, such as ease of prepare borylated azines. abundant in astrocytes at the blood–brain bar- preparation and impressive stability. Impor- Although once regarded as an academic rier, which controls the passage of proteins tantly, these reagents will allow a full explora- curiosity, C–H functionalization reactions are and cells from the circulatory system to the tion of the therapeutic potential of molecules now a powerful methodology in organic syn- brain. Populations of immune cells called that have previously been difficult to prepare. thesis. In these processes, a carbon–hydrogen 652 | Nature | Vol 595 | 29 July 2021 ©2021 Spri nger Nature Li mited. All rights reserved. ©2021 Spri nger Nature Li mited. All rights reserved. (C–H) bond is converted into a carbon–X bond, where X can be any atom other than a Conventional hydrogen. C–H functionalization can greatly Several steps methods streamline a synthetic procedure by reducing Boron-containing N N Br N the number of steps it takes to get to a specific group target molecule. Azine Brominated Borylated azine azine Borylated azines are typically synthesized from their bromine-containing analogues b Direct C–H (Fig. 1a). But although these brominated start- borylation ing materials are commercially available, they are more costly than the equivalent azines that N N lack a bromine atom. For example, 2-bromo- pyridine can be about 25 times more expen- sive per mole than pyridine, which reflects the Figure 1 | The synthesis of borylated azines. a, Azines are analogues of benzene rings that contain one or cost of the synthetic steps needed to attach a more nitrogen atoms — the example shown is called a pyridine. Azines that bear a boron-containing group bromine atom to pyridine3. are called borylated azines, and are useful intermediates for organic synthesis. Conventional methods for A C–H functionalization reaction that making borylated azines involve adding a bromine atom to the starting azine (which might take several 2 directly introduces a boron-containing group steps), and then replacing the bromine atom with the boron-containing group. b, Kim et al. now report that to an azine can bypass these steps, saving valu- a method known as C–H functionalization can be used to attach a boron-containing group directly at the α-position of an azine. The resulting products are useful for making compounds with various other groups able time and resources. If the conventional at the α-position — a common molecular motif in pharmaceutical compounds. synthetic approach is like a bus route that has multiple transfers, C–H functionalization is like a non-stop express train. But before board- discovery was that an amine-borane reagent of the boron group with a hydrogen). ing this train, it is crucial to make sure that it (Me3N·BH3, where Me is a methyl group, CH3), It would now be useful to know whether stops at your desired destination: azines often in the presence of an organic catalyst, acid these borylated azines can participate in have several C–H bonds, which means that syn- and light, can form boron-centred radicals reactions in which the amine-borane group thetic chemists must devise clever strategies with the necessary reactivity for Minisci-type is replaced with a fluorine atom6.
Recommended publications
  • The Lithium, Boron and Beryllium Content Of
    Published in Geochimica et Cosmochimica Acta 72, issue 22, 5475-5504, 2008 1 which should be used for any reference to this work The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere Flurin Vils a,*, Laure Pelletier a, Angelika Kalt a, Othmar Mu¨ntener b, Thomas Ludwig c a Institut de Ge´ologie et d’Hydroge´ologie, Universite´ de Neuchaˆtel, Rue Emile-Argand 11, CP 158, CH-2009 Neuchaˆtel, Switzerland b Institut de Mine´ralogie et Ge´ochimie, Universite´ de Lausanne, Anthropole, CH-1015 Lausanne, Switzerland c Mineralogisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany Abstract Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen– Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpent- inization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44–2.8 lggÀ1) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data.
    [Show full text]
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • JCHS Physical Science 2017-18 Chapter 4
    JCHS Physical Science 2017-18 Chapter 4 FSA Science Team Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHOR FSA Science Team To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2017 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease
    Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease Description CircuitWorks® Conductive Grease, otherwise known as thermal greases, thermal gel, thermal compound, thermal paste, heat paste, heat sink paste or heat sink compound, are conveniently packaged in syringes for fast and easy application, and to reduce mess and wastage. The range covers a number of electronic production, rework and repair applications. We offer three types of conductive grease: Silver Conductive Grease Boron Nitride Heat Sink Grease Silicone Free Heat Sink Grease Features & Benefits RoHS compliant Conveniently packaged to reduce waste and mess Silicone free option available compound will not harden or dry out Excellent thermal conductivity Silver Conductive Grease The CIR CW7100 CircuitWorks® syringe dispenser for precise application of grease to provide Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease superior electrical and thermal conductivity, lubrication and protection. Maximum electrical and thermal conductivity Protects against moisture and corrosion Thermally stable over a wide temperature range Conductive lubricant containing pure silver Fills connector gaps to maximize electrical and thermal conductivity Controls static discharge Grounds circuits Typical Applications Lubrication of substation switches or circuit breakers Heat dissipation from transformers Low or medium speed sliding contacts Static grounding on seals or O-rings Extending the life of rotating switches Specifications
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • A New Strategy of Bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability
    A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability Rimsha Baloach University of Education Khurshid Ayub University of Education Tariq Mahmood University of Education Anila Asif University of Education Sobia Tabassum University of Education Mazhar Amjad Gilani ( [email protected] ) University of Education Original Research Full Papers Keywords: Boron phosphide (B12P12), Bi-alkali metal doping, Nonlinear optical response (NLO), Density functional theory Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207373/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Inorganic and Organometallic Polymers and Materials on April 16th, 2021. See the published version at https://doi.org/10.1007/s10904-021-02000-6. A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability ABSTRACT: Nonlinear optical materials possess high rank in fields of optics owing to their impacts, utilization and extended applications in industrial sector. Therefore, design of molecular systems with high nonlinear optical response along with high thermodynamic stability is a dire need of this era. Hence, the present study involves investigation of bi-alkali metal doped boron phosphide nanocages M2@B12P12 (M=Li, Na, K) in search of stable nonlinear optical materials. The investigation includes execution of geometrical and opto-electronic properties of complexes by means of density functional theory (DFT) computations. Bi-doped alkali metal atoms introduce excess of electrons in the host B12P12 nanocage.
    [Show full text]
  • Boron Family Periodic Table
    Boron Family Periodic Table Mesolithic and gluey Sarge still respited his cistern pitapat. Butcherly and celibate Lawrence subjectifying: which Durante is nickeliferous enough? Resentfully hithermost, Jonathon intercalate culler and stots trangam. If you hear this link has two boron family periodic table of materials from the presentation on stressing the The percentage of an element produced in the top producing country. The virgin has two projects in the US, fiberglass, your assignment will tire to fund the students in this Google Class if selected. Where behind the boron family found the nature? There maybe an aside while check to king the teams. Boron family for covering steel and lectured at a fun! Boron is also an essential trace mineral in plants. The periodic tables include helium atom of water from borax, uses of arthritis and how do not react? Indium glazed glass are boron family are main group typically also stimulate metabolism; back to form complexes with. You sure you burn a document with a unique characteristics and. Refer three charge. Click like the questions to bind more details. This periodic table of all bonds, families in size so here to period? Carbon Family Alkali Metals Alkaline Earth Metals Boron Family. Periodicity and Electron Configurations. Further the electrons in the same shell do not screen each other. Halogens are very reactive nonmetals. By acids forming univalent cation and therefore more electrons. The mixture has properties different from those of the individual metals. How do you agree to handle variable without looking for huge caac groups are fairly active. Custom themes, and main group chemistry in general, and octahedral geometries.
    [Show full text]
  • Periodic Table of the Elements Notes
    Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.
    [Show full text]
  • Structure and Bonding of New Boron and Carbon Superpolyhedra
    Structural Chemistry (2019) 30:805–814 https://doi.org/10.1007/s11224-019-1279-5 ORIGINAL RESEARCH Structure and bonding of new boron and carbon superpolyhedra Olga A. Gapurenko1 & Ruslan M. Minyaev1 & Nikita S. Fedik2 & Vitaliy V. Koval1 & Alexander I. Boldyrev2 & Vladimir I. Minkin1 Received: 16 November 2018 /Accepted: 1 January 2019 /Published online: 10 January 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Using the DFT methods, we computationally predict the stability of cage compounds E4nRn (E = B, C; R = H, F; n = 4, 8, 12, 24) based on Platonic bodies and Archimedean polyhedrons in which all vertices are replaced by tetrahedral E4R fragments. Cage compounds B60R12 and C60 with pyramidal units B5RorC5 are also examined and it is shown that only boron compounds are stable. The nature of chemical bonding in the discussed compounds is analyzed using the AdNDP and NBO methods. The hydrocarbons have classical 2c-2e C-C σ-bonds, while the boron compounds are formed by the polyhedral units with the delocalized multicenter bonds which connected three and more boron atoms. The new example of spherical aromaticity accord- 2 ing to the 2(N+1) rule in the case of B16F4 with multicenter 16c-2e bonds are revealed. Stable compound B60H12 contains 12 5c- 2e B-B bonds. Keywords Сage clusters . Chemical bonding . 3c-2e bond . Spherical aromaticity . AdNDP . NBO Construction of novel allotropic forms of carbon based on was proposed [1] as the system with the same symmetry as the tetrahedrane- and cubane-like building blocks was pro- sp3-carbon to replace the carbon atoms in the diamond posed by Burdett and Lee [1] and by Johnston and lattice.
    [Show full text]
  • A Book Collector's View of the Periodic Table: Key Documents
    Firenze University Press www.fupress.com/substantia A Book Collector’s View of the Periodic Table: Key Documents before Mendeleev’s Citation: G. S. Girolami (2019) A Book Collector’s View of the Periodic Table: Contributions of 1869 Key Documents before Mendeleev’s Contributions of 1869. Substantia 3(2) Suppl. 5: 109-124. doi: 10.13128/Sub- stantia-592 Gregory S. Girolami Copyright: © 2019 G. S. Girolami. School of Chemical Sciences, 600 S. Mathews Ave., University of Illinois at Urbana- This is an open access, peer-reviewed Champaign, Urbana, 61801, US article published by Firenze University E-mail: [email protected] Press (http://www.fupress.com/substan- tia) and distributed under the terms of the Creative Commons Attribution Abstract. The present article identifies and discusses some of the books and scientif- License, which permits unrestricted ic articles that played important roles in the development of the periodic law, before use, distribution, and reproduction Mendeleev published his Periodic System in 1869. For each book, information is giv- in any medium, provided the original en about the edition in which the discovery was made, and for each scientific article, author and source are credited. information is given about the form in which it was issued, such as whether offprints Data Availability Statement: All rel- were printed in addition to the journal appearance. Some observations of interest to evant data are within the paper and its book collectors are included, such as assessments of the availability of these documents Supporting Information files. on the rare book market. This paper may also be of use to those who wish to learn about (or to teach) the history of the periodic law from the original documents that Competing Interests: The Author(s) first announced important advances toward its creation.
    [Show full text]
  • Group Elements
    BORON FAMILY 199 CHAPTER-5 BORON FAMILY 5.1 Introduction The group 13 of the periodic table consists of the elements boron (B), aluminium (Al), gallium (Ga), indium (In) and thallium (Tl). Except boron which is a non-metal all other elements of this group show typical metallic properties. The nonmetallic character of B is possibly due to its small size, high ionization energy and comparatively high electronegativity. 5.2 Electronic Configuration: The elements of group 13 belong to p-block elements since the last electron in them enters the p- orbital. They have in all three electrons in the valence shell, two of these are present in the s-orbital and one in the p-orbital. Therefore, their general valence shell electronic configuration is represented as ns2 np1 where n = 2 to 6. The complete electronic configuration of these elements are given in the following table. Element Atomic Number Electronic Configuration 2 1 Boron (B) 5 [He] 2s 2p Aluminium (Al) 13 [Ne] 3s23p1 Gallium (Ga) 31 [Ar] 3d10 4s24p1 Indium (In) 49 [Kr] 4d105s25p1 Thallium (T1) 81 [Xe] 4f 14 5d10 6s26p1 5.3 General Characteristics Some of these properties are discussed below: (i) Atomic and Ionic radii: The atomic and ionic radii of group 13 elements are smaller than the corresponding elements of group 2. Explanation: This is because on moving from left to right, i.e, from group 2 to group 13 in a given period the nuclear charge increases while the new electron enters the same shell. Further the electrons in the same shell do not screen each other.
    [Show full text]
  • The Ionic Conductivity in Lithium-Boron Oxide Materials and Its Relation to Structural, Electronic and Defect Properties: Insights from Theory
    Journal of Physics: Condensed Matter TOPICAL REVIEW Related content - Topical Review The ionic conductivity in lithium-boron oxide Paul Heitjans and Sylvio Indris - Double perovskites with ferromagnetism materials and its relation to structural, electronic above room temperature and defect properties: insights from theory D Serrate, J M De Teresa and M R Ibarra - How chemistry controls electron localization in 3d1 perovskites: a Wannier- To cite this article: Mazharul M Islam et al 2012 J. Phys.: Condens. Matter 24 203201 function study E Pavarini, A Yamasaki, J Nuss et al. Recent citations View the article online for updates and enhancements. - Some device implications of voltage controlled magnetic anisotropy in Co/Gd 2 O 3 thin films through REDOX chemistry Guanhua Hao et al - Lithium Diffusion Mechanisms in -LiMO2 (M = Al, Ga): A Combined Experimental and Theoretical Study Mazharul M. Islam et al - First-principles study of structural, electronic, energetic and optical properties of substitutional Cu defect in Li 2 B 4 O 7 scintillator C. Santos et al This content was downloaded from IP address 134.129.67.237 on 13/06/2018 at 22:54 IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 24 (2012) 203201 (29pp) doi:10.1088/0953-8984/24/20/203201 TOPICAL REVIEW The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect properties: insights from theory Mazharul M Islam1,2, Thomas Bredow1,2 and Paul Heitjans2,3 1 Mulliken Center for Theoretical Chemistry, Universitat¨
    [Show full text]