A Stochastic Approach to “Dynamic-Demand” Refrigerator Control David Angeli, Senior Member, IEEE, and Panagiotis-Aristidis Kountouriotis
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012 581 A Stochastic Approach to “Dynamic-Demand” Refrigerator Control David Angeli, Senior Member, IEEE, and Panagiotis-Aristidis Kountouriotis Abstract—Dynamic demand management is a very promising In order for such (supply) regulation to be possible, however, research direction for improving power system resilience. This it is required that “frequency response services”, as well as suffi- paper considers the problem of managing power consumption by cient reserves, are included in the system.1 This is essential not means of “smart” thermostatic control of domestic refrigerators. In this approach, the operating temperature of these appliances only for instantaneous frequency balancing, but, more impor- and thus their energy consumption, is modified dynamically, tantly, for the ability to respond to sudden power plant failures, within a safe range, in response to mains frequency fluctuations. which would otherwise lead to severe blackouts. Previous research has highlighted the potential of this idea for From an economic perspective, frequency response services responding to sudden power plant outages. However, deterministic and reserve power are costly and any method which manages control schemes have proved inadequate as individual appliances tend to “synchronize” with each other, leading to unacceptable to reduce the magnitude of these services, without sacrificing levels of overshoot in energy demand, when they “recover” their system stability, is of significant importance [16]. In recent steady-state operating cycles. In this paper we design decentral- years, research has been initiated on the possibility of using ized random controllers that are able to respond to sudden plant frequency responsive loads, commonly referred to as “dynamic outages and which avoid the instability phenomena associated demand control”, so as to reduce the amount of frequency with other feedback strategies.
[Show full text]